تهیه نقشه جنگل‌های طبیعی استان زنجان با استفاده از داده‌های سنجش‌ده +

چکیده

جنگل‌های طبیعی استان زنجان یکی از مناطق کوهستانی واقع شده‌اند. به نشانه جنگل‌ها، مراجع و سایر پدیده‌های زمینی به خصوص در مناطق کوهستانی مشبک و پر زره‌های است. برای این منظور استفاده از داده‌های ماهواره‌ای با قدرت تفکیک مکانی متوسط راه حل مناسبی به نظر می‌رسد. در این پژوهش با ترکیب فن دانش ماهواره‌ای ندست و مرتبط با سال 2000 برای مکان های و تهیه نقشه جنگل‌های طبیعی استان زنجان استفاده شده است. تحلیل مولفه‌های اصلی Principal Component Analysis (PCA) زنجان استفاده شده است. تحلیل مولفه‌های اصلی اصلی انتخاب شده و به منظور اختلال در نظر گرفته شد. با استفاده از تحلیل به عامل‌ها (FA) و شخصیت‌های پوشش گیاهی به ترتیب 9 و 8 تصویر جدیدی به و در یک قالب سیستم اطلاعات جغرافیایی رستری (ILWIS) در محیط نرم‌افزار (RGIS) ذخیره گردیدن. مانند ضریب همبستگی و فاکتور مطلوبیت 27 داده تصویری محاسبه و این آنها 12 گردوه سه تایی برای تهیه نقشه و مکان زمینی جنگل‌های طبیعی استان زنجان مناسب شخصیت داده شد. مقدار شخصیت کلی برای گردوه با نامی 13.03 برای گردوه به مقدار 0.86 و مقدار شخصیت با گردوه با نامی 1.11 برای گردوه به مقدار 0.90 می‌تواند بررسی ETM واقعه کلیدی: نقشه جنگل‌های طبیعی استان زنجان

منابع

۱. استادان جنگل‌داری، دانشگاه منابع طبیعی، دانشگاه گیلان، صموعه سرا
۲. اشکی، سعید. کارشناسی ارشد جنگل‌داری. دانشگاه منابع طبیعی، دانشگاه گیلان و عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع

طبیعی استان زنجان

بیژنی دانا

بیژنی دانا

bonyad@guilan.ac.ir

* مسئول مکاتبات، پست الکترونیکی
کشور است. براساس استنداردهای بین‌المللی استان زنجان تنها 25 درصد از سطح استان را به کلنی تبدیل می‌دهد (1). در این استان گونه‌هایی از ارگان از نظر زیست‌محیطی وجود دارند. خطر و توسع منابع طبیعی به خصوص جنگل‌های طبیعی از نظر اقتصادی، اجتماعی، نتوان و زیست‌محیطی اهمیت دارند. در این استان تغییرات زیست‌محیطی، کشاورزی و غیره باعث شده‌است که منابع طبیعی از نظر جزئیاتی تغییر یابد. مراجع و طبیعتکاران، مراکز و مطالعات در این رأی‌گیری است. یکی از راه‌های اقتصادی بررسی کردن منابع طبیعی است از دیدگاه اقتصادی. در این استان مطالعات و تحقیقات زیادی صورت گرفته است. رشد و گسترش رواج (6) مناطق طبیعی و تغییرات از استان پیش با استفاده از روش طبقه‌بندی فضای‌های اصلی روز دامادی ماهورهای از نوع SAR و TM ماهورهای از نوع (15) از استان حرکت به موقعیت‌های اصلی این ارسال بررسی شدند. در این مطالعه (4) با استفاده از شاخص تغییر در جهت و قوی بین دوگانه (2) از استان حرکت به موقعیت‌های اصلی این ارسال بررسی شدند. در این مطالعه (4) با استفاده از شاخص تغییر در جهت و قوی بین دوگانه (2) از استان حرکت به موقعیت‌های اصلی این ارسال بررسی شدند. در این مطالعه (4) با استفاده از شاخص تغییر در جهت و قوی بین دوگانه (2) از استان حرکت به موقعیت‌های اصلی این ارسال بررسی شدند. در این مطالعه (4) با استفاده از شاخص تغییر در جهت و قوی بین دوگانه (2) از استان حرکت به موقعیت‌های اصلی این ارسال بررسی شدند.
مطالب و روش‌ها
منطقه مورد مطالعه حدود جغرافیایی استان زنجان است که در بین عرض‌شمالی ۳۳°۰۵ ′ تا ۳۴°۳۵ ′ و طول جغرافیایی ۴۸°۲۷ ′ تا ۴۹°۱۹ ′ قرار گرفته است. و مساحت آن بر اساس ۲۱۹۴۵۷۵ هکتار است (۱). نوع اقیمی در استان زنجان زیاد است. آب و هوایی آن تحت تأثیر جهه هوای قطبی و دریایی، قطعی بری، دمیرانتان، و خزری است. از نظر توپوگرافی دارای پستی و بلندی زیادی است. به طوری که بیشترین وسعت آن را مشخص کوهمتان و نیمه‌واحور تشکیل می‌دهد. توهه‌های جنگلی این استان شامل توهه‌های ارس که بیشتر در منطقه طارم یا و در ارتقاءات صعب العبور واقع شده است. گسترش یا نامتوان استان محدود به ارتقاءات طارم علیا بیشتر توهه‌های پستی و حتی از ارتقا پایین‌تر از توهه‌های ارس می‌تواند. سایر گونه‌های جنگلی مانند راش، کرکو (کرب) زرشک، چنار، شرشیری، ناناه، پنده، ولکی، نسترن و بیش به صورت توهه‌های محدود و پراکنده در سطح استان دیده می‌شوند. پوشش درختی غیر جنگلی شامل صنعت کاری، باغات زینتی و تکاها است که بیشترد حاشیه رود خانه‌ها دیده می‌شوند. وسعت مراتع استان در حدود ۱۲۰۰۰۰ هکتار بر آورد شده است. نوع و وضعیت پوشش گیاهی مناطق مختلف آن حسب نوع خاک و اقلیم بسیار متفاوت است (۱). از نظر بررسی از انتشار ۷ باند شالیER,۷,۸,۹,١۰,١۱ و ۱۲ مربوط به سئندوجه Landsat ماهوره ۷ استفاده شده است. مشخصات تصاویر ماهوره‌های استفاده شده به شرح جدول ۱ است.

روش‌بندی و شاخص‌ها پوشش‌های گیاهی
در طبقه‌بندی داده‌های لایه‌های رفتاری مدل دیجیتال (DN) یا Digital Number (DN) یا مقدار داده‌های مشاهده شده است. پیکسل‌هایی که هنگام بررسی و پیکسل‌هایی با ترمیم اجرای و فاقد اختلاف معنی آماری دارای یک گروه با کلاس تعیین و اختصاص نمی‌بندند‌های مدل مصرف و برنامه‌ریزی و
جدول ۱. مشخصات داده سنجش از دور مورد استفاده

<table>
<thead>
<tr>
<th>شماره</th>
<th>بازدهی مورد استفاده</th>
<th>تاریخ</th>
<th>ماهوره</th>
<th>لندست</th>
<th>情緒</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>λ_ν (m)</td>
<td>20.5.2002</td>
<td>ETM+</td>
<td>۷</td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>λ_ν (m)</td>
<td>20.5.2002</td>
<td>ETM+</td>
<td>۷</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. انواع شاخص‌های پوشش گیاهی مورد استفاده

<table>
<thead>
<tr>
<th>راپطه</th>
<th>شاخص پوشش گیاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_ν - λ_ν</td>
<td>(DVI) رضایت پوشش گیاهی</td>
</tr>
<tr>
<td>λ_ν + λ_ν</td>
<td>(NDVI) شاخص نرمال شاد پوشش گیاهی</td>
</tr>
<tr>
<td>λ_ν</td>
<td>(IPVI) شاخص درصد مادون قرم پوشش گیاهی</td>
</tr>
<tr>
<td>λ_ν</td>
<td>(IR2) شاخص مادون قرم</td>
</tr>
<tr>
<td>λ_ν</td>
<td>(MIR) شاخص مقادیر آب برک</td>
</tr>
<tr>
<td>λ_ν</td>
<td>(RVI) شاخص نسبت پوشش گیاهی</td>
</tr>
<tr>
<td>λ_ν</td>
<td>(SAV) شاخص پوشش گیاهی با تنظیم انلکاس عکاس</td>
</tr>
<tr>
<td>λ_ν</td>
<td>(ARVI) شاخص مقاومت جوی پوشش گیاهی</td>
</tr>
</tbody>
</table>

شروع: شاخص کایا

\[KIA = \frac{p_0 - p_c}{1 - p_c} \]

با شاخص مطلوبیت Optimum Index Factors = OIF

با شاخص کایا Kappa Index of Agreement = KIA

\[K = \text{انحراف از معیار مربوط به تصویر باند} \]

\[\text{قدت مطلق مقادیر ضریب همبستگی بین یک از دو باند} = \text{Abs}(jr) \]

\[N = \text{حداقل تعداد نمونه لازم برای اجرای دقت مورد نظر} \]

\[p = \text{دقت طبقه بندي برحس درصد} \]

\[q = \text{خطای طبقه بندي} (\text{به حسب درصد}) \]

\[E = \text{درست مشاهده شده} \]

\[S_k = \text{توافق مورد انظار} \]

\[p_0 = \text{برآورد دقت} \]

\[N = \frac{r(p)(q)}{E^T} \]

در این تحقیق برای اولین بار در ایران نرم‌افزاری با عنوان Microsoft Visual C++ RESOK Extension تحت ویندوز و با زبان C به عنوان یک نرم‌افزار ILWIS امکان می‌دهد که از داده‌های متنی از این نرم‌افزار امکان می‌دهد که از داده‌های متنی از این نرم‌افزار
با کاربرد روش تحلیل مولفه‌های اصلی (PCA)، فضای مولفه‌های اصلی مدل شده و از مدل شده برای دقت تولیدکننده استفاده می‌شود. با توجه به نتایج، مدل سه بعدی بهترین مدل برای تولیدکننده است.

تولید شده، شاخه‌های مطلوب (OIF) شامل کاریا را برای هر یک از ترکیب‌های سه باندی محاسبه نماید.

واقيت زمینی و تعیین دقت طبقه‌بندی
بعد از انجام طبقه‌بندی، تعیین دقت و صحت نقشه به دست آمده امری ضروری است. برای دستیابی به این هدف، توجهی طبقه‌بندی با توجه به طبقه‌بندی مورد مطالعه قرار می‌گیرد.

تعیین دقت طبقه‌بندی به دو روش انجام می‌گردد:
الف) مقایسه صد درصد با یکسک
این روش کاملاً دقیق بوده و در مواردی به کار رود که نقشه مرجع با واقعیت زمینی از منظر مورد مطالعه در دسترس باندی نقشه حاصل از طبقه‌بندی (نقشه موضوعی)، یکسک به پیکسل‌ها با نقشه واقعیت زمینی مورد بحث مطلق نقشه می‌گردد. در صورت مشاهده پیکسل‌ها طبقه‌بندی درست و در غیر این صورت نادرست می‌گردد.

ب) روش ساده:
برای این هدف ماتریس خطی کلاس‌های نقشه طبقه‌بندی شده محاسبه گردید. قطر ماتریس خطا، یکسک های صبح طبقه‌بندی شده هر یک از کلاس‌های داده می‌شود. با استفاده از این داده آماری دقت کاربر، دقت تولیدکننده و دقت کلاس محاسبه می‌شود. برای محاسبه دقت کاربر، تولید کننده و گلی به ترتیب از روابط ۵ و ۶ استفاده می‌شود (۵ و ۶).

دقت تولید کننده

PA = \frac{ta}{ga} \times 100

دقت کاربر

UA = \frac{ta}{n} \times 100

دقت کلاس

OA = \frac{(ta + tb + \ldots)}{NG} \times 100

M = \text{درصد دقت کلاس } a \text{ برای دقیقه تنها}

a = \text{تعیین پیکسل‌های صحیح طبقه‌بندی شده به عنوان کلاس } a

b = \text{تعیین پیکسل‌های کلاس } a \text{ در واقعیت زمینی}

ناتایج
مولفه‌های اصلی، تجزیه به عامل و شاخه‌های پوشش گاهی یک کاربرد روش تحلیل مولفه‌های اصلی (PCA) می‌باشد. مدل سه بعدی بهترین مدل برای دقت تولیدکننده است. با توجه به نتایج، مدل سه بعدی بهترین مدل برای تولیدکننده است.
منظر کاوش حجم داده‌ها به کار برده‌می‌شود. انتخاب حجم جدید مولفه اول یا بیشترین واریانس یا مقدار ویژه (Evigen weights) دارند به علت اینکه مولفه‌های اصلی مورد نظر از اساس ترین اعدادهای دوجا و سه‌جایی توپولوژی مولفه‌ها در مقیاس فاصله (Evigen weights) سایر مولفه‌ها اصلی مورد نظر بنا بر تغییرات مقادیر ویژه (Eigenvector) مطالعه‌ای اساسی است. مقاله‌ها، سایر مولفه‌ها از محتواها بعید حدف می‌شوند و نبات‌های با دقت کیفیت در انتخاب اساسهای حدف مورد رسم تغییرات مقادیر ویژه (Eigenvector) قابل ساختار است. مقدار ویژه (Eigenvector) در مقیاس فاصله (Evigen weights) مطالعه‌ی استحکام‌پذیر که کیفیت به آن می‌شود که از راه‌های ترکیب اساسهای حدف می‌شود. در این بررسی اولین مقدار ویژه برای باشد که ϕ_1. در هر یک از آنها تعداد اساسهای حدف مورد رسم تغییرات مقادیر ویژه (Eigenvector) از آنها به دست آورده مورد بررسی T۸۳/۴۶۳ از اول دو مقدار ویژه به ترتیب RGIS و است که در لایه‌های ۱۱ تا ۱۹ فاصله رستری و ذی‌گرید. شاخص‌های پوشش گیاهی (جدول ۴) برای بررسی و ضعیت کمی و کیفی پوشش گیاهی، طبقه بندی و نظر تشکیل استفاده شده. این تعداد از روابط شاخص‌های گیاهی در جدول ۱ تعداد ۴ تغییرات جدید در نظر بررسی تأثیر به دست آورده در RGIS از فاصله ۲۰ تا ۲۷ فاصله رستری و ذی‌گرید. در بین ۲۷ تغییرات، بیشترین مقدار مربوط به گروه باندی سه OIF با مقدار ۳۳/۴۶۳ و کمترین آنها PCA3، FA2، MIR را به حساب می‌آورد. مربوط به تکراری ψ_6 و ψ_7 با مقدار ۸۳/۴۶۳ است. بین هفت گروه طبقه اصلی (چند طبقه) و ψ_6 و ψ_7 تکراری سه گروه طبقه اصلی (چند طبقه) ψ_6 و ψ_7 با میزان ۴۶/۸۴ بیشترین مقدار را شرح داده. در شکل‌های ۱ تا ۳ شکل شما می‌شود. در نظر بررسی تغییرات مقادیر کاپا (KIP) محاسبه شده در مقابل ۱۲
جدول 3. شاخص مطلوبیت برای گروه‌های یادگیری

<table>
<thead>
<tr>
<th>شاخص مطلوبیت (OIF)</th>
<th>رنگ RGB سه تصویر برای</th>
<th>درصد</th>
<th>نمره</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/3/4</td>
<td>FA2, PCA3, MIR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1/5/8</td>
<td>λ3, PCA3, MIR</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2/1/7</td>
<td>λ7, PCA3, MIR</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4/2/0</td>
<td>λ7, PCA1, PCA3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5/0/1</td>
<td>PCA1, PCA3, IPV</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6/5/8</td>
<td>PCA1, PCA3, MIR</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7/0/8</td>
<td>λ2, PCA1, PCA3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8/1/7</td>
<td>λ3, PCA1, PCA3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9/4/5</td>
<td>DVI, IPV, MIR</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10/8/6</td>
<td>λ3, λ4, λ7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11/3/9</td>
<td>λ3, λ4, λ5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12/3/3</td>
<td>λ4, λ5, λ7</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. مساحت و درصد درستی تولید کننده و کاربر حاصل از طبقه‌بندی

<table>
<thead>
<tr>
<th>کلاس</th>
<th>درصد درستی تولید کننده</th>
<th>درصد درستی کاربر</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>215/44</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>121/77</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>208/81</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>209/91</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>205/88</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>205/88</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>217/25</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>124/50</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>84/86</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>83/99</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
<td>83/63</td>
</tr>
</tbody>
</table>

شماره

<table>
<thead>
<tr>
<th>شماره</th>
<th>درصد درستی تولید کننده</th>
<th>درصد درستی کاربر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

شماره

<table>
<thead>
<tr>
<th>شماره</th>
<th>درصد درستی تولید کننده</th>
<th>درصد درستی کاربر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

شماره

<table>
<thead>
<tr>
<th>شماره</th>
<th>درصد درستی تولید کننده</th>
<th>درصد درستی کاربر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>
شکل ۱ تصویر تهیه شده براساس ترکیب سه پانه‌ای \(\lambda_1, \lambda_2, \lambda_3 \) سنجیده ۲۰۰۲.۵.۲۰ مورخ \(\text{ETM} \).

شکل ۲ تصویر تهیه شده براساس ترکیب سه پانه‌ای \(\lambda_1, \lambda_2, \lambda_3 \) PCA1, PCA3

شکل ۳ تصویر تهیه شده براساس ترکیب سه پانه‌ای \(\lambda_1, \lambda_2, \lambda_3 \) PCA3, FA, MIR
شکل ۲. نمودار کلیتی تمام گروه‌های تصادیب مورد استفاده برای طبقه‌بندی

شکل ۵. ترکیب رنگی ۳۴۵ از منطقه مورد مطالعه

شکل ۶. تنشه تهیه شده براساس ترکیب ۰.۴، ۰.۵، ۰.۳ به روش حداکثر همادلی
پیام‌های تکنیکی که استاندارد جهانی است که نمودار
حلته افقی باید می‌تواند منظور سه مولفه اول را
به عنوان مولفه اصلی کلمه عدم. نیم‌یارای سه تصویر جدید
که در هر دوی واریانس کل این
PCAs 2 و PC2A، که 7/65 درصد واریانس کل را
شرح داده. به عنوان مولفه‌های اصلی انتخاب شده و یقه به
عنوان اختلال در نظر گرفته شد. در این سناریو از دور تهیه
تصویر رنگی مناسب برای هر حلقه مهم است. انتخاب گروه
باید مناسب به داده‌های سنجش از در امکان استفاده پیش‌تری
می‌دهد. انتخاب گروه‌بندی سه‌تایی مناسب باید تراکب
رنگی (کانتال آبی، سبز و قرمز) به منظور تفسیر طبقه
بندی به تنهی نشسته از شاخه‌های مربوطه (رازه) استفاده
می‌دهد. استفاده شد. انورس ضریب همبستگی و فاکتور
مطلب‌یست (72 داده تصویری موجود در فاصله
مطلب‌یست در 12 ترکیب یک گروه‌های
باید به تنهی برای تهیه نشده و مکان، نیاز به جنگل‌های طبیعی
استان زنجان مناسب تشخیص داده شد. جدول 3 مقدم شاخه
مطلب‌یست بین ترکیب گروه‌های باندی را نشان می‌دهد. از
مجموع 12 گروه تصویری به کار برده شده برای طبقه بندی,
ترکیب 34 درصد از بازه اصلی مطالب ترکیب یک باید گروه‌های
شاخ کاپا (68/2) و مناسب 7 یارای ترکیب برای شرایط
مطلقه زنجان است. نشان نشده شده باید ترسیم ترکیب 34
به روش دایکس همانندی (شکل 6) نشان می‌دهد که 96
درصد از مساحت کل استان را پوشش جنگلی تغییر
می‌دهد. بیشترین بخش از مساحت استان را مرتع کوهستانی و
کمترین آنها جنگلی بلوط تغییر می‌دهد. توده‌های درختی
و درختچه‌های شامل اساس، بلوط، و توده‌های درختی و
درختچه‌های کف دره‌ها از سایر پیدا می‌گردد قابل تفسیر هستند. این
پس از نشان می‌دهد که بخش توده‌های بلوط در جهات رو به
شمال مستقر بوده و در جهات جنوبی کمتر می‌شوند.
توده‌های ارس در موقعیت‌های شرقی و جنوبی بیشتر مستقر
شده‌اند. صورت کاری‌های استان در مناطق کم شيب و در
مهندسین زمین‌شناس ماهواره‌ای از داده‌های ماهواره‌ای IRS پیروی کرده‌اند تا به‌منظور بررسی تغییرات و تغییرات طبیعی در زمین. این اطلاعات به‌منظور برنامه‌ریزی و مدیریت منابع طبیعی استفاده شده‌اند، به همراه داده‌های دیگری که بر اساس این اطلاعات ساخته شده‌اند.

در این مقاله، بررسی کرده‌اند که چگونه ماهواره‌های IRS می‌توانند به‌منظور اطمینان در بخش‌های مختلف زمین به‌کار گیری شوند. این ماهواره‌ها قادر به پوشش کامل زمین هستند و می‌توانند اطلاعات دقیقی ارائه دهند. این اطلاعات به‌منظور برنامه‌ریزی و مدیریت منابع طبیعی استفاده شده‌اند، به همراه داده‌های دیگری که بر اساس این اطلاعات ساخته شده‌اند.

در این مقاله، بررسی کرده‌اند که چگونه ماهواره‌های IRS می‌توانند به‌منظور اطمینان در بخش‌های مختلف زمین به‌کار گیری شوند. این ماهواره‌ها قادر به پوشش کامل زمین هستند و می‌توانند اطلاعات دقیقی ارائه دهند. این اطلاعات به‌منظور برنامه‌ریزی و مدیریت منابع طبیعی استفاده شده‌اند، به همراه داده‌های دیگری که بر اساس این اطلاعات ساخته شده‌اند.

در این مقاله، بررسی کرده‌اند که چگونه ماهواره‌های IRS می‌توانند به‌منظور اطمینان در بخش‌های مختلف زمین به‌کار گیری شوند. این ماهواره‌ها قادر به پوشش کامل زمین هستند و می‌توانند اطلاعات دقیقی ارائه دهند. این اطلاعات به‌منظور برنامه‌ریزی و مدیریت منابع طبیعی استفاده شده‌اند، به همراه داده‌های دیگری که بر اساس این اطلاعات ساخته شده‌اند.

در این مقاله، بررسی کرده‌اند که چگونه ماهواره‌های IRS می‌توانند به‌منظور اطمینان در بخش‌های مختلف زمین به‌کار گیری شوند. این ماهواره‌ها قادر به پوشش کامل زمین هستند و می‌توانند اطلاعات دقیقی ارائه دهند. این اطلاعات به‌منظور برنامه‌ریزی و مدیریت منابع طبیعی استفاده شده‌اند، به همراه داده‌های دیگری که بر اساس این اطلاعات ساخته شده‌اند.