بررسی ت نوع زیستی پوشش گیاهی در جنگل‌کاری‌های دست کاشت سوزنی به گرگ

شریزاد محمدنژاد کیاوسی، محمد اکبرزاده و بهنام جعفری

(تاریخ دریافت: ۸/۲/۱۳۹۳؛ تاریخ پذیرش: ۸/۵/۱۳۹۴)

چکیده
بررسی تأثیر حاصل از کاشت گونه‌های مختلف سوزنی برگ و گاه بر روی نوع زیستی پوشش گیاهی دارای اهمیت سزایی است. به چاکه ما را در انتخاب نوع گونه و یا دخل‌های مناسب عملیات پرورشی در عرصه‌های جنگل‌کاری باید مسخره. طرح تحقیقاتی سازگاری سوزنی گیاه‌پروری در قالب آزمایش کامل تصادفی در ۴ کلاس ۱ و ۲ و ۱۰ و ۱۵ متر از همراه شد. این تحقیقات در این تحقیقات شامل گونه‌های مختلف سوزنی پرگ مورد استفاده در طرح تحقیقاتی به‌صورت با هم‌مرور جنگل‌کاری‌ها انجامد. در اجرا عرصه اجرای طرح و مناطق مزین پوشش داشت. برای تعیین خصوصیات فیزیکی و شیمیایی خاک جدای از حرف‌یک پرفیل در هریک از تیمارهای مورد بررسی ۳ نمونه از افق سطحی (۱۰-۱۰ سانتی‌متر) و در مجموع ۲۴ نمونه خاک تهیه گردید. میانگین هر یک از خصوصیات فیزیکی و شیمیایی نمونه‌های خاک در پلت‌های مورد ارزیابی را جمع‌سازی سایر خصوصیات کمی و کیفی تیمارهای مختلف کاشت شده در عرصه فوق الذکر در قالب بلکه‌های کامل تصادفی مورد آزمون آماری قرار گرفته است. نتایج پوشش گیاهی از استفاده از شاخه‌های سیب‌سنگ، N2 هیل، شاولون- ور و مک آزوربیون تغییر گردیده. همچنین به مظهر تغییرات غنای پوشش گیاهی از شاخه‌های مرکب و ماکاویک استفاده شد. در مرحله بعد به مظهر شناخت ارتباط بین نوع زیستی گونه‌های علفی و بوته‌ای کفر عرصه با مجموعه‌ای از گونه‌های کمی و کیفی تیمارهای مختلف مورد بررسی و خصوصیات فیزیکی و شیمیایی پوشش‌های خاک و بررسی و تحقیق از روش تجزیه و تحلیل موثری‌های اصلی و توجه به این نتایج حاصل این نشان داده شد. نتایج یافته نشان داد که تیمارهای عرصه فاقد پوشش درختی و گونه‌های سوزنی برگ کره‌پاریکا (زاپیكنیا) و کاج دریایی، با داروی حساس مانندگاری و کمترین درصد طبیعت روکش در محتویات و نهایی پوشش گیاهی را فراهم اورده اند. این در حالی است که در ارتباط با تیمارهای گونه سوزنی برگ کاج تا و جنگل‌کاری‌های افریقا، با داروی بالاترین میزان مانندگاری و بیشترین میزان درصد پوشش لاش سیاه کمترین مقدار شاخص‌های نوع زیستی پوشش گیاهی در سطح کف عرصه‌ها را به خود اختصاص داده‌اند.

واژه‌های کلیدی: نوع زیستی، جنگلکاری، سوزنی برگ، دشت، نکات‌ها، مقدمه

کشور، احیای جنگل‌های خیره‌برنک، افزایش میزان محصول در واحد سطح، ایجاد پارک‌های جنگلی و حفاظتی در

۱. انتقاد علمی مرکز تحقیقات کشاورزی و منابع طبیعی مازندران، ساری
Ms.mohammadnejad@gmail.com

* مسئول مکاتبات، پست الکترونیکی:

مقدمه

از مهم‌ترین اهداف کشت گونه‌های سوزنی برگ در شمال
اِطراز شهرها و روستان‌های برگ و کوچک، آرایش و طراحی
فضاهای سبز و تکمیل توها و مجموعه‌های گیاهی موجود در
آریب‌هنها و پایه‌های گیاه شناسی است. همچنین لازم به ذکر
است در بخش‌هایی از عرصه‌های منابع طبیعی که دچار
خسارت زیاد شده و تخریب گسترده داشته‌اند استفاده مفید
با درصدی از گونه‌های سوزنی برگ که نسبت به گونه‌های پهن
برگ نرم یا نسبتی در برای شرایط ناسالم محیطی را دارا
می‌باشد ضروری است.

بررسی آمار فعالیت‌های گنجنگ‌کاری شمال کشور از این‌نگ‌را
پایان سال 1378 نشان می‌دهد که افراد گنجنگ‌کاری از میانگین
سالانه 1372 هکتار در یکپارچه اقلیمی سه بار به
1381 هکتار در طول سال‌های 58 و میانگین
سالانه 1347 هکتار در طول برنامه‌های افزایش است (38
22.7.1378). یافته این این حال در طول برنامه‌های دوم به دلیل کاهش اعتبارات
دولتی، میزان گنجنگ‌کاری به میانگین سالانه 1576/5 هکتار تقلل
بین 26 و 30 درصد به گونه‌های سوزنی برگ در شمال
کشور در سال 1375 بیانگر یافته است که در مجموع به
طور میانگین 200 هزار هکتار گنجنگ‌کاری در سطح شمال کشور
انجام شده است که از این بین حدود 20 درصد آن را گونه‌های
سوزنی برگ (40% هکتار) تشکیل می‌دهد.

در راستای تعیین و معرفی گونه‌های سوزنی برگ غیر رنگ‌یافته،
سازگار جهت استفاده در برنامه‌های گنجنگ‌کاری، یک فردی طرح
تحقیقاتی در گنجنگ‌های مرطوب پایین بند نکا (کوه‌هارتند) و
در قالب یک برنامه کامی تصادفی 3 نفر و 8 تیم از گونه‌های
مختلف غیر رنگ‌یافته سوزنی برگ شامل گونه‌های کاج تا
کاج (Pinus radiate D.Don) Pinus nigra Arn. ssp. (Pinus brutia L.)
Borousia (Pinus pinaster Ait. (austriaca))
کاج دریایی (Pinus longifolia Roxb. (Cryptomeria japonica D.Don)
کاج دامادی (Cedrus deodara G.Don)
ان در سال 1371 مورد مطالعه
قرار گرفته است. محل اجرای طرح در طول جغرافیایی

Downloaded from iipp.iut.ac.ir at 10:41 IRDT on Thursday September 5th 2019
مواد دردناک‌کننده

در مورد رفتار و رفتار پایداری آنها، می‌توان گفت

(پانو نیروی آمریکا)
<table>
<thead>
<tr>
<th>نکار سوم</th>
<th>8</th>
<th>3</th>
<th>7</th>
<th>5</th>
<th>6</th>
<th>1</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>نکار دوم</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>نکار اول</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Pinus nigra Arn. ssp. austriaca
2. Cedrus deodara G.Don
4. Cryptomeria japonica D.Don
5. Pinus longifolia Roxb.
6. Pinus radiate D.Don
7. Pinus teada L.

به منظور تعیین خصوصیات فیزیکی و شیمیایی خاک در
سطح عرضه مورد مطالعه یک پرویژن خاک حفر گردید. از
سویی دیگر در سطح هر یک از عرضه کرت‌های مورد آزمایش
و همچنین در ۳ کرت فاصله پوشش گیاهی به عنوان فضای آزاد
و ۳ منطقه از گنجنگ‌کاری اطراف عرضه طرح تحقیقاتی به
عملیات پرورشی در آن انجام نیز دیده و شامل گونه گنجنگ‌کاری

۵۱۴
برزیل ت نوع زیست پوشش گیاهی در چنگال‌کاری‌های دست کاشت‌سوزی برگ

ویژگی‌های کمی و کیفی تویه‌ها، نوع گونه‌های به کار رفته و ویژگی‌های فیزیکی و شیمیایی خطک که که خود می‌تواند میان‌ارز ت نوع گونه‌های به کار رفته و یا حضور هر یک از توجه‌های فوق الذکر باد، در ارتباط با نوع زیست پوشش گیاهی کف عرض‌های مورد بررسی تعیین گردد. براساس نتایج، راهکارهای مناسب برای نحوه دخالت در توجه دیده و انجام به موقع عملیات پرورشی تعیین گردید.

نتایج

1. بررسی وضعیت پوشش گیاهی

در بررسی پوشش گیاهی در سطح عرض‌های مورد مطالعه در مجموع تعداد 50 گونه عمق به 24 جنس از 30 خانواده گیاهی جمع آوری و شناسایی گردید. لازم به ذکر است خانواده Compositeae با نژاد G. gramineae با نژاد Convolvulaceae و Liliaeaceae با نژاد segetum از نظر احتمال اندازه، در بررسی بررسی ارزیابی شده است.

2. وضعیت عنبیه خاک در عرض‌های مورد بررسی

عنصر مورد مطالعه از نظر فیزیوگرافی تقیب مسطح، شرایط در حدود 5 درصد، میزان پشتی و بلندی کم، زهکشی داخلی ممکن تا عمق 15 سانتی‌متر در سطح عرض‌های مورد مطالعه می‌باشد. در اثر فرآیندهای بی‌کنترل در سطح عرض‌های مورد مطالعه و نبودن حجم تولید می‌باشد. در اثر فرآیندهای بی‌کنترل در سطح عرض‌های مورد مطالعه و نبودن حجم تولید می‌باشد.

3. ویژگی‌های خاک سطحی (0-100 سانتی‌متر) در عرض‌های مورد بررسی

درصد اشباع بالا و ویژگی‌های فیزیکی خاک از نظر خلیل و فرآیندهای نگهداری آب در خاک می‌باشد لازم به توضیح است اگر چه از نظر آماری در تیمارهای مختلف اختلاف معنی‌داری از لحاظ درصد اشباع خاک وجود دارد لیکن از نظر داده‌ها و نقشه آن در پوشش گیاهی و همچنین تأثیر متقابل پوشش گیاهی بر خاک در درصد اشباع خاک قابل ملاحظه نیست. همچنین در ارتباط با هدایت الکتریکی با شوری خاک، اگر از نظر آماری بین تیمارهای مختلف تفاوت وجود دارد و اغلب سوزی برگ نیز جزو گونه‌های حساس به شوری می‌باشد اما با توجه به مقادیر پایین و غیر شور بودن خاک در کله تیمارهای مورد بررسی، تأثیر میزان
جدول 1. فهرست گونه‌های گیاهی شناسایی شده در سطح عرصه‌های مورد بررسی

<table>
<thead>
<tr>
<th>ردیف</th>
<th>تاریخ علمی گونه</th>
<th>نام رسمی گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aceraceae</td>
<td>Acer velutinum Boiss.</td>
</tr>
<tr>
<td>2</td>
<td>Aracéeae</td>
<td>Biarum carduchorum (Schott) Engl.</td>
</tr>
<tr>
<td>3</td>
<td>Caprifoliaceae</td>
<td>Sambucus ebulus L.</td>
</tr>
<tr>
<td>4</td>
<td>Compositae</td>
<td>Aster alpinus L.</td>
</tr>
<tr>
<td>5</td>
<td>Compositae</td>
<td>Bidens tripartit L.</td>
</tr>
<tr>
<td>6</td>
<td>Compositae</td>
<td>Erigeron acre L.</td>
</tr>
<tr>
<td>7</td>
<td>Convolvulaceae</td>
<td>Calystegia sepium (L.) R. Br</td>
</tr>
<tr>
<td>8</td>
<td>Convolvulaceae</td>
<td>Convolvulus arvensis L.</td>
</tr>
<tr>
<td>9</td>
<td>Corylaceae</td>
<td>Carpinus betulus L.</td>
</tr>
<tr>
<td>10</td>
<td>Cyperaceae</td>
<td>Carex pendula L.</td>
</tr>
<tr>
<td>11</td>
<td>Ebenaceae</td>
<td>Diospyros lotus L.</td>
</tr>
<tr>
<td>12</td>
<td>Euphorbiaceae</td>
<td>Acalypha australis L.</td>
</tr>
<tr>
<td>13</td>
<td>Euphorbiaceae</td>
<td>Euphorbia sp.</td>
</tr>
<tr>
<td>14</td>
<td>Fagaceae</td>
<td>Quercus castaneifolia C.A.Mey.</td>
</tr>
<tr>
<td>15</td>
<td>Gramineae</td>
<td>Brachypodium pinnatum (L.) P.</td>
</tr>
<tr>
<td>16</td>
<td>Gramineae</td>
<td>Cynodon dactylion (L.)Pers.</td>
</tr>
<tr>
<td>17</td>
<td>Gramineae</td>
<td>Dactylis glomerata L.</td>
</tr>
<tr>
<td>18</td>
<td>Gramineae</td>
<td>Imperata cylindrica (L.) Beauv</td>
</tr>
<tr>
<td>19</td>
<td>Gramineae</td>
<td>Oplismenus undulatofolius (Ar.) P. Beauv.</td>
</tr>
<tr>
<td>20</td>
<td>Gramineae</td>
<td>Paspalum dilatatum Poir.</td>
</tr>
<tr>
<td>21</td>
<td>Gramineae</td>
<td>Paspalum distichum L.</td>
</tr>
<tr>
<td>22</td>
<td>Hamamelidaceae</td>
<td>Parrotia persica (DC.)C.A.Mey.</td>
</tr>
<tr>
<td>23</td>
<td>Hypericaceae</td>
<td>Hypericum perforatum L.</td>
</tr>
<tr>
<td>24</td>
<td>Juncaeeae</td>
<td>Juncus acutus L.</td>
</tr>
<tr>
<td>25</td>
<td>Labiatae</td>
<td>Prunella vulgaris L.</td>
</tr>
<tr>
<td>26</td>
<td>Liliaceae</td>
<td>Ruscus hyrcanus Woron.</td>
</tr>
<tr>
<td>27</td>
<td>Liliaceae</td>
<td>Smilax excelsa L.</td>
</tr>
<tr>
<td>28</td>
<td>Meliaceae</td>
<td>Melia azedarach L.</td>
</tr>
<tr>
<td>29</td>
<td>Moraceae</td>
<td>Ficus carica L.</td>
</tr>
<tr>
<td>30</td>
<td>Oxalidaceae</td>
<td>Oxtalis corculiculata L.</td>
</tr>
<tr>
<td>31</td>
<td>Papaveraceae</td>
<td>Cheilidinium majus L.</td>
</tr>
<tr>
<td>32</td>
<td>Plantaginaceae</td>
<td>Plantago major L.</td>
</tr>
<tr>
<td>33</td>
<td>Polygonaceae</td>
<td>Rumex acetosa L.</td>
</tr>
<tr>
<td>34</td>
<td>Punicaceae</td>
<td>Punica granatum L.</td>
</tr>
<tr>
<td>35</td>
<td>Rosaceae</td>
<td>Agermania eupatoria L.</td>
</tr>
<tr>
<td>36</td>
<td>Rosaceae</td>
<td>Crataegus melanocarpa M.B.</td>
</tr>
<tr>
<td>37</td>
<td>Rosaceae</td>
<td>Geum kokanicum Regel & Schmalh</td>
</tr>
<tr>
<td>38</td>
<td>Rosaceae</td>
<td>Mespilus germanica L.</td>
</tr>
<tr>
<td>39</td>
<td>Rosaceae</td>
<td>Potentilla reptans L.</td>
</tr>
<tr>
<td>40</td>
<td>Rosaceae</td>
<td>Rubus persicus Boiss.</td>
</tr>
<tr>
<td>41</td>
<td>Solanaceae</td>
<td>Solanum nigrum L.</td>
</tr>
<tr>
<td>42</td>
<td>Ulmaceae</td>
<td>Zelkova carpinifolia (Pall.) Dipp</td>
</tr>
<tr>
<td>43</td>
<td>Umbelliferae</td>
<td>Fritiria subpinnata (Ledeb.) Baill.</td>
</tr>
<tr>
<td>44</td>
<td>Urticaceae</td>
<td>Urtica dioica L.</td>
</tr>
<tr>
<td>45</td>
<td>Violaceae</td>
<td>Viola alba Bess.</td>
</tr>
</tbody>
</table>

شایع‌ترین گونه‌های دیده شده در سطح عرصه‌ها:

- لکع
- پره‌زخم
- ترشک‌شیره‌ای
- باردارگی
- فلف

شایع‌ترین گونه‌های ناگهانی دیده شده در سطح عرصه‌ها:

- پیره‌کاک
- پره‌جهان
- پره‌کاک
- پره‌ژنگن
- پره‌زنگ‌بلع

شایع‌ترین گونه‌های مارپیچی دیده شده در سطح عرصه‌ها:

- زنگ‌بلع
- زنگ‌بلع
- زنگ‌بلع
- زنگ‌بلع
- زنگ‌بلع
جدول 2. تناوب آزمایش‌های خاکشناسی بر روی خاک منطقه عرص طرح تحقیقاتی

<table>
<thead>
<tr>
<th>نوع بافت خاک</th>
<th>فسر قابل جذب قالب</th>
<th>فسر قابل جذب O/C %</th>
<th>اسیدتیه کل اشباع</th>
<th>عمق (cm)</th>
<th>مشخصات</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-C-L</td>
<td>200</td>
<td>21</td>
<td>3</td>
<td>5/97</td>
<td>0-15</td>
</tr>
<tr>
<td>S-C</td>
<td>190</td>
<td>3</td>
<td>1/3</td>
<td>6/24</td>
<td>15-30</td>
</tr>
<tr>
<td>C</td>
<td>260</td>
<td>7</td>
<td>0/23</td>
<td>6/14</td>
<td>35-70</td>
</tr>
<tr>
<td>C</td>
<td>200</td>
<td>5</td>
<td>0/36</td>
<td>7/1</td>
<td>75-150</td>
</tr>
<tr>
<td>C</td>
<td>230</td>
<td>2/5</td>
<td>0/32</td>
<td>6/27</td>
<td>150-170</td>
</tr>
</tbody>
</table>

جدول 3. نتایج آزمایش‌های فیزیکی و شیمیایی نمونه‌های خاک از ارتفاع (0-100) سانتی‌متر نیمه‌های مختلف

<table>
<thead>
<tr>
<th>فسر</th>
<th>ارتفاع</th>
<th>کربن آلی</th>
<th>منطقه</th>
<th>هیدراته مورد</th>
<th>درصد مواد خشی</th>
<th>هیدراته کلی</th>
<th>اشباع</th>
<th>هیدراته کلی E*10^5</th>
<th>درصد اشباع</th>
<th>بررسی</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>200</td>
<td>0.15</td>
<td>0.17</td>
<td>40</td>
<td>1/26</td>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>1/26</td>
<td>40</td>
</tr>
<tr>
<td>18%</td>
<td>200</td>
<td>0.15</td>
<td>0.17</td>
<td>40</td>
<td>1/26</td>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>1/26</td>
<td>40</td>
</tr>
<tr>
<td>15%</td>
<td>200</td>
<td>0.15</td>
<td>0.17</td>
<td>40</td>
<td>1/26</td>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>1/26</td>
<td>40</td>
</tr>
<tr>
<td>10%</td>
<td>200</td>
<td>0.15</td>
<td>0.17</td>
<td>40</td>
<td>1/26</td>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>1/26</td>
<td>40</td>
</tr>
<tr>
<td>12%</td>
<td>200</td>
<td>0.15</td>
<td>0.17</td>
<td>40</td>
<td>1/26</td>
<td>0.1</td>
<td>0.1</td>
<td>40</td>
<td>1/26</td>
<td>40</td>
</tr>
</tbody>
</table>

به نمونه‌های خاک ری به هر حرف مشابه داشته انتقال معمول دارنده‌ای است (جدول 3).

- در هر سانتی‌متر نیمه‌های خاک از ارتفاع (0-100) به ترتیب، تناوب خاکشناسی بر روی خاک منطقه عرص طرح تحقیقاتی قابل ملاحظه‌ی این باشد (جدول 2).

به نمونه‌های خاک از ارتفاع (0-100) به ترتیب، تناوب خاکشناسی بر روی خاک منطقه عرص طرح تحقیقاتی قابل ملاحظه‌ی این باشد (جدول 2).

- در هر سانتی‌متر نیمه‌های خاک از ارتفاع (0-100) به ترتیب، تناوب خاکشناسی بر روی خاک منطقه عرص طرح تحقیقاتی قابل ملاحظه‌ی این باشد (جدول 2).

- در هر سانتی‌متر نیمه‌های خاک از ارتفاع (0-100) به ترتیب، تناوب خاکشناسی بر روی خاک منطقه عرص طرح تحقیقاتی قابل ملاحظه‌ی این باشد (جدول 2).
خان به مقدار بیشتری به افتخارات پایین تراشته است. این به عبارت دیگر تأثیر تغییر بوش در تیمارهای گونه‌های مختلف کاشته شده تا حدودی سبب کاهش میزان آب‌شکن و انتقال کمتر مواد خشک شونده از افق‌های مفید خواهد بود. در اثر انتقال با میزان مواد آبی اگرچه اختلاف معنی‌داری بین تیمارهای مختلف گونه‌های سوزنی برگ، پهن برگ و در کار و وجود ندارد اما از انتقال با گونه‌های کار، رادیانا و کار دریایی میزان مواد آبی اندکی بیشتر از سایر گونه‌ها بوده که به نظر می‌رسد مواد آبی حاصل از لاش‌گیره‌ها این شرایط مطلوبتری برای تجزیه داشته و این در حالت است که برای گونه کاج تدا رونده تجزیه مواد آبی لاش‌گیره‌های آن کنترل از سایر گونه‌ها بوده است.

مقدار از در نمونه‌های آزمایشگاهی براساس تجزیه شیمیایی محاسبه گردید که نتایج آزمایش نشان داد مقدار از در تیمار گونه رادیانا و وضعیت مطلوبتری برخوردار بوده و در انتقال با کاج تدا در پایین ترین حد قرار دارد. البته لازم به ذکر است از دیدگاه خاکشناسی نسبت بین کریسته از از کلیه تیمارها در حدود 10 بوده و از همین رو در حال حاضر اختلاف میزان از در تیمارهای مختلف قابل ملاحظه نیست و افزایش اختلاف میزان از در با کلیت زمان و تجزیه لاش‌گیره‌ها گونه‌های مختلف امکان بی‌خواهد بود. مقدار فسفر با استفاده از روش اولون محاسبه گردید و اکثر چه لحاظ آماری و در سطح 0.05 درصد بین تیمارهای مختلف اختلاف معنی‌داری مشاهده نشد است اما براساس طبقه‌بندی اولون(1964) میزان فسفر در کل تیمارهای گونه کاج رادیانا و کار برخی از زمان بوده، برای تیمارهای عرض آزاد (فاقد بوش درختی) و کاج سیاه مقدار فسفر پایین و برای سایر تیمارهای میزان فسفر در حد متوسط می‌باشد. البته در به ذکر است از این نکته شرایط استدیوی خان در انتقال با گونه‌های مختلف مورد بررسی اختلاف محصولی را نشان نداده است لیکن گونه‌های مشابه(جدول 4).

تغییر زیست‌گونه‌ها نتیجه از تعداد گونه‌ها(به عنوان غنا) و نیز نتیجه تعداد افراد در داخل هر گونه(به عنوان فراوانی یا یکنواختی) در یک سطح مشخص بی گروهی از موجودات زنده می‌باشد (17). در بررسی حاضر به تغییر غنای گونه‌های

سوئسی برگ در میزان فسفر قابل جذب تأثیری اندک داشته و از همین رو شرایط را جهت استفاده از این عنصر بهبود بخشیده است (جدول 3).
جدول 2: شاخص‌های توزیع زیستی در فرمول‌های مختلف

| تیمار | سیمپسون | یکنوخاتی | کپکنوخاتی | سایوز - وتر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>کاج ندا</td>
<td>0.72649</td>
<td>0.63629</td>
<td>0.69267</td>
<td>0.69267</td>
</tr>
<tr>
<td>کاج رادیات</td>
<td>0.72649</td>
<td>0.63629</td>
<td>0.69267</td>
<td>0.69267</td>
</tr>
<tr>
<td>کاج سایوز</td>
<td>0.72649</td>
<td>0.63629</td>
<td>0.69267</td>
<td>0.69267</td>
</tr>
<tr>
<td>کاج دریابی</td>
<td>0.72649</td>
<td>0.63629</td>
<td>0.69267</td>
<td>0.69267</td>
</tr>
<tr>
<td>کاج پرکیتاهی</td>
<td>0.72649</td>
<td>0.63629</td>
<td>0.69267</td>
<td>0.69267</td>
</tr>
</tbody>
</table>

جدول 5: شاخص‌های غنای گونه‌ها در سطح تیمارهای متفاوت مورد بررسی

| شاخص‌های غنای گونه‌ها | عملکرد بررسی | گونه‌ها | اثرات | کپکنوخاتی | کپکنوخاتی | سیمپسون | سایوز - وتر
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان غنای</td>
<td>موتور بررسی</td>
<td>0.546785</td>
<td>0.55825</td>
<td>0.47849</td>
<td>0.47849</td>
<td>0.12350</td>
<td>0.12350</td>
</tr>
<tr>
<td>میزان غنای</td>
<td>کپکنوخاتی</td>
<td>0.546785</td>
<td>0.55825</td>
<td>0.47849</td>
<td>0.47849</td>
<td>0.12350</td>
<td>0.12350</td>
</tr>
<tr>
<td>هماهنگی غنای</td>
<td>سایوز - وتر</td>
<td>0.546785</td>
<td>0.55825</td>
<td>0.47849</td>
<td>0.47849</td>
<td>0.12350</td>
<td>0.12350</td>
</tr>
</tbody>
</table>

بخش

تجزیه عمومی، تکنیک آماری در جهت ایجاد الگوی زیستی با مدل خاصی در تغییر مفاهیم پیچیده ارتباط بین متغیرهای...
جدول ۶ آمارهای توصیفی متغیرها

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>متوسط</th>
<th>مین</th>
<th>مکانیک</th>
<th>درصد</th>
<th>درصد مالی</th>
<th>درصد سایر</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیر ۱</td>
<td>۹۴۵۵۰۰۰</td>
<td>۹۲۵۵۰۰۰</td>
<td>۹۰۵۵۰۰۰</td>
<td>۸۸۵۵۰۰۰</td>
<td>۸۶۵۵۰۰۰</td>
<td>۸۴۵۵۰۰۰</td>
</tr>
<tr>
<td>متغیر ۲</td>
<td>۶۵۰۰۰۰۰</td>
<td>۶۳۰۰۰۰۰</td>
<td>۶۱۰۰۰۰۰</td>
<td>۵۹۰۰۰۰۰</td>
<td>۵۷۰۰۰۰۰</td>
<td>۵۵۰۰۰۰۰</td>
</tr>
<tr>
<td>متغیر ۳</td>
<td>۴۵۰۰۰۰۰</td>
<td>۴۳۰۰۰۰۰</td>
<td>۴۱۰۰۰۰۰</td>
<td>۳۹۰۰۰۰۰</td>
<td>۳۷۰۰۰۰۰</td>
<td>۳۵۰۰۰۰۰</td>
</tr>
</tbody>
</table>

جدول ۷ آمارهای مرتبه به دو جزء استخراج شده از متغیرهای مختلف

<table>
<thead>
<tr>
<th>متغیرهای جزئی درون داده شده (Varimax)</th>
<th>درصد واریانس تجمعی</th>
<th>درصد واریانس مشترک با عامل</th>
<th>مقادیر ویژه</th>
<th>تاجه</th>
<th>مشترک با عامل</th>
</tr>
</thead>
<tbody>
<tr>
<td>متغیر ۱</td>
<td>۷۹/۸۷</td>
<td>۷۷/۸۵</td>
<td>۷۵/۸۲</td>
<td>۷۳/۸۰</td>
<td>۷۱/۷۸</td>
</tr>
<tr>
<td>متغیر ۲</td>
<td>۷۴/۰۹</td>
<td>۷۲/۰۰</td>
<td>۶۹/۹۶</td>
<td>۶۷/۹۴</td>
<td>۶۵/۹۲</td>
</tr>
<tr>
<td>متغیر ۳</td>
<td>۷۰/۳۲</td>
<td>۶۸/۳۰</td>
<td>۶۵/۲۷</td>
<td>۶۳/۲۵</td>
<td>۶۱/۲۳</td>
</tr>
</tbody>
</table>

ملخصه‌ای اولیه انجام تجزیه عاملی تعیین ضریب ماتریس همبستگی بین متغیرهای مختلف نشان داده است که

منغیرهای متوسط واقعی و هدایت الکتریکی افق مشترک

درصد بین تعداد قابل توجهی دیگر از متغیرهای همبستگی بسیار

باین در داده که به‌ترتیب از جمع مشترک حذف

دردندند. همچنین

anti-image

ماتریس ارایه می‌کند که

عناصری که ضریب همبستگی جزیی با علائم مختلف شامل

کوواریانس جزیی متغیرها است. با توجه به متغیرهای

فوق الذکر، افزایش اندازه دقت معلوم به نمایا

هماهن ادامه روز این ماتریس می‌باشد و انتخاب شده

همان عناصر روی قطر این ماتریس می‌باشد و انتخاب شده است. همچنین مقادیر ویژه (Eigenvalue)

که بر اساس نتایج واریانس گری با نمایا

هماهن набیع از این متغیرها حذف شوند.

در ارتباط با متغیرهای مورد بررسی از آنجایی که بین متوسط

قطر، و متوسط قطر برای سیستم درک‌خوان حساسیت دیده

ارتباط مستقیمی وجود دارد و با توجه به تعریف میان

هم‌مبستگی باید تجاری با، متغیر متوسط قطر دیده

 chicago / دوم (ب) / زمان / ۱۳۸۴
نمودار 1: موقعیت مکانی متغیرهای مورد بررسی نسبت به محورهای اول و دوم در تجزیه و تحلیل ولفه‌های اصلی

تیپه ی ماتریس ضرایب عامل‌ها پس از دوران که در نمودار 1 آمده است نشان می‌دهد که متغیرهای شاخص تنوع زیستی (سیسپسون)، متوسط درصد پوشش لانگرس، متوسط درصد اشباع خاک سطحی و میزان متوسط فسفر در افق سطحی از پوشش و اهمیت پیشنهای برخورد اتست (ضرایب نمرات پژوهانتر از 1) و از سویی دیگر ارتباط با تیمارهای کاه درایه و عرضه فاقد پوشش درختی که دارای بیشترین میزان تنوع زیستی بر اساس شاخص سیسپسون می‌باشد نسبت به متغیرهای فنون ماده از اهمیت قابل توجهی برخورد نمی‌باشد (ضرایب نمرات کمتر از 0.1).

توجه به مقادیر نمرات عامل دوم نیز نشان می‌دهد که در ارتباط با تیمار کاه درایه و متغیرهای واکنش اسیدیتی، متوسط درصد اشباع خاک سطحی و متوسط قطر برای سیسپسون تغییر می‌دهند. از همین نمرات پژوهانتر از 2) و این در حالتی است که در ارتباط با تیمار عرضه فاقد پوشش درختی علت دارا باشد. البته در بیشتر موارد تنوع زیستی (بر اساس شاخص سیسپسون) نسبت به هر یک از متغیرهای فنون ماده از اهمیت قابل توجهی برخورد نمی‌باشد.

دانلود از jcpp.iut.ac.ir در 10:41 IRDT در یک‌شنبه سپتامبر 5م 2019
نمودار ۲. موقعیت مکانی تیمارهای مختلف مورد بررسی نسبت به محورهای اول و دوم در تجزیه و تحلیل مولفه‌های اصلی

(ضریب کوچکتر از منفی ۱). لازم به توضیح است علی رغم آنکه هر یک از دو تیمار فوق از پیشترین باینژی تیمار زیستی پوشش گیاهی کف عرضه برخوردار می‌باشدند در نتیجه دارای پوشش درختی از گونه کاج دریایی، افزایش درصد مواد خشی شونده و در افزایش pH (مهار افزایش سطح فرآیندهای نک درختان) در افزایش فراوانی و غنای پوشش گیاهی نقش مهمی می‌نماید و این در حالت است که در ارتباط با عرضه فاقد پوشش درختی

می‌گردد. فوک دلگذار از اهمیت قبل توجه برخوردار نمی‌باشد. در عرضه فاقد پوشش درختی، افزایش تعداد درختان موجب کمبود فضا و کاهش فراوانی و غنای پوشش گیاهی کف عرضه را فراهم می‌آورد و این در حالت که با این‌که، با تنها یک از موارد این فعالیت‌ها متفاوت است.锅泽在表 ۲۶ لیکن در سبیلی از موارد این فعالیت‌ها متفاوت است.锅泽在表 ۲۶ لیکن در سبیلی از موارد این فعالیت‌ها متفاوت است.锅泽
بررسی نوع زیستی پوشش گیاهی در چنگال‌کاری‌های دست کاشت سوزنی برگ

نواحی ساحلی، ایجاد چنگال‌کاری در مناطق فرسایش بانه، استفاده مناسبی از گونه‌های درختی را با توجه به نیاز‌های روش‌گاهی و توان اکولوژیکی مرغ منطقه، انجام چنگال‌کاری‌های آمیخته و اجرایی به موقع عملیات پروپوشش در سطح چنگال‌کاری‌های را می‌توان نام برد.

امروزه، توجه به موضوع تغییر زیستی از آنجانه اهمیتی برخوردار می‌باشد که در بسیاری از کشورها، گونه‌های گیاهی نادر در فهرست داده‌های مهم و یا گونه‌های در معرض خطر قرار گرفته‌اند (14). تحقیقات انجام پذیرفته شده در ارتباط با بررسی میزان تغییر گونه‌های علمی زیر шکوف در سطح یک منطقه جنگلی غیر مبتنی پایدار Pinus roxburghii، جنگل جنگل‌های سوزنی برگ و شاخه‌های در ارتباط با طرح‌های چنگال‌کاری منطقه بوره (Boreal)، خاص، نشانه‌گذاری کرده و از معدوم‌گردی و کناره گیری شکوف در منطقه یک نیاز اساسی و کافی است که تغییرات گونه‌های زیستی برگ و پنجره، اثر آتش سوزی، حاوی خیزی روش‌گاه، پویا، قطر میان درختان، تعداد آن‌ها در ناخن از راه و تبدیل زمین زمینی به یک ناحیر شکوف در مجموع مثبت‌الی از نظر و نیافته با نیازهای در بررسی میزان تغییر سوزنی در منطقه می‌تواند با تغییر حاصل از آماره‌های کمی و کیفی نوده‌های دست کاشت تغییراتی اشکار کرده. این اختلاف بخصوص در بعضی از گونه‌های چنگال‌کاری شده

که در آن عملیات پروپوشش صورت نیز هرگونه استفاده نشده بیشتر به خواده گرفت. در تحقیق فوق با اینکه گونه‌های کاج تداک قاب‌های و کنترل از حذف متفاوت کمی و کیفی گونه‌های موفق اجرا طرح تحقیقات بررسی سازگاری گونه‌های سوزنی برگ غیر بومی در منطقه یا بین جنگل ها معرفی شده‌اند.

لیکن با توجه به میزان ماندگاری گونه کاج تداک (917 درصد) همراه با تیمار چنگال‌کاری‌های اطراف که در این عملیات پروپوشش صورت نیز هرگونه است واست وال بیان گونه‌های پنجره همگون معمور زرد، مرغی و توسکا در بین درختان چنگال‌کاری‌های شده افراد رویش یافته‌اند. تکرایی میزان نفوذ پوشش گیاهی در سطح کف عضلانه‌های متغیر بررسی را برای اختصاص دادن و ایمن در حالی است که در عرصه پوشش به جنگل کاج گام به دلیل درصد ماندگاری بیشتر و همچنین از اندازه‌گیری به منظور تسهیل در اター آماره‌های کمی و کیفی این نظریات، پیوستگی با صورت منظم در طول هر سال انجام پذیرفته و از همین رو از رشد به روش گونه‌های گیاهی مهاجم و پنجره محدودیت در این ساختمان در شرایط مناسبتری برای نفوذ و گسترش فراوانی و گسترش پوشش گیاهی کافی عرصه فراهم شده و بالاخره میزان نفوذ زیستی پوشش گیاهی کافی عرصه‌ها را برای اختصاص داده است.

نتیجه مهم که در عملیات چنگال‌کاری وجود دارد پروپوشش نتوانسته جوان است چرا که بیشترین ارزش کمی و کیفی یک عرضه چنگال‌کاری ناشی از اجرا بی به موقع عملیات پروپوششی است که در طول یک چهارم اول عمر مناسب برداشت یک نتیجه انجام می‌گیرد و لازم به توضیح است که عملیات پروپوشش آزاد کردن پاک کردن و قسمتی از نکا کردن در این محدوده زمانی گرفت. در سطح چنگال‌کاری‌ها در طول پنج سال اول تا نداشتن ده‌ها اول عملیات پروپوششی آزاد کردن انجام می‌باید در این مرحله کلیه عوامل گیاهی مصرف برای رشد گیاه‌های چنگال‌کاری شده از عرصه پاک می‌گردد. در این مرحله نوع گونه‌های منفی است بی به این مفهوم که کلیه گونه‌های
نامرزغم و معیوب بهدن در نظر گرفتن انگل‌ها بر روی پایه‌های مرجع جنگل‌گزاری شده حذف می‌شوند و در این عملیات امکان استقامت گونه‌های کاشته شده فراهم می‌گردد. تقییاً پس از ۵ تا ۱۰ سال پس از جنگل‌گزاری مرحله جنگل گروه شروع می‌شود (۱۱). ارتفاع نهال‌ها در این مرحله حدود ۲ تا ۴ متر در نوسان می‌باشد. در این مرحله شدتآورترین رقابت نوری بین پایه‌ها به وجود می‌آید و در حقیقت آتش‌کوبندی توده‌های محلی می‌گردد. در این مرحله، زمان عملیات پرورشی یاک کردن می‌باشد که هدف از آن ایجاد شکر به حاکمیت تعداد بی‌توجهی می‌گردد و سالم است. در صبح جنگل‌گزاری‌ها عملیات پرورشی این مرحله شامل گزینش مثبت که بیشتر مربوط به پایه‌های می‌شود که مسئولیت بوده، جوان، انتخاب سالم داشته و شاخص‌های نه آنها کم و ضعیف است و در این مرحله اصله پایه‌های مرغوب می‌باشند در حذف نصف ارتفاع درختان.

منابع مورد استفاده

۱. اسداللهی، ف. ۱۳۸۵. بررسی سیرتحول جنگل‌گزاری در ایران. فصلنامه جنگل و مرتع ۱۳–۴۹.
۲. پورآبادی، ح. ۱۳۷۹. بررسی توزیع زیستی گونه‌های چوبی در جنگل‌های راه‌گاهی. مجموعه مطالعات هماهنگ ملی مدیریت جنگل‌های شمال و توسیع پایدار ۵۱–۷۶.
۳. پورآبادی، ح. ک. جوان، ا. و. زیبی، م. اکبری نیا. ۱۳۸۰. بررسی توزیع گونه‌های چوبی روی‌گاه‌های گرد در جنگل‌های کویری. مجله مطالعاتي طبیعی ایران (۱۵۲): ۳۵–۴۴.
۴. جغافی حیدری، ۱۳۸۲. روش‌های تجربی خلاک، انتشارات ندا ضاحی. تهران.
۵. حسن زاد نورودی، ا. ۱۳۸۲. بررسی رابطه شاخص‌های توزیع گونه‌های چوبی روی‌گاه‌های رأس با موجودی سریا در توده‌های جنگل طبیعی منطقه اصلی. پژوهش و سازندگی ۵۰–۷۶.
۶. حسینی، س. ۱۳۸۰. بررسی توزیع زیستی در جنگل‌های سوزنی بهم بومی شمال ایران. مقالات هماهنگ ملی مدیریت جنگل‌های شمال و توسیع پایدار، صفحات ۲۵–۵۷.
۷. رحمنی، ا. و. زارع ملایری. ۱۳۸۲. بررسی توزیع و پاتریاک در اجتماعی پی‌هگام خاکی بی نیژه‌های جنگل‌های راه‌گاهی، ممز و بلوط - ممرز. مجله مطالعاتی طبیعی ایران ۲. ۴۲۵–۴۳۲.
۸. رحمنی، ا. و. شمس‌وردی‌کیار و س. ع. موسي. بررسی تأثیر الکترونیک و تولید اقتصادی کاج سیاه در منطقه فرم. چنگه مقالات اولین گردشگری جنگل‌گزاری با گونه‌های سریع رشد در شمال کشور. مرکز تحقیقات مطالعاتی طبیعی مازندران، صفحات ۳۵–۴۳.
۹. قلی‌نیا، ح. ۱۳۸۲. مقایسه توزیع گونه‌ای و فراوانی فلور کف جنگل در مناطق جنگل‌کاری سوزنی برگان و جنگل‌طبیعی بهن
برگ در لاجیم ماژورتی. پژوهش و سازندگی ۸۸:۲۷-۳۷.

۱۵ کیانی، ب. و. گ. کلین. ۱۳۸۱، کتاب آموزشی SPSS10. انتشارات آقالی، تهران.

۱۱ مروی مهاجر، م. ۱۳۸۴، جنگلشناسی ۲، جزوه درسی مقاطع کارشناسی، دانشکده منابع طبیعی، دانشگاه تهران.

۱۲ محمدزاد کیاسی، ا. و. گ. استادی، م. و. گ. موسوی گرمسائی و ب. جعفری. ۱۳۸۲، نگاه اولیه (دهکده) طرح آزمایش سازگاری سوزنی برگان در منطقه ارتقاء پایین بند جنگل‌های کشا (کوه‌سارکند). فصلنامه جنگل و صنعت ۹۱، ۲۱۲-۲۲۶.

