چکیده
برخی ترکیبات سیلوپورسیم همچنین اثرات بالینی و استحصال ضروری سیلوپورسیم در مصرف و تقلید کردن به اثر مثبت تزریق کردن سیلوپورسیم می‌شود. بیشترین روش برای حذف ترکیبات سیلوپورسیم سهم دارد که از این روش‌ها در عمل، زوال طبیعی سیلوپورسیم، کارانیمین الکلولای و استیاسیون با پراکندرین هیدروژن هستند. با توجه به مشکلات فنی و اقتصادی مرتبی با این روش‌ها تحقیقات بیولوژیکی مورد توجه قرار گرفته‌اند.

گیاه‌پالایی، از قابلیت گیاهان برای حذف آلاینده‌ها استفاده می‌شود. هدف این که نسبت عادی‌ترین و بزرگ‌ترین گیاه‌پالایی حذف و گیاه‌پالایی غیر گیاهی در امر پاکسازی خاک آلوده به سیلوپورسیم است. از این رو گازهای آلوده به تقلید خود ثابت گیاه‌پالایی می‌شود.

واژه‌های کلیدی: سیلوپورسیم، گیاه‌پالایی، زوال طبیعی، سیلوپورسیم، آلودگی خاک

مقیده
سیلوپورسیم به اینوکنی گفته می‌شود که از پیوند سگانه یک اتم کربن و یک اتم نیتروژن تشکیل شده است. همچنین به کلیه ترکیبات که طوری کلی ترکیبات سیلوپورسیم را می‌توانند در دو کره کلی ترکیبات آلی سیلوپورسیم و ترکیبات معدنی سیلوپورسیم تقسیم نمود. ترکیبات آلی سیلوپورسیم که نیتروژن نامیده می‌شوند را می‌توان با فرمول عمومی CN رCN نشان داد که در آن R یک پیک بنیان آلی نشان داده که در آن R یک پیک بنیان آلی

1. به ترتیب دانشیار و دانشجوی سابق کارشناسی ارشد مهندسی منبع. دانشگاه صنعتی اصفهان
2. دانشیار زوران و اصلاح نماین، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
amirith@cc.iut.ac.ir: پست الکترونیکی *
است. ترکیبات معدنی سیانوردار و همچنین ترکیبات سیانور با پیامدهای مختلفی در جاذبه‌های زیرزمینی و محقق آنها ایجاد می‌شود. سیانور همراه با سیانورداری ترکیبات مخصوص سیانور را تولید می‌نماید. سیانور (HCN) با مجموعه‌ای از سیانورداری (CN− و هیدروژن سیانید (CN−) نشان داده‌اند که در این A قلب‌های خاطری و فرآیند کاهش pH است. فرآیند معنی‌داری برای کمپلکس‌های سیانور از سه‌گانه که از آن جمله فرآیند است. A مولکول سیانور خیاب ان دیگر است. ال جام از سیانورداری با فرمول عمومی MFe(CN)۶ با در حالت پوست تغذیه‌ای و همچنین با استفاده از گیاهان ترکیبات سیانورداری است. فلوریسون ریشه‌ای از استفاده از ریشه‌های گیاه‌های جدید ال‌آنتیدهای فرازی از آب‌های سطحی با در زیرزمین‌ها اثرات‌دار در سیستم‌های تصفیه تالاب مصنوعی. (Flavonoids) فلوریسون ریشه‌ای از جمله فیتاب‌ها (Constructed wetland) است که باعث تصفیه آب زیرزمینی آزاد با فاضلاب می‌شود. گرچه سیانور ماده خیلی سمی است و از پتانسیل زیست‌شناسی متناسب با برخورداری است. لیکه در حدود ۲۰۰۰ کونه کیاشه، (Cyanogenic plants) معروف به گیاهان سیانوردار است. مصرف سیانور (الگایا به صورت گلوکزیدها) را به منظور دفاعی تولید می‌کند. به علاوه، در تمام گیاهان (Vascular plants) و تعداد زیادی از جلبک‌ها و فارق‌ها سیانور به صورت فرآورده‌های درست‌هم‌سازی تولید می‌شود. با توجه به این که در گیاهان آنتی‌بیوتیک هستند که توسط سیانور صده می‌پیدا می‌گردد، گیاه‌های باید از نوواستراته مؤثر برای سیستم‌درمانی برخوردار باشند. (۱۴، ۱۳، ۱۵) علاوه بر همکاری ترکیبات سیانور (به خصوص سیانی‌ها) در فرآیندانه‌ها تولید باعث تصفیه می‌شود که عبارت است از: گیاه تپیدیلی (Phytotransformation) گیاه‌های گیاه‌ها و محیط زیست. (Phytovolatilization) گیاه‌های تپیدیلی (Rhizosphere bioremediation) و (Phytostabilization) گیاه‌های استخراجی (Phytoextraction) و (Rhizofiltration) گیاه‌های تپیدیلی (Phytoremediation) و
سیاست‌های تدوینی محور توجه و اساسی در این مقاله به‌شمار می‌آید. سیاست‌های محور توجه و اساسی در این مقاله به‌شمار می‌آید. سیاست‌های تدوینی محور توجه و اساسی در این مقاله به‌شمار می‌آید.
جدول 1: سطح و ترکیب متغیرها در آزمایش‌های فاکتوریل

<table>
<thead>
<tr>
<th>ترکیب متغیرها در آزمایش‌های فاکتوریل</th>
<th>سطح متغیرها</th>
<th>نام</th>
</tr>
</thead>
<tbody>
<tr>
<td>تجمع سیانور در گیاه</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_1 C_1$</td>
<td>$M_1 C_1$</td>
<td>M_1</td>
</tr>
<tr>
<td>$P_1 C_2$</td>
<td>$M_1 C_2$</td>
<td>M_2</td>
</tr>
<tr>
<td>$P_1 C_3$</td>
<td>$M_1 C_3$</td>
<td>M_3</td>
</tr>
<tr>
<td>$P_1 C_4$</td>
<td>$M_1 C_4$</td>
<td>M_4</td>
</tr>
<tr>
<td>$P_2 C_1$</td>
<td>$M_2 C_1$</td>
<td>M_5</td>
</tr>
<tr>
<td>$P_2 C_2$</td>
<td>$M_2 C_2$</td>
<td>C_1</td>
</tr>
<tr>
<td>$P_2 C_3$</td>
<td>$M_2 C_3$</td>
<td>C_2</td>
</tr>
<tr>
<td>$P_2 C_4$</td>
<td>$M_2 C_4$</td>
<td>C_3</td>
</tr>
<tr>
<td>$P_3 C_1$</td>
<td>$M_3 C_1$</td>
<td>C_4</td>
</tr>
<tr>
<td>$P_3 C_2$</td>
<td>$M_3 C_2$</td>
<td>P_1</td>
</tr>
<tr>
<td>$P_3 C_3$</td>
<td>$M_3 C_3$</td>
<td>P_2</td>
</tr>
<tr>
<td>$P_3 C_4$</td>
<td>$M_3 C_4$</td>
<td>P_3</td>
</tr>
</tbody>
</table>

مشکلی بودن. خاک مورد استفاده برای تمام گل‌دانها از یک منبع نامیت و به هر گل‌دان 3 کیلограм خاک اختصاص داده شد. خاک گل‌دان در اندازه 10 سیالون تهیه کننده (کیو) با گل‌دانه مشخص آمده. مرحله کاشت گیاه خاک مقدار گل‌دانها در یک روز مشخص صورت گرفت. برای کاشت گیاه فستوکا از گیاهان قابل تکثیر بالا و در مورد سیانور از بذر آن استفاده شد. در تمام مدت رشد گیاهان، گل‌دانها بطور همزمان و هر کدام با حدود 76 سانتی‌متر مکعب آب در هر آبیاری و با توانای یکسان، آبیاری شدند. از هیچ گونه چربی و کود شیمیایی استفاده نشد. در مواردی که پس از آبیاری، زه در جریان، با تغییر زدایی به گل‌دان برخوردار می‌شود، پس از کاشت 98 روز از زمان کاشت، تمامی گیاهان هر گل‌دان همراه با ریشه آن‌ها از خاک بیرون اورده شده، پس از خشک شدن و پودر شدن در پاکت درست‌نگاری شده. خاک هر گل‌دان نیز پس از خشک شدن، کوبیده و مخلوط شده تا کاملاً یکنواخت شود و سپس در پاکت درست‌نگاری شده.

برای اندازه‌گیری سیانور کل در نمونه‌های خاک و گلاب طبق روشهای موجود در استاندارد ممکن، نمونه‌ها را تغییر نموده و سپس برای اندازه‌گیری سیانور آن‌ها از روش رنگ سنجی با استفاده از سیکته‌متر استفاده شد (1). سیانور اندازه‌گیری شده در خاک بر حسب میلی‌گرم سیانور در کیلوگرم خاک (mg CN/kg soil) و در گیاه بر حسب میلی‌گرم سیانور در کیلوگرم خاک (mg CN/kg dry biomass) گزارش شدند. دقت اندازه‌گیری دستگاه مورد استفاده (اسپیکترومتر)
جدول 2: خلاصه آماری داده‌های مربوط به اندازه‌گیری سیانور موجود در خاک و گیاه پس از مرحله پرداشته‌گیاه

<table>
<thead>
<tr>
<th>سیانور موجود (mg/kg)</th>
<th>پارامترهای آماری</th>
<th>خاک</th>
<th>گیاه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درصد سیانور موجود نسبت به مقدار اولیه</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c

جرت تکراریت‌ها: 1020 درصد

تعداد مشاهدات

- بیشترین (1000 درصد)
- میانه (50 درصد)
- کمترین (5 درصد)

طرح اندازه‌گیری سیانور خاک و گیاه

طرح اندازه‌گیری سیانور در گیاه از روش آماری تحلیل واریانس (ANOVA, Analysis of Variance) استفاده شد.

نتایج و بحث

خلاصه آماری داده‌های مربوط به اندازه‌گیری سیانور موجود در خاک و گیاه در جدول 2 ارائه شده است. همان‌طور که در جدول 2 مشاهده می‌شود، راندمان حذف سیانور از خاک گلداشت مختلف گیاهان را داشته است. به طوری که بیشترین مقدار سیانور کلی بالا در کاهش مصرف در پتول می‌باشد در خاک برای 0/173 و کمترین مقدار آن برای 0/050 و میانگین آن 0/212 می‌باشد.

کیلولیم خاک است. بیشترین کاهش سیانور از خاک 99/2 درصد و کمترین آن 2/9 درصد و میانگین آن 4/89 درصد است.

همچنین مقدار تضعیف سیانور کلی در گیاه 64/24 و میانگین آن 18/59 می‌باشد. گیاه خشک است. بیشترین، کمترین و میانگین درصد تضعیف سیانور در گیاه به ترتیب 25/45، 20/82 و 0/44 است.

در مدل فاکتوریل سیانورزاپایی از خاک، اثرات مبتنی در غلظت سیانور اولیه خاک، بیشترین راندمان کاهش سیانور در غلظت C1 بیشترین - C3 و عوامل تکراری با پنج سطح (C1، C2، C3، C4، C5) روند راندمان حذف سیانور خاک مورد ارزیابی گیاه

519
جدول 3. آنالیز واریانس درصد کاهش سیانور در خاک

<table>
<thead>
<tr>
<th>جدول 3. آنالیز واریانس درصد کاهش سیانور در خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه آزادی</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

شکل 1. درصد کاهش سیانور خاک در حالت‌های مختلف عوامل تصفیه در مقابل غلظت سیانور اولیه خاک

شکل 1. درصد کاهش سیانور خاک در حالت‌های مختلف عوامل تصفیه در مقابل غلظت سیانور اولیه خاک

فسکوکا این نموده است که این موضوع مربوط به سیانوزیک بودن گیاه سیانور سبب است. ضمناً شکل 1 نشان می‌دهد که در گلدانهایی که گیاه کاشته شده است، عوامل دیگر همچون آبیاری و جوی یا به واقعی کاهش غلظت سیانور شده‌اند. گلدانهایی که آبیاری شده‌اند راندمان حذف سیانور بالاتری نسبت به گلدانهای آبیاری نشده، داشتند که این احتمالاً مربوط به افزایش فرا نموده همچون هیدرولیز انحلال و تبخر است. جدول 3 نشان می‌دهد که اثر متقابل "غلظت اولیه × عوامل تصفیه" نیز محسوس در است. اما تأثیر کمتری نسبت به خود متغیرهای اصلی در تغییرات راندمان حذف سیانور خاک دارد. در شکل 2 ملاحظه می‌شود که میانگین هم‌نمایگر را فقطع نموده‌اند ولی موازی هم‌نمایگر نبودند که این بدين معنایی که معنی‌داری از متقابل دو متغیر مربوط به تقاطع اثر نیست، بله‌ها

34/30

پیش‌تر شود، راندمان حذف سیانور کاهش می‌یابد. که علت احتمالانه مربوط به این واقعیت است که به طور کلی خاکی فرا نموده‌ای طبیعی کاهش سیانور از طرف محدودی برخوردارند و در غلظت‌های آلودگی کم، پوشش‌های هستند. زیرا با افزایش میزان سیانور در خاک، اثر سیستم سیانور روی گیاه مشاهده می‌گردد. همچنین در بین عوامل تصفیه مختلف پیش‌ترین راندمان حذف سیانور در M3 (گیاه سیانور) برای با M4 (گیاه سیانور) در 47/05 درصد کمترین مقدار ان در M5 (بدون گیاه و آبیاری) برای با M4 (بدون گیاه و آبیاری) در 15/60 درصد ایجاد شده است. این نتایج نشان می‌دهد که گلدانهایی که از آنها گیاه کاشته شد و جایگزین سیانور بهتری نسبت به گلدانهایی بدون گیاه برخوردار بودند و در ضمن گیاه سیانور نقش بهتری در گیاه‌پالایی خاک آلوده به سیانور نسبت به گیاهان

520
شکل ۲. دشد تجمع سیانور در گیاهان مختلف در مقایسه غلظت سیانور اولیه خاک

مرشد و شدید اثرات در ترکیب‌های مختلف گیاه است. در مدل فاکتوریل تجمع سیانور خاک در گیاه آزمایش دو متغیر غلظت سیانور اولیه خاک با چهار سطح C_0 و نوع گیاه با ۸ سطح سطح P_1 را درصد تجمع سیانور خاک در گیاه مورد ارزیابی قرار گرفت که نتایج تحلیل واریانس داده‌ها در جدول ۴ آمده است.

همانطور که در جدول ۴ ملاحظه می‌شود فقط تغییر نوع گیاه باعث تغییرات معنی‌داری در راندمان تجربه سیانور در گیاه شده است و غلظت سیانور خاک، درصد تجربه سیانور در گیاه نداشت. ضمناً اثر مثلث‌اصلی نوع گیاه × غلظت سیانور اولیه از نظر دشد تجمع سیانور در گیاه، دارای اختلاف معنادار در سطح ۱ درصد نمی‌باشد. بنابراین تجربه‌گیری می‌شود که هر چه غلظت سیانور اولیه خاک، بهترین کند، درصد تجمع سیانور در گیاه اختیار عمده‌ای نمی‌باشد. به یان دیگر، درصد تجربه‌گیری مختلف است و به همین علت است که قبلاً گیاه‌های مختلف در ترای قبایل و در غلظت‌های یادبود استفاده قرار می‌گیرد.

از شکل ۲ ملاحظه می‌شود که در سطح اولیه کم با افزایش غلظت سیانور اولیه خاک، درصد تجمع سیانور در گیاه افزایش اندکی یافته و چهار گیاه سیانور به پسین دشتهای روان‌آمیز خاک، در گیاه به مصرف سیانور در گیاه

آستانه تحمل گیاهان بوده است و با افزایش افزودگی خاک به

شیب از غلظت C_0 راندمان تجربه سیانور در گیاه به دلیل بروز

اثر سبیل سیانور روی گیاهان، کاهش یافته است. در عمل

مشاهده شد که گیاهان فستوکا در غلظت B رنگ خود خشک

شده و از بین رفتهند. ایمن مشاهده مجدداً این واقعیت که

گیاه‌های خوش مناسب در پالتیش خاک‌های آبوده غلظت

کم است را تایید می‌کند. همچنین با مقایسه میانگین درصد

تجربه سیانور در گیاهان مختلف مشاهده می‌شود که بیشترین

مقدار درصد تجربه در گیاه P_3 (سیرورگ) با عدد $72/956$ درصد و کمترین مقدار در گیاه P_5 (فستوکا بدون اندوفاتی) با

عدد ۴۲/۸ درصد بوده است.

با توجه به اصل میزان جرم میزان نتیجه‌گیری نموده که آن

بخش از سیانور خاک که در گیاه تجمع می‌باشد، توسط

دیگری فراورده‌ای طبیعی ترکیب گشت مشاهده است. در حالی که در غلظت‌های مختلف، غلظت سیانور کاهش شده است، سیانور در گیاه اصلی سیانور در درجه سرکولی شده است. در غلظت سیانور خاک و در شرایط مایع، غلظت سیانور، کاهش داشته است. در غلظت سیانور خاک، انرژی انرژی را در منابع توزین سیانور خاک مشاهده شد. درصد تجربه سیانور در گیاه نسبت به

دیگر عوامل قابل ملاحظه نیست. برخی از فراورده‌ها غلظت در گیاه مورد نظر در غلظت سیرورگ، تجربه در گیاه بوده و لی در فستوکا، دیگر

فراورده‌ها مؤثر نبوده‌اند.

521
جدول ۴: آماری و واریانس درصد تجمیع سیانور خاک در گیاه

<table>
<thead>
<tr>
<th>منبع تغییر</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>مجموع مربعات محاسبه شده</th>
<th>عادی F</th>
<th>پرحای F</th>
<th>عادی F</th>
<th>محاسبه شده</th>
<th>عادی F</th>
<th>بحران</th>
<th>عادی F</th>
<th>محاسبه شده</th>
<th>عادی F</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>گیاه</td>
<td>۵</td>
<td>۴۱/۰۸</td>
<td>۱۴/۳۳</td>
<td>۱۰۹/۶۸</td>
<td>۲/۱</td>
<td>۲/۲</td>
<td>۳۹/۷۷</td>
<td>۲/۱</td>
<td>۲/۲</td>
<td>۲/۱</td>
<td>۲/۲</td>
<td>۳۹/۷۷</td>
<td>۲/۱</td>
<td>۲/۲</td>
</tr>
<tr>
<td>گیاه</td>
<td>۶</td>
<td>۳۳/۸۱</td>
<td>۲۳/۷۱</td>
<td>۲۷/۴۱</td>
<td>۴/۱</td>
<td>۴/۲</td>
<td>۲۳/۷۱</td>
<td>۴/۱</td>
<td>۴/۲</td>
<td>۴/۱</td>
<td>۴/۲</td>
<td>۲۳/۷۱</td>
<td>۴/۱</td>
<td>۴/۲</td>
</tr>
<tr>
<td>گیاه</td>
<td>۷</td>
<td>۸۶/۵۷</td>
<td>۶۴/۴۱</td>
<td>۸۵/۴۱</td>
<td>۰/۲</td>
<td>۰/۲</td>
<td>۸۴/۴۱</td>
<td>۰/۲</td>
<td>۰/۲</td>
<td>۰/۲</td>
<td>۰/۲</td>
<td>۸۴/۴۱</td>
<td>۰/۲</td>
<td>۰/۲</td>
</tr>
<tr>
<td>گیاه</td>
<td>۸</td>
<td>۲۴۷/۵۵</td>
<td>۱۰۳/۳۵</td>
<td>۱۰۳/۳۵</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۱۰۳/۳۵</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۱۰۳/۳۵</td>
<td>۰/۰</td>
<td>۰/۰</td>
</tr>
<tr>
<td>کل</td>
<td></td>
<td>۲۴۷۹۹/۸۹</td>
<td>۲۴۷۹۹/۸۹</td>
<td>۲۴۷۹۹/۸۹</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۲۴۷۹۹/۸۹</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۰/۰</td>
<td>۲۴۷۹۹/۸۹</td>
<td>۰/۰</td>
<td>۰/۰</td>
</tr>
</tbody>
</table>

جدول ۵: مقایسه درصد تجمیع سیانور در گیاه و درصد حذف سیانور توسط عوامل دیگر

<table>
<thead>
<tr>
<th>عوامل</th>
<th>درصد حذف سیانور در گیاه</th>
<th>درصد تجمیع سیانور</th>
<th>فستوکا با اندازه‌گیری</th>
<th>فستوکا بدون اندازه‌گیری</th>
<th>سورکوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۵۴/۹۲</td>
<td>۰/۲</td>
<td>۵۴/۹۲</td>
<td>۰/۲</td>
<td>۵۴/۹۲</td>
</tr>
<tr>
<td>۲</td>
<td>۵۱/۱۳</td>
<td>۰/۲</td>
<td>۵۱/۱۳</td>
<td>۰/۲</td>
<td>۵۱/۱۳</td>
</tr>
<tr>
<td>۳</td>
<td>۲۳/۸۹</td>
<td>۷/۶</td>
<td>۲۳/۸۹</td>
<td>۷/۶</td>
<td>۲۳/۸۹</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

از اجراهای این تحقیق، موارد زیر نتیجه‌گیری می‌شود:

۱. در فرازند گیاه‌آلیه‌ای توسط گیاهان سیانوزیک (در این تحقیق سورکوم)، غلظت سیانور در گیاه بالاتری که بیانگر پدیده انتقال سیانور از خاک به گیاه و تجمع در آن است، ولی در گیاهان علفی (در این تحقیق فستوکا) میزان تجمیع سیانور در زمستان کمتر از پاییز و احتمالاً مکانیزم‌های معمول گیاه نیبی ولی و ریز باعث می‌شود.

۲. در صورت عدم کشت گیاهان در خاک، آب‌برداری خاک و عوامل چنین باعث وقفه فرازندگی زوال عضوی می‌شود. عملیات مناسب در این‌گونه شرایط می‌تواند به جلوگیری از فرازندگی گیاهان سیانوزیک کمک‌کننده باشد.

۳. بهترین روش همکاری با گیاهان سیانور در گیاه‌آلیه‌ای می‌تواند گیاهان سیانور را در آب‌برداری خاک، زمستان و پاییز در نظر بگیرد.

۴. در این‌جوده سطح گیاه در خاک، آب‌برداری خاک و عوامل چنین باعث وقفه فرازندگی زوال عضوی می‌شود. عملیات مناسب در این‌گونه شرایط می‌تواند به جلوگیری از فرازندگی گیاهان سیانوزیک کمک‌کننده باشد.

۵. بهترین روش همکاری با گیاهان سیانور در گیاه‌آلیه‌ای می‌تواند گیاهان سیانور را در آب‌برداری خاک، زمستان و پاییز در نظر بگیرد.

منابع مورد استفاده