تئیه نقشه جنگل‌های طبیعی استان زنجان با استفاده از داده‌های سنجش + ETM+ ماهواره لنست

چکیده

جنگل‌های طبیعی استان زنجان یکی از مناطق کوهستانی واقع شده‌اند. تئیه نقشه جنگل‌ها، مرتع و سایر پدیده‌های زمینی به‌خصوص در مناطق کوهستانی مشکل و پررهنگی است. برای این منظور استفاده از داده‌های ماهواره‌ای با قدرت تفکیک مکانی متوسط راه حل مناسبی به نظر می‌رسد. در این پروژه از تکنیک‌های فیلتر گابور و تفکیک مکانی متوسط راه حل استفاده نموده و سال 2002 برای مکان‌های واقعی و نقاط نقشه جنگل‌های طبیعی استان زنجان اندازه‌گیری می‌شود. تئیه نقشه استفاده شده است. نتایج مولفه‌ها اصلی (PCA) و کاهش حجم انتخاب شده و به عنوان نتایج نهایی جدول‌های حریرک گردیده و تجهیز به سیستم اطلاعات جغرافیایی (RGIS) در حیطه قومی افزایش داده شده است.

این نقشه از لحاظ تکنیکی و به عنوان نتایج نهایی جدول‌های حریرک گردیده و تجهیز به سیستم اطلاعات جغرافیایی (RGIS) در حیطه قومی افزایش داده شده است.

از مقدمه

منابع زیست محیطی در زمین کوهستان و با هرگونه کم است. منابع طبیعی نیز همانند سایر زمین‌های این منطقه است. استان زنجان از نظر جنگل‌های طبیعی از جمله مناطق فقیر مقدمه

برای استفاده بهینه از منابع طبیعی و توسعه پایدار در برنامه‌ریزی‌های منطقه‌ای نیازمند به جمع آوری اطلاعات کافی از استان زنجان. استادان جنگل‌داری، دانشگاه ماهگین عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان زنجان

bonyad@guilan.ac.ir: * مسئول مکاتبات، پست الکترونیکی: *
کشور است. براساس استادان منابع طبیعی استادان زنجان تناها 240 درصد از سطح استادان گنجشک تشکیل می‌دهد (1). در این استادان گونه‌هایی از اتفاقات غیرطبیعی وجود دارد. حفظ و توسعه منابع طبیعی به خصوص گنجشک‌های طبیعی از نظر اقتصادی، اجتماعی، نوع زیستی و زیست محیطی اهمیت دارد. در این استادان فضه‌های یازده مانند نقشه گنجشک‌ها، مراتع، زیست محیطی، کشاورزی و خیابان برای برنامه‌ریزی کمر مطلق وجود می‌باشد. مساس و گوش و فهم نقشه‌های گنجشک‌های طبیعی به منظور برنامه‌ریزی و یافتن پایگاه اطلاعیه‌های زمین و ضروری است. یکی از این اقتصاد برای رسیدن به این هدف استفاده از داده‌های سنجش از دور به خصوص داده‌های ماهواره‌ای با قدرت تفکیک مکانی متوسط است. در این زمینه در فناوری‌های مختلف جهان و ایران تحقیقات زیادی صورت گرفته است. رشدی (6) در منطقه عملیه و نابین بر این استادان بودن از روش طبیعی بدنی حداکثر همانندی روز داده‌های 7 اقدام به نهسه پودر گیاهی نمود و 8 کلاس موجود در محدوده مورد مطالعه را به شاخه کامپیوتر 70/54 از هم تفکیک کرد. حسینی (5) نسبت به نهسه فیروزیمیک - فلورسیمیک پودر گیاهی به تخم نهال گنجشک خوراک اقدام نموده است. برای مفر این بر روی کرده بالاترین استفاده شده است. در تحلیل فیروزیمیک 7 تیپ و در بررسی فلورسیمیک 15 واحد گیاهی با ساختار منفی تفکیک شده است. پیک پورر و همکاران (3) برای منطقه کشت کاشان روند تغییرات شوری خاک و تعیین نواحی تحت اثر بیابان زایی با بردازش داده‌های ماهواره‌ای بررسی کرده‌اند. در این بررسی برای طبقه‌بندی از تکنیک تغییرات شده و باگرمی‌های جداکر (ML) استفاده شده است. دقت کلی به ترتیب 65/72 برای داده‌های ام اس و تپ ام به دست آمده است. کیفی کش (9) بررسی قابلیت کار بر داده‌های موجود ماهواره‌ای ندست 7 مبرای تهیه نقشه پودر گیاهی و مقایسه آن با روش زمینی در منطقه
مواد و روش‌ها
منطقه مورد مطالعه محصور در جغرافیایی استان زنجان است که در بین عرصه شمالی "۳۳°۰۰۰ شمالی تا ۳۴°۰۰۰ شمالی و طول جغرافیایی "۳۷°۰۰۰ و ۲۷°۰۰۰ قرار گرفته است و مساحت آن برابر ۲۲۱۴۶۵ هکتار است (۱). نتایج الگویی در استان زنجان یا در استان هایی که مطابق دریایی، قطبی، بری، مدیترانی و خزی است، از نظر توپوگرافی دارای پستی و بندی زیادی است، به طوری که بیشترین وسعت آن را مداخله خوش‌مانند و نیز ماهور تشکیل می‌دهد. توپوهای خشکی این استان شالی‌های ارس که بیشتر در منطقه طارم گیلانی و در ارتفاعات صعود عبور و رفع شده است. گسترش بلوط در استان محدود بوده از ارتفاعات استان طارم علاوه بر بیشتر توپوهای پسته و در ارتقاع پایین‌تر از توپوهای ارس مسطح شده است. سایر کوه‌های خشکی مانند راه، کرکو (کرب)، زرشک، چنار، شیرخشت، ناراک، به‌همراه ولک، رستن و بید که به صورت توپوهای محدود و براکنده در سطح استان دیده می‌شود. پوشش درختی غیر جنگلی شامل صنوبر کاک، به‌اشکال زیتون و تاکستانی است که بیشتر در حاشیه رود خانه‌ها و دشت‌ها می‌شود. وسعت مراتع استان در حدود ۱۲۰۰۰۰ هکتار برآورد شده است. نتایج و وضعیت پوشش گیاهی منطقه مختلف آن حسب نوع خاک و اقلیم بسیار متفاوت است (۱). در این بررسی از تصویر ۷ باند شال، ETM ۸، ۷، ۶، ۵، ۴ و ۲ مربوط به سعتهد +، Maohohore ۷ استفاده گردیده است. مشخصات تصاویر Maohohore ۷ استفاده شده بشر جدول ۱ است.

روش طبقه‌بندی و شاخص‌های پوشش گیاهی
در طبقه‌بندی و شاخص‌های پوشش گیاهی به‌منظور تهیه نقشه یک منطقه از (DN Digital Number) به‌منظور تهیه نقشه یک منطقه، از (DN) نوعندای گیرنده‌ای به نام Digital Number (DN) پیکسل‌ها از استفاده می‌شود. پیکسل‌هایی که از ساختار DN آنها برای یک تقریباً پراپر و فاقد اختلاف می‌باشد، می‌تواند در پیک‌گروه‌ها با کلاس‌هایی از طبقه‌بندی و برزهای خاصی انتخاب می‌شود. هر طبقه‌بندی پیکسل مدل‌سازی و برنامه‌ریزی

شاخص مطلوبی را ارتقاء داده و شاخص کایا
به منظور تغییرات در ترکیب مناسب با رنگ (RGB) کالک‌های آبی، سبز و قرمز از شاخص مطلوبی (رابطه ۱) استفاده می‌گردد.
جدول ۱. مشخصات داده سنجش از دور مورد استفاده

<table>
<thead>
<tr>
<th>شماره</th>
<th>ماهواره</th>
<th>سنجش</th>
<th>تاريخ</th>
<th>قدرت تفکیک مکانی (متر)</th>
<th>باندهای مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>ETM+</td>
<td>لندست</td>
<td>۲۰.۵.۲۰۰۲</td>
<td>λp, λv, λn, λs, λr</td>
<td>۳STER ۶۱۵</td>
</tr>
<tr>
<td>۲</td>
<td>ETM+</td>
<td>لندست</td>
<td>۲۰.۵.۲۰۰۲</td>
<td>λp, λv, λn, λs, λr</td>
<td>۱۵STER ۶۱۵</td>
</tr>
</tbody>
</table>

جدول ۲. انواع شاخص‌های پوشش گیاهی مورد استفاده

<table>
<thead>
<tr>
<th>شاخص</th>
<th>رابطه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص پوشش گیاهی (DVI)</td>
<td>λv - λr</td>
</tr>
<tr>
<td>شاخص تفاوت پوشش گیاهی (NDVI)</td>
<td>(λv + λr) / (λv - λr)</td>
</tr>
<tr>
<td>شاخص درصد مادون قرمز پوشش گیاهی (IPVI)</td>
<td>λv / (λr + λv)</td>
</tr>
<tr>
<td>شاخص درصد مادون قرمز (IR2)</td>
<td>λr / (λr + λv)</td>
</tr>
<tr>
<td>شاخص مقدار آب برک (MIR)</td>
<td>(χای بررسی درستی نتایج طبقه بندی در ارتباط با موقعیت‌های زمینی استفاده می‌گردد. در این بررسی شاخص کایا) ۱۲ کانال استفاده می‌گردد. انتخاب یک یا چند گروه باند به سه تایی که پیش‌ترین مقدار کایا را شرح می‌دهد می‌تواند متناسب با نتایج طبقه بندی و هنگام تشخیص استفاده می‌شود. انتخاب یک یا چند گروه به سه تایی، سایر ترکیباتی از حفاضت‌های محیطی است.</td>
</tr>
</tbody>
</table>

KIA = \frac{p_o - p_c}{1 - p_c} \quad [3]

با شاخص مطلوبیت Optimum Index Factors = OIF

با شاخص کایا Kappa Index of Agreement = KIA

ارنا از میزان مربوط به تصویر باند K

\text{عدد مطلق مقدار ضریب همبستگی بین یک دو باند} = \text{Abs(jr)}

\text{حداقل عدد نمونه لازم برای برآورد دقیق مورد نظر} = N

\text{دقت طبقه بندی برحسی درصد} = p

\text{خطای طبقه بندی} = q

\text{خطای مجاز در برآورد دقیق برحسی درصد} = E

\text{درست مشاهده شده} = p_o

\text{توافق مورد انظر} = p_c

برای محاسبه فاکتور مطلوبیت، سه کانالی انتخاب می‌شود که ضریب همبستگی متر و واریانس بالاتری داشته باشند. از رابطه ۲ برای برآورد حداکثر عدد نمونه لازم برای برآورد دقیق مورد نظر و از شاخص کایا (رابطه ۳) برای بررسی درستی نتایج طبقه بندی در ارتباط با موقعیت‌های زمینی استفاده می‌گردد. در این بررسی شاخص کایا (رابطه ۲) برای محاسبه گردد. انتخاب یک یا چند گروه باند به سه تایی که پیش‌ترین مقدار کایا را شرح می‌دهد می‌تواند متناسب با نتایج طبقه بندی و هنگام تشخیص استفاده می‌شود. انتخاب یک یا چند گروه به سه تایی، سایر ترکیباتی از حفاضت‌های محیطی است. |
تهیه نقشه جنگ‌های طبیعی استان زنجان با استفاده از داده‌های سنجش...

تولید شده، شاخص‌های مطلوبی (OIF) شاخص کاپا را برای هر یک از ترکیب‌های سه را نماید.

واگذار زمینی و تعیین دقت طبقه‌بندی
بعد از انجام طبقه‌بندی، تعیین دقت و صحت نتیجه به دست آمده امری ضروری است. برای دستیابی به این هدف، نتیجه طبقه‌بندی با نتیجه واقعیت زمینی مورد مقایسه قرار می‌گیرد. نقشه واقعیت زمینی با طیور کامل و صد درصد با همان طبقه‌بندی در زمینه مورد مطالعه به تهیه می‌گردد.

تعیین دقت طبقه‌بندی دو روش انجام می‌گیرد:

الف) مقایسه ص درصد با یک‌بل

این روش کاملاً تری دایره و در مواردی که کار می‌رود که نتیجه مرجع واقعیت زمینی از منطقه مورد مطالعه در دسترس نباشد، نتیجه حاصل از طبقه‌بندی (نتیجه موضعی) بیکسول به یک‌بل با نتیجه واقعیت زمینی مورد مقایسه قرار می‌گیرد. در صورت مشاهده پیکسل‌های طبقه‌بندی درست و در غیر این صورت نادرست نامیده می‌شود. برای نیلم به این هدف ماتریس خطای کلاس‌های نتیجه طبقه‌بندی شده محاسبه می‌گردد. قطر ماتریس خطای مجمع‌کننده طبقه‌بندی شده هر یک از کلاس‌های شده با استفاده از این داده‌های دقت کاربردی، دقت تولید کننده و دقت کلی محاسبه می‌شود. برای محاسبه دقت کاربردی، تولید کننده و کلی به ترتیب از روابط (۴) و (۵) استفاده می‌شود.

\[
PA = \frac{ta \times 100}{ga}
\]

دقت کاربرد

\[
UA = \frac{ta}{n}
\]

dقت کلی

\[
OA = \left(\frac{ta + tb + \ldots}{NG}\right) \times 100
\]

dقت صادق

درصد دقت کلاس a برای دقت تولید کننده

\[
T_t = \frac{ta}{ga}
\]

tعداد پیکسل‌های صحیح طبقه‌بندی شده به عنوان کلاس a

\[
T_b = \frac{tb}{ga}
\]

تعداد پیکسل‌های کلاس a در واقعیت زمینی

\[
\text{MULTEKEH\ A}\text{-MUECEH}\ Ychrom\ Hayi\ Pish\ Gah\ by\ a\ kar\ bire\ rosh\ jehal\ MULTEKEH\ A}\text{-MUECEH}\ (PCA).
\]

نتایج

مولفه‌های اصلی، تجزیه به عامل و شاخص‌های پوشش فضایی با کار برده روش تحلیل مولفه‌های اصلی (PCA) این مولفه تولید شد. نتایج مولفه به‌شکلی پیش‌تر ذکر و در تحلیل آن‌ها کمترین واریانس را نشان می‌دهد. استخراج مولفه‌های اصلی به

(۶۳۱)
منظر کاشح حجم داده‌ها به کار برده می‌شود. انتخاب جنبه مولفه اول که بیشترین واریانس را می‌دارد به عنوان مولفه اصلی شناخته می‌شود. از آن است که اندام‌هایی در تجزیه و تحلیل مولفه‌های اصلی باشند. ابزارهای

که تحقیقات مقداری و هزینه (Eigenvalue) Screen plot مولفه‌های استخراج شده، ابتدالا به آن می‌شود که یکی از راه‌های تحقیق استحکام حذف می‌باشد. در این بررسی اولیه مقدار ویژه برای $\lambda = 5$ می‌باشد که 3/69، $\lambda = 5/6$ در حالی که 2/62 و $\lambda = 7/6$ قبلا از آنهای آن تعدادهای تجربی و هزینه باعث می‌شود... FA1 و $\lambda = 9$ است که در و سایر مقدار ویژه به ترتیب

آنتی‌گری و دیگر رو به روز و تشکیل بانک اطلاعاتی با استفاده از ماهور ویژه‌ای که برای یک متغیر بانک اطلاعاتی به نظر رسد. با توجه به تصورات بیشتری سنجیده ماهور ویژه‌ای، نتایج آن را برای داده‌های استحکام دو تعداد 8 تجربه جدید به همراه تکرار دوم داریم. در $\lambda = 9$ و سایر مقدار $\lambda = 9/6$ می‌باشد.

532
جدول 3. شاخص مطلوبیت برای گروه‌های یادی

| شاخص مطلوبیت (OIF) | رنگ RGB به تصویر بیان | درصد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>69-22/22</td>
<td>FA2, PCA3, MIR</td>
<td>1</td>
</tr>
<tr>
<td>215/24</td>
<td>23, PCA3, MIR</td>
<td>2</td>
</tr>
<tr>
<td>217/77</td>
<td>λ7, PCA3, MIR</td>
<td>3</td>
</tr>
<tr>
<td>207/11</td>
<td>λ7, PCA1, PCA3</td>
<td>4</td>
</tr>
<tr>
<td>205/91</td>
<td>PCA1, PCA3, IPV</td>
<td>5</td>
</tr>
<tr>
<td>205/78</td>
<td>PCA1, PCA3, MIR</td>
<td>6</td>
</tr>
<tr>
<td>205/88</td>
<td>λ2, PCA1, PCA3</td>
<td>7</td>
</tr>
<tr>
<td>217/45</td>
<td>λ3, PCA1, PCA3</td>
<td>8</td>
</tr>
<tr>
<td>124/50</td>
<td>DVI, IPV, MIR</td>
<td>9</td>
</tr>
<tr>
<td>84/86</td>
<td>λ3, λ4, λ7</td>
<td>10</td>
</tr>
<tr>
<td>83/99</td>
<td>λ3, λ4, λ5</td>
<td>11</td>
</tr>
<tr>
<td>83/73</td>
<td>λ4, λ5, λ7</td>
<td>12</td>
</tr>
</tbody>
</table>

جدول 4. مساحت و درصد درستی تولید کننده و کاربر حاصل از طبقه‌بندی

<table>
<thead>
<tr>
<th>کلاس</th>
<th>شماره</th>
<th>درصد درستی تولید کننده</th>
<th>درصد درستی کاربر</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>94</td>
<td>25138/8</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>63</td>
<td>27581/22</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>80</td>
<td>40566/62</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>82</td>
<td>13492/77</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>65</td>
<td>12104/99</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>55</td>
<td>8247/51</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>51</td>
<td>7505/56</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>71</td>
<td>36717/033</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>98</td>
<td>6374/97</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>33</td>
<td>5390/71</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>22</td>
<td>282511/15</td>
<td></td>
</tr>
</tbody>
</table>

* BA = خاک لخت مناطق فاقد پوشش و مناطق مسکونی
* If = زراعت آبی
* J = جنگل ارس
* D = زراعت دیم
* O = جنگل بلوط
* OO = زیتون و دیگر باغات منطقه طارم
* P = صنایع کاری
* PC = مراکز زراعی چند ساله
* RP = مراکز دشت
* RU = مراکز کوهستانی
* TF = توده‌های چنگالی و درختچه‌ای
* S = سایه مربوط به موقعیت‌های داخل دهه‌های عمیق
* TR = توده‌های چنگالی و درختچه‌ای
شکل 1. تصویر نهیه شده براساس ترکیب سه پانه‌

شکل 2. تصویر نهیه شده براساس ترکیب سه پانه PCA1, PCA3

شکل 3. تصویر نهیه شده براساس ترکیب سه پانه PCA3, FA, MIR

date: 2002.5.20

متن کامل در پژوهش گزارش شده است.
شکل ۴ نمودار کاپایی تمام گروه‌های تصاویر مورد استفاده برای طبقه‌بندی

شکل ۵. ترکیب رنگی ۳۲۵۵ از منطقه مورد مطالعه

شکل ۶. نشان دهنده شده براساس ترکیب ۴,۲۵ به روش حداکثر همانندی
بیان می‌کنند که آستانه حذف جایی است که نمودار
حالت افیقال پیدا می‌نماید می‌توان سه مدلی اول را
به عنوان مدل‌های اصلی قلم‌دهی نامبر با اندازه تصویر جدید
۷۸/۷۶ درصد از واریانس کل را
برای مدل‌های RGB (کنال‌های آبی، سبز و قرمز) به منظور تفسیر طبقه
برای نمودار رنگی، شدت دادن برای انتخاب شاعر و یقه به
عنوان اختلال در نظر گرفته شد. در فن سنتیشاز از دور به
تصویر رنگی مناسب برای هر مقاله مهم است. انتخاب گروه
باید مناسب به داده‌های سنجش از دور آنکه استفاده بیشتری
می‌دهد. انتخاب گروه باندی سه تایی مناسب برای تیک‌بندی
کلاس‌های آبی، سبز، حین و یقه معنی می‌کند (۱۲) به
دقت خطیابی یا در یک یا مرحله به ترتیب شده با استفاده از
داده‌های لندس ۷ سطح گرمسی بسیار نداشته و نمی‌شه
ابتوب در این نگاه تکثیری آزمایشگاهی (۲) برای
مقدار تنش در کل ساختار رود تغییرات شوری خاک و تعیین مناطق
تحت تأثیر زیبایی با پندازش داده‌های ماهواره‌ای بررسی
شد. در موارد برای طبقه‌بندی از نتایج نظارت شده
و با انتخاب شاخص (ML) استفاده شد. وقتی که به
ترکیب ۷۸/۷۶ / برای داده‌های ام اس و تی آم به دست
آمده است. به جمله کش (۹) بررسی یافته‌های کار برده داده‌های
رقومی ماهواره‌ای لندست TM برای نهایی نشان دادن گیاهی
در منطقه وسایل ارائه شده که تاکنون برای بررسی نشان می‌دهد
که برخی به نهایی شدند با شاخص 1 NDVI به نشانه حاصله از
پوشش زمینی که در آن عوامل به سرعت کلان دیده شد.
مطابقت وجود دارد. در تحقیقی کاران و همکاران (۱۸) که در
منطقه شمال و سیستان انجام داده‌اند به این نتیجه رسیده‌اند
که نشانی طبقه بین کوه‌های خزان کنند استحکام تکثیر پایدار
گون‌ها را به‌کار می‌می‌دهند. در صورتی که نشان محسوس
فناوری‌ای بین گون‌ها وجود داشته باشد نهایی به نهایی گنج
و تکثیر گونه مطلوب می‌تواند به یادآوری بررسی‌های کند. در
که از داده‌های طیفی مربوط به زمان‌های مختل فنولوزیک
گونه استفاده شد. این تحقیق نشان می‌دهد که نهایی تکثیر
دقت برای گنج‌های تنک و پراکندگی با داده‌های ماهواره‌ای
Downloaded from ippp.iput.ac.ir at 22:58 IRST on Friday September 27th 2019
منابع مورد استفاده

1. بی‌نام. 1378. آمارنامه استان زنجان. سازمان برنامه و بودجه استان زنجان. تیرماه 1378. 127 صفحه.
2. بی‌نام. 1382. درس‌نامه اصول سنجش از دور. دانشگاه مهندسی، دانشگاه گیلان.
3. پاک‌مرور، م. و اتصالی. 1382. تغییرات منطقی تحت اثر برای زایم‌های سبز داده‌های ماهواره‌ای - بررسی رویداد بهبود مهندسی.
4. پاک‌مرور، م. و اتصالی. 1382. تغییرات منطقی تحت اثر برای زایم‌های سبز داده‌های ماهواره‌ای - بررسی رویداد بهبود مهندسی.
5. گرگانی. 1378. هنر همراه با ماهواره‌های داده‌های ماهواره‌ای - جوامع تاسخی و دانشگاه مهندسی، دانشگاه گیلان.
6. رشیدی، ج. 1374. الگوهای طبیعت از داده‌های ماهواره‌ای GIS GTM از منطقه کنگ. پایان‌نامه کارشناسی ارشد، دانشگاه مهندسی، دانشگاه گیلان.
7. شریاندای چهار. 1373. سنجش از دور از همکاری. سازمان مطالعه و تحقیقات ملی ایران.
8. غضفری. 1375. بررسی کاربرد داده‌های ماهواره‌ای در طبقه‌بندی نیایه‌های جنگلی در منطقه طرح‌های چوب‌کش و کاغذ مازندران. پایان‌نامه کارشناسی ارشد جنگل‌پروری دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
9. نمی‌باید، س. 1376. بررسی قابلیت کار بر روی داده‌های داده‌های جوامع و دانشگاه تربیت مدرس.
10. مردانی، ش. 1373. بررسی تغییرات در طبقه بندی کاربری اراضی در بخش مرکزی شهرستان زنجان با استفاده از داده‌های ماهواره‌ای لندست. پایان‌نامه کارشناسی ارشد جنگل‌پروری دانشگاه علوم کشاورزی و منابع طبیعی دانشگاه گیلان.
11. مهربانی، ز. 1378. بررسی تغییرات در طبقه بندی کاربری اراضی در بخش مرکزی شهرستان زنجان با استفاده از داده‌های ماهواره‌ای. پایان‌نامه کارشناسی ارشد جنگل‌پروری دانشگاه علوم کشاورزی و منابع طبیعی دانشگاه گیلان.
12. ناصری، ف. غ. دریش صفت. 1375. سیاست‌های و ارزیابی داده‌های ماهواره‌ای لندست 7 برای تهیه نقشه تراکم