مقایسه روش‌های مختلف اندماز گیری گچ در برخی خاک‌های اصفهان

ن痱ینغ بی‌پهان مهابادی و جواد گیوی

(تاریخ دریافت: 10/07/85 تاریخ پذیرش: 03/02/86)

چکیده
کاندی گچ موجود در خاک بر سبیلی از خصوصیات فیزیکی، شیمیایی و میکروباژیولوژی خاک و در نتیجه جنبه‌های مدرنیتی، طبقه‌بندی و ارزیابی آراز تأثیر می‌گذارد. با تهیه اندازه‌گیری دقیق آن برای اهداف مدیریتی، مهندسی، اصلاح اراضی و طبقه‌بندی خاک‌ها ضروری می‌باشد. در اغلب ازمان‌پذیرافتها خاک‌شناسی ایران، روش استون علی رغم محدودیت‌های زیادی به عنوان روش استاندارد اندماز گیری گچ بکار می‌رفته‌است. هدف از این تحقیق مقایسه روش‌های مختلف اندماز گیری گچ و انتخاب مناسب‌ترین روش می‌باشد. مناطق مورد مطالعه شامل جغیرآباد و سه‌پهلوان شهر می‌باشد. نمونه‌گیری از اعماق مختلف شن بر روی‌پل خاک انجام و از بین پذیرش، اندازه‌گیری و مکان‌سنجی بررسی شد. عناصر مختلف از مدلی شش روش برای خاک‌های فعلی استفاده شد. نتایج نشان داد که روش‌های متفاوت روش‌های مختلف اندماز گیری و سه‌پهلوان به‌صورت متفاوت عمل می‌کنند. در نتیجه این سه روش به‌ترتیب بهترین روش به‌شمار می‌آید.

واژه‌های کلیدی: اندمازگیری گچ، مناسب‌ترین روش، درصد بازبایی، شیب خط رگرسیون، روش کریبرس سدیم

مقدمه
نیمه‌خشک با بارندگی سالیانه کمتر از ۴۰۰ میلی‌متر می‌باشد و
این در حالی است که حدود ۳۶ درصد از خشکی‌های سطح

۱ به ترتیب دانشجوی ساین کارشناسی ارشد و دانشیار دانشگاه دانشگاه کشاورزی، دانشگاه شهید گورستانی‌ها، Email: yaghmacian.nafise@gmail.com

* مسئول مقالات، پست الکترونیکی: yaghmacian.nafise@gmail.com

۵۶۵
جهت بایا تر ترجیحی کاتی گچ به عنوان محدوده عمل می‌کنم.

روش‌های شیمیایی تن دارد. در روشهای دیگر معمول و گسترده‌تر
اندازه‌گیری کد می‌باشد. در این روش به‌وسیله ادرارگیری کامل گچ توسط آب و با حلول‌های الکترولیت، با اندازه‌گیری
یکی از بیون‌های Ca²⁺ و Ba²⁺ مقدار گچ خال محسوب می‌گردد.

محدودیت‌های این روش‌ها عبارتند از: وجود
محدودیت، دیگر بیون‌های کلسیم و سولفاتهای گلوستیم از طریق
جدب طبقه بینی کمپلکس های نابل. در روشهای
شیمیایی تن به‌بوشین سعید گچ موجود در نمونه حل شود.

به دلیل حلالیت کم گچ در آب (6) و دمای 25 درجه
سانتی‌گراد، نسبت ذوب آب به حالت و استفاده از کاهش
بیان ریز برای صاف کردن نمونه‌ها با توجه به رابطه مستقیم
حلالیت گچ و اندازه کریستالیت آن (21) به
مقدار اطمینان از اندازه کامال گچ، محاسبه
۴۳ دسی‌میتری مکعبی عمود بر EC
اشباع منا قرار می‌گیرد. به
گر اسکر (مقدار کمتر از ۲/۲ دسی‌میتری.
اما اگر
EC
اشباع
۲/۲ و غلظت بیون کلسیم و سولفات گلوستیم
۴۰-۳۲۰ در
می‌باشد. اشاره این
EC
اشباع
۲/۲ بوده و غلظت
۴۰-۳۲۰ در
یک بیون کلسیم و سولفات بیش از
۲/۳۰-۲/۷۰ حالت، در این
صبرنکشی محلول‌های گچ در خاک حضور دارد (۲۴).

برخی از روشهای شیمیایی تن بر عبارت از:

۱. اندازه‌گیری Ca²⁺ حاصل از حلالیت گچ در آب (۱۷)
۲. اندازه‌گیری SO₄²⁻ حاصل از حلالیت گچ در آب (۳۳)
۳. اندازه‌گیری Ca²⁺ حاصل از حلالیت گچ در آب (۲۱)
۴. اندازه‌گیری Mg²⁺ حاصل از حلالیت گچ در آب (۲۷)
۵. اندازه‌گیری Ca²⁺ حاصل از حلالیت گچ در آب (۳۴)
۶. اندازه‌گیری Mg²⁺ حاصل از حلالیت گچ در آب (۳۵)
۷. اندازه‌گیری Ca²⁺ + Mg²⁺ حاصل از حلالیت گچ در آب (۳۶)

در اثر حرارت دادن و یا نحوه پرش پروتوهای ایکس وجود دارد
که هم که از این روش‌ها محدودیت‌های مربوط به خود را دارد
می‌باشد. به عنوان مثال در روشهای اندازه‌گیری
ریز حلالیت گچ، خطرات تداخل و در پرش پروتوهای ایکس،
مقایسه روش‌های مختلف اندازه‌گیری گچ در برخی خاک‌های اصفهان

شده (18). از نظریه که بسیاری از کلیسی خالص از حرارتی گچ، بر روی مکان‌های تندباد جذب شده و می‌توانند جانشین بسیاری از نیزی جوش، ایده‌های خیالی منفی کنند. بنابراین با اندازه‌گیری همبستگی Ca2+،Mg2+ این خطای تبادلی صحت شده و می‌توان خطای منفی تبادلی را به تبادل بین کلیسی حاصل از اندازه‌گیری گچ با کلنیویهای دیگر به عنوان از Mg2+ سنتی دارد.

8. اندازه‌گیری گچ توسط ریزی (25). در این روش نمای کلیسی همبستگی محوله و کم محوله به اسیدهای خودشان تبدیل شده و با آنها می‌توانند مقدار گچ خاک محلولی مشترک است و همکاری (30) گزارش کردند مخلوط زیست سیمی و کاریکی باعث افزایش قابل توجه حالتی که می‌شود.

9. اندازه‌گیری گچ از طریق تبدیل سولفات کلیسی به سولفات سدیم (9).

با توجه به اینکه 20 درصد مولکول گچ را آب تبلور تشکیل می‌دهد (32). این از روش‌های دیگر اندازه‌گیری گچ از طریق حدف مولکول‌های آب تبلور گچ می‌باشد (22).

ایرانی و تورجمن (12) از روش ناشن اجرا مقدارت برای تعیین مقدار گچ خاک استفاده کردند و در نتیجه آن می‌توان به مواد و روش‌ها

برای انجام این تحقیق به منظور داشتن دامنه وسیعی از مقدار گچ در نمونه‌های خاک، ابتدا با توجه به شکل ظاهری و رنگ پروپلی خاک از اعماق مختلف 6 پروپلی خاک در منطقه جغرافیایی برخوردار و سبکی که تریب واقع به قسمت شمال غربی و جنوب شرقی شهروندان اصفهان نمونه مورد انتخاب گرفت. نمونه‌گیری خاک از اعماق مختلف پروپلی به هیچ‌گونه شده و به آزمایشگاه انتقال داده شدند. گلی از شروع آزمایش‌های اصلی، مقیاس تقریبی گچ نمونه خاک با استفاده از اندازه‌گیری شده و نمونه خاک به طرح خاک‌های شاخه‌های نشاند از دامنه گستردگی از مقدار مولکول‌های مولکولی به محدوده نمونه و انتخاب شدند. بر اساس روش ناشناختومی خاک‌های (29)، نمونه خاک‌های 1 و 2 در گروه یوز نمای کلیسی جیپسیدز، خاک‌های 5 و 6 در گروه
جدول 1. خصوصیات فیزیکی و شیمیایی نمونه‌های خاک

<table>
<thead>
<tr>
<th>کانیون‌های محلول (meq/L)</th>
<th>pH عصاره اشاع</th>
<th>OM (%)</th>
<th>رس آفکه (٪)</th>
<th>سالت (٪)</th>
<th>انرژی (٪)</th>
<th>عمل افقی (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg²⁺</td>
<td>Ca²⁺</td>
<td>Na⁺</td>
<td>K⁺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.2</td>
<td>23.2</td>
<td>23.2</td>
<td>23.2</td>
<td>23.2</td>
<td>23.2</td>
<td>23.2</td>
</tr>
<tr>
<td>24.2</td>
<td>28.2</td>
<td>28.2</td>
<td>28.2</td>
<td>28.2</td>
<td>28.2</td>
<td>28.2</td>
</tr>
<tr>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
<td>56.2</td>
</tr>
<tr>
<td>80.2</td>
<td>80.2</td>
<td>80.2</td>
<td>80.2</td>
<td>80.2</td>
<td>80.2</td>
<td>80.2</td>
</tr>
</tbody>
</table>

*کمترین مقدار نمونه (21) استفاده شد.

1. گچ به روش کریتین سدیم اندوزی گیاهی شده است.
پرسی دفت روش

پس از اندازه‌گیری، مقادیر جنحه‌ها به 100 گرم در هر روش و برای هر جنحه پس از اندازه‌گیری به همراه شرایط منظور بررسی و بررسی شده، با استفاده از آزمون تکیه انتخاب شدند. در تحقیق، مقدار حساسیت‌های ریگوز و ریگوز و تارگوز، جنحه‌های کمی که در هر روش در هر جنحه قرار گرفتند، در هر جنحه به‌صورت خاصی مشخص شدند. در این آزمون، دقت روش‌ها توسط همان روش به‌کار گرفته شد و توسط جمع‌آوری نهایی شد. با استفاده از جمع‌آوری نهایی شده، درصد هر جنحه در هر روش به‌کار گرفته شد. در یک نمونه، دقت درصد هر جنحه به‌کار گرفته شد و توسط جمع‌آوری نهایی شد. با استفاده از جمع‌آوری نهایی شده، درصد هر جنحه به‌کار گرفته شد.

نتایج و بحث

مقایسه روش‌های مختلف اندازه‌گیری

تکنیک به‌دست آمده از اندازه‌گیری مقادیر جنحه‌ها به‌وسیله روش‌های مختلف نشان داد. با استفاده از اندازه‌گیری مقادیر جنحه‌ها، خاکی شده برابر هر نمونه شاخ مربوط به روش‌های کریستینه سدیم و رژین که اختلاف معنی‌داری با یکدیگر نداشتند، به‌کار گرفته شدند. در این تحقیق، مقدار جنحه‌های شاخ روش‌های سیستمی، استون و کریستینه مواد پایدار (جدول ۲) در روش کریستینه سدیم با اضافه کردن محلول کریستینه سدیم به خاک به دلیل بالای فضای فرآیند کریستینه به‌طور خاص، کریستینه سدیم در حضور یون کلسیم در شاخ مشاهده می‌شود. بنابراین این که در کل نهایی محاسبه می‌شود.

برای تصدیق این انتظار به‌کار گرفته شد. در این مطالعه، به‌منظور ارزیابی دقت روش‌های مختلف اندازه‌گیری جنحه‌ها به روش‌های مورد بررسی می‌باشد (اندازه‌گیری جنسیت، و بالا - اتصال (9)، بهره‌برداری (12)، توزیع (11) و لاگروف و همکاران (18) انجام شده است. اجرای و طبیعتی (5) نیز در مقایسه روش‌های مختلف اندازه‌گیری سولفات‌ها خارج در بی‌روه دقت روش جنسیت، مقادیر معنی‌زایی از نهایی معنی‌زایی سولفات‌ها را به‌کار گرفته نمودند. ضریب تغییرات (Coefficient of variation).

Roosh های مورد بررسی می‌باشد. هم چنین دقت روش بالاتر است (5 و 9).

RC = \frac{G_i}{G_i^*} \times 100

درصد روش‌های

RC
جدول ۲ مقایسه روش استون با سایر روش‌های اندازه‌گیری گچ

<table>
<thead>
<tr>
<th>میزان و سولفات عصاره رقیق شده با روشن استون، اختلاف</th>
<th>HSD (p ≤ 0/01)</th>
<th>HSD (p ≤ 0/05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره روش تکرارهای سیدی و میزان</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>کریتامین اندوتوسکوپیسم در حضور بی‌سرم رد می‌شود</td>
<td>0/13</td>
<td>0/13</td>
</tr>
<tr>
<td>0/16</td>
<td>0/52***</td>
<td>0/55***</td>
</tr>
<tr>
<td>0/18***</td>
<td>0/18***</td>
<td>0/18***</td>
</tr>
<tr>
<td>0/20***</td>
<td>0/20***</td>
<td>0/20***</td>
</tr>
<tr>
<td>0/22***</td>
<td>0/22***</td>
<td>0/22***</td>
</tr>
<tr>
<td>0/25***</td>
<td>0/25***</td>
<td>0/25***</td>
</tr>
<tr>
<td>0/27***</td>
<td>0/27***</td>
<td>0/27***</td>
</tr>
<tr>
<td>0/30***</td>
<td>0/30***</td>
<td>0/30***</td>
</tr>
<tr>
<td>0/33***</td>
<td>0/33***</td>
<td>0/33***</td>
</tr>
<tr>
<td>0/35***</td>
<td>0/35***</td>
<td>0/35***</td>
</tr>
<tr>
<td>0/38***</td>
<td>0/38***</td>
<td>0/38***</td>
</tr>
<tr>
<td>0/41***</td>
<td>0/41***</td>
<td>0/41***</td>
</tr>
<tr>
<td>0/43***</td>
<td>0/43***</td>
<td>0/43***</td>
</tr>
<tr>
<td>0/45***</td>
<td>0/45***</td>
<td>0/45***</td>
</tr>
<tr>
<td>0/47***</td>
<td>0/47***</td>
<td>0/47***</td>
</tr>
<tr>
<td>0/49***</td>
<td>0/49***</td>
<td>0/49***</td>
</tr>
</tbody>
</table>

تأثیر نوع روش بر اختلاف روش استون با سایر روش‌ها

با توجه به شیمی کانتیناها و آنپیناها، خادها مورد مطالعه (۴۰ نمونه) در شرایط کاربردی و سولفات عصاره بوده و در گروه‌های سیدی و سودی-کلیسیم قرار گرفته‌اند (جدول ۳). با توجه به خصوصیات شیمیایی خادها، باید این خادها از نظر واکنش شیمیایی (pH)، تغییرات زیادی نداشته و همگی در گروه خاهای خشکی (نوعی قلبی قرار گرفته‌اند و از نظر فاکتور ریزی و درشتی ذرات گچ، تابع نمونه خاهای خشک‌سازی از اکل ۳۵ منش عبور کرده شدند. تا حد زیادی تأثیر قابل اندازه‌گیری آفتاب اندازه‌گیری عکس در حذف شد. بنابراین اختلاف دارای تأثیر و در کدام ذرات گچ نیستند و با قاطع‌الغ و ریزی و درشتی ذرات گچ نیوده و به طور کلی کیفیت و کیفیت از ناحیه داد.

مقاومه روش استون با سایر روش‌های اندازه‌گیری گچ

از ناحیه که در غلبه آزمایش‌های خود، نمونه‌های ایرانی روش استون می‌باشد، به نظر می‌رسد مقایسه این روش با سایر روش‌های اندازه‌گیری گچ تایید می‌شود. این روش با سایر روش‌های اندازه‌گیری گچ تمام نمونه‌ها را در دسته‌بندی معیار مشخص بهترین گردیده. روش استون با روشن استون ریزین و کریتامین در تمام نمونه خاهای خشک و روشن سیدی و کلیسیم، مناسب قلمی و مناسب سیدی، حساسیت کلیسیم و اسید قلیسیم در تعداد کمتری از نمونه‌های خاخ اختلاف معنی دارد

داشت (جدول ۲)، در مورد اختلاف دو روش، تأثیر کلیسیم و
جدول 3: نوع شوی خاک بر اساس رده‌بندی باریلیوم و پاتوکا (8) و اختلاف روش استون

<table>
<thead>
<tr>
<th>شماره</th>
<th>اسم کانیون</th>
<th>نسبت آتیونها (meq/L)</th>
<th>اختلاف روش استون</th>
<th>نسبت کانیون (meq/L)</th>
<th>اختلاف روش استون</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
<tr>
<td>2</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
<tr>
<td>3</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
<tr>
<td>4</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
<tr>
<td>5</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
<tr>
<td>6</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
<tr>
<td>7</td>
<td>کلسیم-کلیم</td>
<td>0/20</td>
<td>0/16</td>
<td>سود-کلیم</td>
<td>0/20</td>
</tr>
</tbody>
</table>

نتایج نشان می‌دهد که مقادیر گچ به‌دست‌آمده توسط دو روش رژیم و کربنات سدیم همواره بیش از مقادیر گچ اندازه‌گیری شده توسط روش استون می‌باشد. در ذیل این می‌تواند حلالیت بیشتر گچ و تابعیت کمتر از ترکیبات کانیوتی و آنیونهای خاک در محلول کربنات سدیم و شرایط اسیدی رژیم باشد. علاوه بر آن در حالت‌های مختلف درصد اختلافات متفاوتی مسافتهای شد به‌طوری که میانگین ناپایداری در روش رژیم و کربنات سدیم با روش استون و شرایط کانیوتی کلرور و شوری کانیوتی کلسیم - سدیم کاملاً اغلب خاک‌هایی با شرایط آتیونی سولوئن ساده و شوری کانیوتی سدیم - کلسیم است. که می‌تواند به دلیل تأثیر بیانش در حلالیت گچ باشد. البته این احتمال وجود دارد که علت درصد اختلافات متغیر، رنگ افراشی میزان گچ از خاک شماره 1 به طرف خاک شماره 7 باشد. محصولی (2) در اندازه‌گیری گچ خاک به روش رژیم هیدروژن و مقایسه آن با روش استون نشان داد که مقادیر گچ اندازه‌گیری شده در خاک باروش رژیم هیدروژن پیوسته بیش از روش استون بوده و اختلاف آن با بین 23/9 و 1/7 درصد می‌باشد. سپس به نظر ابزار سایر روش‌ها، روش کربنات سدیم با هفت روش دیگر از طرف روانگرگای اکوسیستم و آزمون‌های مأموری یک‌یازمان SAR محلول و آرسنیل و داد

ارتباط دفت‌های...
جدول ۴. ضرایب تغییرات روش‌های مختلف

<table>
<thead>
<tr>
<th>شماره</th>
<th>نمونه خاک</th>
<th>سیترات</th>
<th>سیترات سدیم</th>
<th>کریاتس آمونیم</th>
<th>کریاتس رزین</th>
<th>سولفات عصاره رزین</th>
<th>سولفات عصاره منیزیم</th>
<th>تشکیل کلیسم</th>
<th>استوان</th>
<th>کریاتس سدیم</th>
<th>اسیدکلریدریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7/9</td>
<td>8/7</td>
<td>2/3</td>
<td>4/6</td>
<td>11/4</td>
<td>7/7</td>
<td>3/2</td>
<td>3/2</td>
<td>1</td>
<td>1/8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3/5</td>
<td>7/7</td>
<td>5/1</td>
<td>2/2</td>
<td>8/0</td>
<td>10/9</td>
<td>3/1</td>
<td>3/1</td>
<td>3/1</td>
<td>2/8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2/2</td>
<td>3/3</td>
<td>3/4</td>
<td>6/3</td>
<td>6/2</td>
<td>4/9</td>
<td>7/3</td>
<td>1/8</td>
<td>4</td>
<td>1/8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2/1</td>
<td>3/3</td>
<td>2/2</td>
<td>8/8</td>
<td>6/3</td>
<td>8/3</td>
<td>1/8</td>
<td>1/8</td>
<td>3</td>
<td>1/8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3/1</td>
<td>3/1</td>
<td>1/4</td>
<td>5/6</td>
<td>1/9</td>
<td>3/9</td>
<td>1/9</td>
<td>1/9</td>
<td>5</td>
<td>1/9</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3/0</td>
<td>3/0</td>
<td>2/2</td>
<td>9/9</td>
<td>7/9</td>
<td>5/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6</td>
<td>1/1</td>
</tr>
<tr>
<td>1/5</td>
<td>7</td>
<td>1/5</td>
</tr>
<tr>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>2/5</td>
<td>5/9</td>
<td>8/5</td>
<td>6/1</td>
<td>8/7</td>
<td>1/8</td>
<td>1/8</td>
<td>7</td>
<td>1/8</td>
</tr>
</tbody>
</table>

جدول ۵. قدرمطلق اختلاف درصد بازیابی با ۱۰۰ در روش‌های مختلف

<table>
<thead>
<tr>
<th>شماره</th>
<th>نمونه خاک</th>
<th>سیترات</th>
<th>سیترات سدیم</th>
<th>کریاتس آمونیم</th>
<th>کریاتس رزین</th>
<th>سولفات عصاره رزین</th>
<th>سولفات عصاره منیزیم</th>
<th>تشکیل کلیسم</th>
<th>استوان</th>
<th>کریاتس سدیم</th>
<th>اسیدکلریدریک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3/7</td>
<td>3/7</td>
<td>1/4</td>
<td>1/4</td>
<td>17/9</td>
<td>3/0</td>
<td>3/2</td>
<td>3/2</td>
<td>1</td>
<td>1/8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2/4</td>
<td>2/4</td>
<td>0/8</td>
<td>0/4</td>
<td>9/7</td>
<td>12/7</td>
<td>2/2</td>
<td>2/2</td>
<td>2</td>
<td>1/8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5/7</td>
<td>5/7</td>
<td>0/7</td>
<td>0/7</td>
<td>8/8</td>
<td>10/8</td>
<td>2/4</td>
<td>2/4</td>
<td>3</td>
<td>1/8</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6/1</td>
<td>6/1</td>
<td>1/5</td>
<td>1/5</td>
<td>12/3</td>
<td>14/8</td>
<td>1/5</td>
<td>1/5</td>
<td>4</td>
<td>1/8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3/7</td>
<td>3/7</td>
<td>1/5</td>
<td>1/5</td>
<td>12/3</td>
<td>14/8</td>
<td>1/5</td>
<td>1/5</td>
<td>4</td>
<td>1/8</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2/4</td>
<td>2/4</td>
<td>0/4</td>
<td>0/4</td>
<td>12/8</td>
<td>23/2</td>
<td>2/4</td>
<td>2/4</td>
<td>2</td>
<td>1/8</td>
</tr>
<tr>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>18/4</td>
<td>23/0</td>
<td>15/9</td>
<td>15/9</td>
<td>5</td>
<td>1/8</td>
</tr>
<tr>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>18/4</td>
<td>23/0</td>
<td>15/9</td>
<td>15/9</td>
<td>5</td>
<td>1/8</td>
</tr>
<tr>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>18/4</td>
<td>23/0</td>
<td>15/9</td>
<td>15/9</td>
<td>5</td>
<td>1/8</td>
</tr>
<tr>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>18/4</td>
<td>23/0</td>
<td>15/9</td>
<td>15/9</td>
<td>5</td>
<td>1/8</td>
</tr>
<tr>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>18/4</td>
<td>23/0</td>
<td>15/9</td>
<td>15/9</td>
<td>5</td>
<td>1/8</td>
</tr>
<tr>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>5/3</td>
<td>2/1</td>
<td>2/1</td>
<td>18/4</td>
<td>23/0</td>
<td>15/9</td>
<td>15/9</td>
<td>5</td>
<td>1/8</td>
</tr>
</tbody>
</table>

جدول ۶. مقایسه میانگین قدرمطلق اختلاف درصد بازیابی با ۱۰۰ در هشت روش اندازه‌گیری گچ

<table>
<thead>
<tr>
<th>روش</th>
<th>میانگین قدرمطلق اختلاف درصد بازیابی با ۱۰۰/</th>
</tr>
</thead>
<tbody>
<tr>
<td>استوان</td>
<td>Ca²⁺ + Mg³⁺ تفاضل</td>
</tr>
<tr>
<td>کریاتس مونوم</td>
<td>سولفات عصاره رقیق شده</td>
</tr>
<tr>
<td>سیترات سدیم</td>
<td>کریاتس اسیدکلریدریک</td>
</tr>
<tr>
<td>کریاتس سدیم</td>
<td>رزین</td>
</tr>
</tbody>
</table>

572
جدول 7. مقایسه روش‌های مختلف اندازه‌گیری گچ در برخی خاک‌های اصفهان

شماره	نامنون کربنات سدیم استدان	کربنات اسیدکلریدریک	تفاوت کلیم سولفات عصاره رژن	وموئیم ریشه	میرآبی	میرآبی درصد	کربنات سدیم	درصد	میرآبی	میرآبی درصد	کربنات سدیم	درصد	میرآبی	میرآبی درصد	
1	9/4	0/13	0/52	0/23**	0/13	0/05**	9/6**	0/33**	9/6**	0/33**	9/6**	0/33**	9/6**	0/33**	9/6**
4	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14	2/14
6	2/16	2/16	2/16	2/16**	2/16	2/16**	2/16**	2/16**	2/16	2/16**	2/16**	2/16**	2/16	2/16**	2/16**

شکل 1. رابطه رگرسیونی روش کربنات سدیم و سبی روش‌های مورد بررسی

از منبعی دارند نشان اختلاف میانگین مقادیر گچ به دست آمده از روی کربنات سدیم و رژین (جدول 7) و توزیع بسیار زیاد خط رگرسیون آنها به خط 1 (شکل 1). عدم وجود اختلاف معنی‌دار آنها از نظر بازاریابی (جدول 4) و میانگین ضریب تغییرات 3/1 روش رژین، دقت تقریباً یکسان دو روش رژین و کربنات سدیم استنباط می‌شود. نتایج به دست آمده از روابط رگرسیونی روش‌های اختلاف کاربردیک و سبیات سدیم در بررسی روش کربنات سدیم، اثر تکرار خط رگرسیون را نسبت به خط 1/1 نشان داد. این مستند اختلاف معنی‌دار میانگین

تکیک (جدول 7) مقایسه شد. تمام ضرایب هم بنگست به دست آمده از روش کربنات سدیم و رژین (جدول 7) و توزیع بسیار زیاد خط رگرسیون آنها به خط 1 (شکل 1). عدم وجود اختلاف معنی‌دار آنها از نظر بازاریابی (جدول 4) و میانگین ضریب تغییرات 3/1 روش رژین، دقت تقریباً یکسان دو روش رژین و کربنات سدیم استنباط می‌شود. نتایج به دست آمده از روابط رگرسیونی روش‌های اختلاف کاربردیک و سبیات سدیم در بررسی روش کربنات سدیم، اثر تکرار خط رگرسیون را نسبت به خط 1/1 نشان داد. این مستند اختلاف معنی‌دار میانگین
جدول 8. مقایسه سیانه‌های مواد غذایی گچ توسط روش‌های کربنات آمونیوم، سیترات سدیم و اسید کلریدیک

<table>
<thead>
<tr>
<th>شماره نمونه خاک</th>
<th>سیترات سدیم</th>
<th>کربنات آمونیوم</th>
<th>اسید کلریدیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/53</td>
<td>0/65</td>
<td>0/65</td>
</tr>
<tr>
<td>2</td>
<td>10/12</td>
<td>0/89</td>
<td>0/89</td>
</tr>
<tr>
<td>3</td>
<td>18/36</td>
<td>18/49</td>
<td>18/49</td>
</tr>
<tr>
<td>4</td>
<td>30/57</td>
<td>0/24</td>
<td>0/24</td>
</tr>
<tr>
<td>5</td>
<td>32/54</td>
<td>20/57</td>
<td>20/57</td>
</tr>
<tr>
<td>6</td>
<td>32/54</td>
<td>20/57</td>
<td>20/57</td>
</tr>
</tbody>
</table>

شکل 2. رابطه رگرسیون دو روش کربنات آمونیوم و سیترات سدیم

ویکی: www.iranjournals.ir 03 - 1386

شکل 3. رابطه رگرسیون دو روش سیترات سدیم و اسید کلریدیک

مقدار گچ اندازه‌گیری شده توسط این دو روش برای کربنات سدیم، برگزاری بودن دامنه و بیشتر بودن میانگین ضریب تغییرات نسبی آنها را تأثیب می‌کند. بنابراین دو روش سیترات سدیم و اسید کلریدیک از نظر دقت روش، در اولویت سوم قرار می‌گیرند. نتایج به‌دست آمده از جدول (5.4) و روابط رگرسیونی (شکل 1) اختلاف روش‌های استون، تفاصل کلسترول و مسیوژ، سیلولز رشد کرتان اموزنی با روش کربنات سدیم را نشان می‌دهد.

تأثیر نوع عصاره‌گیر گچ برایخلاف روش‌های اندام‌گیری آن

به منظر بررسی تأثیر نوع عصاره‌گیر گچ سه روش کربنات آمونیوم، سیترات سدیم و اسید کلریدیک با یکدیگر مقایسه شدند. علت انتخاب این سه روش، استفاده از یک روش

574
مقایسه روش‌های مختلف اندازه‌گیری گیچ در برخی خاک‌های اصفهان

پس از روش کریات سدیم، روش روز رزین می‌تواند به عنوان روش دقیق تغییر میزان گیچ در خاک‌های غیرصورت استفاده گردد. روش‌های سیترات سدیم و اسیدکریاتیک برای مقایدی مختلف کیف و روش کریات آمونیوم برای خاک‌های با حدود ۳۰% گیچ از نظر دقیقی اولویت را در این است. وقتی شوگری دلیلی ندارد، عصاره‌گیری کریات آمونیوم با دو عصاره‌گیری دیگر می‌تواند تغییرات کلیسم حاصل از واکنش نیروی عصاره‌گیری با کانیون کلسیم حاصل از خاک‌های آب‌رسان که در مقایس زیاد گیچ توانسته به بوشندن سطح ذرات گیچ باعث برآورد کمتر گیچ به دو عصاره‌گیری دیگر شود.

نتیجه‌گیری

۱. از میان هشت روش بررسی شده، روش کریات سدیم با کمترین میانگین تغییر درصد بایاسی با یکصد کمترین ضریب تغییرات و کمترین میان اقلیمی احتمالی به عنوان مناسب‌ترین روش تعبیه گیچ می‌تواند می‌شود.

منابع مورد استفاده

۱. تومانی، ن. ۱۳۷۴. منشأ گیچ و چگونگی تشکیل و تکامل خاک‌های گیچ منطقه شمال غربی استان اصفهان. پایان نامه کارشناسی ارشد خاکشناسی، دانشگاه صنعتی اصفهان.
۲. فریبرز، م. ه. ۱۳۸۱. رابطه بین زنده‌مایه‌گری و تکامل خاک‌های گیچ در منطقه رفسنجان. پایان‌نامه دکتری خاکشناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان.
۳. محمدرز، ش. ۱۳۷۱. خصوصیات و مدیریت خاک‌های گیچ. مجموعه مقالات چهارمین کنگره علوم خاک ایران، دانشگاه صنعتی اصفهان.
۴. محمدرز، ش. ۱۳۶۵. اندازه‌گیری گیچ با روش رزین هیدروژن و مقایسه آن با روش استاندارد. مجله علوم کشاورزی ایران