اصطلاحات دما و تیمارها مختلف شیمیایی جهت افزایش طول عمر
"Pisa" گل‌های بیدنی لیلیوم رقم "

مهمان کریمی: معصوم حسن پور اصلی، حیب... سعید زاده لاهیجانی و سهیلا تالا تاسانی

(تاریخ دریافت: ۱۳۸۵/۹/۴ تاریخ پذیرش: ۱۳۸۵/۹/۹)

چکیده
جهت بررسی اثر دما و تیمارها مختلف شیمیایی، گل‌های بیدنی هیرید آسیاتیک لیلیوم، رقم "Pisa" آزمایشی فاکتوریل به‌پایه کاملا تصادفی با ۱۶ تیمار شیمیایی و ۳ درجه انجماد گل‌های بیدنی لیلیوم که در مرحله نگهداری اولین غنیه گل برداشت شده بودند با ترکیبی از مواد مختلف شیمیایی به غلظت‌های متفاوت دیده شد و یا در ترکیب با کیتسرین به شرح زیر به کار رفتند: این مواد عبارت‌اند از ساکاروز، هیدروکسی کوئینولن سولفات، اسید سریک و کینین. این تیمارها تا حدود ۲۴ ساعت تیمار شدند. سپس گل‌های بیدنی در آب مفتور در دو دمای ۲۲ و ۲۷ درجه سانتی‌گراد قرار گرفتند. تأثیر تبیان و اعمال شده روی طول عمر گل، طول عمر برگ، میزان جذب آب، قطر گل، درصد مواد جامد محلول گل‌ها و وزن گل‌ها مورد ارزیابی قرار گرفت. نتایج نشان داد که دمای ۲۲ درجه سانتی‌گراد بیشترین تأثیر را در افزایش طول عمر و حفظ ویرگی گل کمی و کیفی گل بیدنی لیلیوم پس از انبار داشت. در بین تیمارها شیمیایی تیمار کینین + ساکاروز در افزایش طول عمر گل، میزان مواد جامد محلول، تیمار اسید جیریک + کینین در افزایش طول عمر برگ، تیمار هیدروکسی کوئینولن سولفات در افزایش جذب آب، توسط گل‌های بیدنی، تبیان کینین + ساکاروز، اسید جیریک + هیدروکسی کوئینولن سولفات و اسید سریک + اسید جیریک در افزایش قطر گل‌ها بیشترین تأثیر را داشتند.

واژه‌های کلیدی: گل بیدنی لیلیوم، طول عمر گل‌ها، ساکاروز، اسید سریک، کینین، اسید جیریک

مقدمه
"هیرید آسیاتیک لیلیوم (Asiatic hybrid lilylm) گونه‌ای حاصل شده به‌دارای ارتفاع مناسب می‌باشد و گروه‌برداری از لیلیوم (Lilium longiflorum) را شامل می‌شود (۸). کاهش کیفیت گل‌های بیدنی از زمان برداشت تا زمان رسیدن به بازاریابی کل و هم‌چنین زمان که گل‌ها به بازار وارد می‌شوند از جمله مشکلات مقدمه که از نظر اجتماعی به‌ترتیب دانشجویان سایر کارشناسی ارشد، استادیار و مربی علوم پزشکی، دانشکده علوم کشاورزی، دانشگاه گیلان (۱) به ترتیب دانشجویان سایر کارشناسی ارشد، استادیار و مربی علوم پزشکی، دانشکده علوم کشاورزی، دانشگاه گیلان (۱) و ۲) استادیار زراعت و اصلاح نباتات دانشکده علوم کشاورزی، دانشگاه گیلان

hassanpurm@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: *
تمام شاهد (آب مقطور) سه روز افراشیش داد. همچنین وزن تازه، درصد غنچه‌های باز شده و فشردگی گل‌ها در این تیمار نسبت به تیمار شاهد بیشتر شد. هدف از این تحقیق بررسی اثر دما و تیمارهای مختلف شیمیایی در افراشی طول عمر گل‌های بپریدنی لیلیوم و معرفی یک ماده شیمیایی و دامی مناسب برای تهیه مناسب‌کردن افراشی به گل‌های بلند ساله ریسیده از کیفیت گل‌ها می‌باشد (5).

امونیور و همکاران (17) نتیجه گیری کرده که تیمار گل‌های Accel بپریدنی لیلیوم با خلفت ۱۵ و ۳۰ میلی‌گرم در لیتر (ترکیب BA ۳۰۰ میکروگرم به نسبت ۱۰ به ۱) باعث تیمارهای طول عمر میان، سریع و نیز زودگاره گل‌ها می‌شود. همچنین گزارش شده است که تیمار با اسید جیرینیک (GA3) زرد شدن گرده و بزرگوتوسط گل‌های بپریدنی آلتروبیا را به تأخیر می‌اندازد (16–17). هیدروکسی کوئتولین سولفات یک باکتری کش و بکر اکسید شدن می‌تواند به کاهش pH بپریدنی لیلیوم و کاهش حساسیت گل‌ها و کاهش ایندهای گل‌های Pisa با ۲۸۸ شاخص گل بپریدنی لیلیوم رقم مورد بررسی قرار گرفت. کل گل‌ها در محلی که اوایل Representatives گرده شده، نوزادان که جوان‌تر و در نهایت نر در هر دو دمای مورد آزمایش ۱۰۰۰ لوکس به مدت ۱۲ ساعت روش‌گیری و ۱۲ ساعت نورپردازی در دمای ۲۲ درجه سانتی‌گراد و فاکتور دوم تیمارهای مختلف شیمیایی در ۱۲ ساعت انجام شد. هر واحد آزمایشی دارای ۳ شاخه گل بپریدنی لیلیوم و گل‌های نور در هر دو دمای مورد آزمایش ۱۵۰۰ لوکس به مدت ۱۲ ساعت روش‌گیری و ۱۲ ساعت نورپردازی و در دمای ۴ درجه سانتی‌گراد/۱۰۰٪ نور، شاخص‌های گل بپریدنی پس از انتقال به آزمایشگاه به طول ۳۰ سانتی‌متر کوتاه شده و ۱۵ درصد گرده و بزرگوتوسط گل‌های پایین سطح نیز غیر قابل قدرت. سپس گل‌های با ارتفاع متوسط حاوی محلول شیمیایی بود متوقف شدند و بعد از ۲۴ ساعت (Pulsing) تیمار کوتاه مدت کلا از محلول‌های مربوط به خارج شده و پس از شستشوی انتهای ساقه به شناخت اکتشافات گل بپریدنی در داخل ارلن‌های که حاوی ۴۰۰ میلی‌لیتر آب مقطور بودنده، قرار داده شدند. در طول دوره تغذیه، طول عمر گل‌های شاخه بپریدنی (طول عمر گل آدنیوم یا بپریدنی) مورد بررسی قرار گرفت. با ترتیب که به طور ۵۰٪ از کل گل‌های یک شاخه خراب شد (پریدنی خامه‌های پوشیده به عنوان یکندا گل آدنیوم محسوب شد و زمانی که ۵۰٪ از کل گل‌های زرد شدند به عنوان معیار برای پایان عمر گرده و بزرگوتوسط گرده شد. در صد کاوش وزن تراز گل‌ها و وزن نازه گل بپریدنی هر یک از واحد‌های
آزمایشی قبل از تیمار با یک ترزاپی فیش برای توزین میلی گرم در روز و سپس در مدت زمان نگهداری در چندین نوست مجددا توزین صورت گرفت و در این مدت آماده نسبت به توزین اولیه بر حسب درصد بین شدن. جذب آب (برای این دانه‌های میزان جاذب آب 600 میلی لیتر آب متغیر در بین تیمارها قرار داده شد میزان آب تبخیر شده از سطح آزاد شیمیایی با اندازه‌گیری مقدار آب کم شده از این شیمیایی بدون گل اندازهگیری شد. میزان جذب آب با این گردان آب تبخیر شده از سطح آزاد شیمیایی به دو مرحله رفته بود که از میلی لیتر با وجود تبعیض در وزن تبیین شد. در روز دوم، پنج یا نهم سیزده، فنده هم و بیست و دوم اندازه‌گیری شد. برای تعیین فشار سلولی میانگین فشار غلظت در بزرگترین مساحت گردید (17 و 20). فشار غلظت با استفاده از کولین و نیتری اندازه‌گیری شد. برای اندازه‌گیری میزان متوسط محلول گلبرگ‌ها، هر واحد آزمایشی نمونه گلبرگ نهایی شد، سپس 2 گرم گلبرگ در هاون کوبیده شد و در نهایت به نقطه از عصاره آن با قطره‌گیری چکانی نتایج. برای تعریف وضعیت گیرنده میانگین به دست آمده، هر یک از تیمارها شیمیایی با نشانه‌های اختصاصی زیر نشان داده شدند:

ناتایی
طول عمر گل‌ها
تجزیه وارون‌شان اثرات دما و تیمارها مختلف شیمیایی بر طول عمر گل لیلیوم در جدول 1 نشان داده شد است. با توجه به این جدول اثرات مدا، تیمارها مختلف شیمیایی و همچنین اثرات مقابل دما و تیمارها شیمیایی بر طول عمر گل‌ها در سطح احتمال 1/ میلی گرم در دمای 4 درجه سانتی‌گراد نسبت به درای 22 درجه سانتی‌گراد در افزایش ظرفیت میزان طول عمر گل لیلیوم بسیار میشود. میانگین طول عمر گل در دمای 4 درجه سانتی‌گراد 37/77/79/4 وز و در دمای 22 درجه سانتی‌گراد:

S: ساکوزورس 2/3
H: هیدروکسی کونولین سولفات 200 میلی گرم در لیتر
C: اسید سیتریک 400 میلی گرم در لیتر
K: کیتین 50 میلی گرم در لیتر
G: اسید جیریلیک 50 میلی گرم در لیتر
B: ساکوزورس 2/3 + هیدروکسی کونولین سولفات 200 میلی گرم در لیتر
F: ساکوزورس 2/3 + اسید سیتریک 100 میلی گرم در لیتر
T: ساکوزورس 2/3 + کیتین 50 میلی گرم در لیتر
N: ساکوزورس 2/3 + اسید جیریلیک 50 میلی گرم در لیتر
جدول 1. تجزیه و ارتباط اثر دما و تیمارهای شیمیایی بر طول عمر گل برگ. میزان مواد جامد محلول و قطر گل

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>طول عمر گل</th>
<th>قطر گل</th>
<th>مواد جامد محلول</th>
<th>روز محلول</th>
</tr>
</thead>
<tbody>
<tr>
<td>دما=ا</td>
<td>4/35**</td>
<td>0/23***</td>
<td>246/38**</td>
<td>15/0/0/115***</td>
<td>22/0/5/22/5</td>
</tr>
<tr>
<td>تیمار شیمیایی-B</td>
<td>1/25**</td>
<td>0/0/5</td>
<td>42/6/24</td>
<td>1/2/11</td>
<td>5/17/2/08/8</td>
</tr>
<tr>
<td>A×B</td>
<td>0/24</td>
<td>1/37</td>
<td>1/25</td>
<td>0/0/5</td>
<td>0/0/5</td>
</tr>
</tbody>
</table>

درجه تغییرات (%CV):
* وجود اختلاف معنی‌دار در سطح احتمال 0.05 ** وجود اختلاف معنی‌دار در سطح احتمال 0.01 %: عدم اختلاف معنی‌دار

** شکل 1. اثر مقایسه دما و تیمارهای شیمیایی بر طول عمر گل برگ

فهرست

جدول 1 (شکل 1): پیشنهاد تیرگی و دمای نشانه‌گران اثر دما و تیمارهای مختلف شیمیایی بر طول عمر برگ‌ها. میزان مواد جامد محلول و قطر گل مربوط به تیمارSHG، ر و T در روز بود (شکل 2). میزان مواد جامد محلول و قطر گل مربوط به تیمارSHG، ر و T در روز بود (شکل 2).
جدول ۲. تجربه واریانس اثر دما و تیمارهای مختلف شیمیایی بر میزان جذب آب در روزهای مختلف

<table>
<thead>
<tr>
<th>شاخص</th>
<th>درجه آزادی</th>
<th>جذب آب روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیست و دوم</td>
<td>۲/۸۴**</td>
<td>۲/۸۴**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
<td>۱/۱۲**</td>
</tr>
<tr>
<td>دما</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>تیمار شیمیایی</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>جذر</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>A×B</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>طبقات</td>
<td>۴/۰۶</td>
</tr>
<tr>
<td>کل</td>
<td>۱۸/۴۷</td>
</tr>
</tbody>
</table>

* وجود اختلاف معنی‌دار در سطح احتمال ۵%.
** وجود اختلاف معنی‌دار در سطح احتمال ۱%.

شکل ۳. اثر دما بر میزان جذب آب در گلها

بردنی لیلیوم

تیمار با تیمارهای M و G برای منحنی‌های نیووا و کمترین طول عمر برگ‌ها مربوط به تیمار با بایان‌های طول عمر ۱۳/۳۳ روز بود. در شکل ۲ مقایسه منحنی‌های الکترو متقابل بر فاکتور دما و تیمارهای مختلف شیمیایی نشان داده شده است. تیمار با T4 در دمای ۴ درجه سانتی‌گراد با بایان‌های طول عمر ۳۹/۶۶ روز بیشترین طول عمر برگ را داشت.

این جزء دما ناگفته ماند بین تیمارها مثالهای مشاهده شده در حالی که در دمای ۲۲ درجه مورد تیمار با T4 و R ناگفته بود. تیمار با T4 و R ناگفته ماند بین ماده M و N، G.

شکل ۴. اثر دما بر میزان جذب آب در گلها

بردنی لیلیوم
محدودیت شیمیایی بر وزن تر در سطح احتمال 0.05 و ماهیت دار بود. تیمار R با میانگین 137.6 وزن تر بیشترین وزن تر بود. T, R, G و TR تفاوت معنی‌داری وجود نداشت. کمترین وزن تر مربوط به تیمار C با میانگین 137.6 وزن تر تفاوت معنی‌دار بود و بین تیمارهای C و S تفاوت معنی‌دار بود. میانگین‌های اثرات مقابل دمای نزولی و تیمارهای مختلف شیمیایی بر وزن تر کل‌های بریزندی لیلمون فقط در روز سرد‌های در سطح احتمال 0.05 معنی‌دار بود. تیمار شاهد (آب مرطوب) در دمای 2 درجه سانتی‌گراد با میانگین 132.88 وزن تر بیشترین وزن تر و T, TR, R, G و TR تفاوت معنی‌داری وجود نداشتند.

مواد جامد محلول گلبرگ‌ها

نتایج حاصل از اندازه‌گیری میزان مواد جامد محلول گلبرگ‌ها در دو دمای مختلف نشان داد که نکه داری گل‌های بریزندی لیلمون در دمای پایین باعث افزایش معنی‌داری در سطح احتمال 0.01 در میزان مواد جامد محلول گلبرگ‌ها شده است.

نتایج تجزیه واریانس (جدول 1) و مقایسه میانگین میزان مواد جامد محلول موجود در گلبرگ‌ها در تیمارهای مختلف شیمیایی نشان داد که بین تیمارهای شیمیایی و تیمار شاهد در...

قطر گل‌ها

تجزیه واریانس اثرات دما و تیمارهای مختلف شیمیایی بر قطر گل‌ها در جدول 2 می‌باشد. اثر دما بر قطر گل‌ها در سطح احتمال 0.01 معنی‌دار بود. اثر تیمارهای مختلف شیمیایی و همچنین تفاوت دما و تیمارهای مختلف شیمیایی بر قطر گل‌ها معنی‌دار نشد. میانگین قطر گل در دمای 2 درجه سانتی‌گراد 183.7 نمی‌باشد. در اینجا که بین بیشتر تیمارها تفاوت معنی‌دار نبود و بین تیمارهای قطر گل مربوط به تیمارهای m, T و میانگین m, T و M تفاوت معنی‌دارداری مشاهده نشد.

وزن تر گل‌ها

تجزیه واریانس اثرات دما و تیمارهای مختلف شیمیایی بر وزن تر گل‌ها در روزهای مختلف اندازه‌گیری در جدول 2 می‌باشد.

در صورت مراجعه به مقاله تمامی عناصر مورد نیاز به دسترسی می‌باشد.
طول نگهداری مختلف معنی داری در سطح احتمال ۱% از لحاظ امراض وجود دارد. به طوری که میزان مواد جامد محلول در تیمار T (کیتین + ساکاروز) در روز هفتم اندازه‌گیری ۵/۰ و بیشترین میزان مواد جامد محلول را داشت و بین تیمار T و S (ساکاروز) تفاوت معنی‌داری نبود. کمترین میزان مواد جامد محلول مربوط به تیمارهای H (هیدروکسی کوئینولین سولفات) و E (هیدروکسی کوئینولین سولفات + اسید سیتریک) و تیمار شاهد بود.

تجزیه و تحلیل داده展示 نشان داد که بین دو داده از لحاظ تأثیر تیمارهای مختلف روی میزان مواد جامد محلول گیاهگیا تفاوت معنی‌داری در سطح احتمال ۱% وجود دارد. همانندی‌طور که در شکل ۷ نشان داده شده است گل‌های بریده لیلیوم در هر دو عکس عمل‌های منتفی نسبت به تیمارهای شیمیایی نشان دادند. تیمار S در دمای ۴ درجه سانتی‌گراد با میانگین ۶/۶ درصد دارای بیشترین درصد مواد جامد محلول بود. در همانجا که در دمای ۲۲ درجه سانتی‌گراد تیمار K با میانگین ۴/۴ درصد دارای بیشترین درصد مواد جامد محلول بود.

بحث

با توجه به نتایج به دست آمده در این پژوهش، گل‌های بریدنی لیلیوم در دمای پایین طول عمران نسبت به دمای بالا معنی‌دار بود، نه داری گل‌ها در درجه حرارت کم میزان ظرفیت گیاهگیا را در جذب ساکاروز افزایش داده و باعث فعالیت آنزیم ATPase می‌شود.
با ساکاروز تیمار شدن عامل طول عمر گل‌های افراشی یافته و می‌توان
چنین نتیجه‌گرفته که تیمار با ساکاروز باعث افزایش تحملی
قدی گل‌های بریدنی لیلیوم شده و در نتیجه افراشی طول عمر
گل‌ها را باعث گردید. این نتیجه که با تأیید ساختمان و
همکاران روی گل‌های لیلیوم مطابقت دارد (17).

نتایج حاصل در این پژوهش نشان داد زمانی که اسید
چربیک در ترکیب تیمارهای شیمیایی مورد استفاده قرار
گرفت، افزایش معناداری در طول عمر گل‌های بریدنی لیلیوم
نسبت به تیمار شاهد نشان داده است. اسید چربیک تجویز و
از بین رفتن کاروئیل و نیتروژن را در طی فرآیند پیری در
گل‌های لیلیوم کاهش داد. این می‌تواند نتیجه‌گیری کرد که این
ماده ممکن است سالاری ساختاری در غشای کلوپمالا استحکام
بافته و باعث ترکیب فتوتنت شود. سیروان برگه می‌تواند
دلیل بر افزایش طول عمر گل‌ها در ارتفاع قم که با اسید چربیک
تیمار شده بودند. باشد. این مورد با تابعیت امکان‌گیر و همکاران
مطابقت دارد (17).

زمانی که هیدروکسی کوئیتونولن سولفات به تنها مورد تیمار
قرار گرفت طول عمر گل‌ها نسبت به تیمار شاهد افزایش یافت
وی تفاوت در میانگین طول عمر نسبت به تیمار شاهد بود. اما زمانی که
این ماده در ترکیب با مواد دیگری که کار گرفته شد طول عمر گل‌ها
نسبت به تیمار شاهد افزایش یافت و این نتیجه در خود
مطابقت دارد به تیمار شاهد. بود هیدروکسی کوئیتونولن
سولفات در جلوگیری از فعالیت باکتری، قارچ‌ها و همچنین سرطان
قوی داشته و تأثیر آن در خصوصا در جلوگیری از مصدومیت
آنها توسط باکٹری هم باشد. علاوه بر این در تعادل آبی و
PH کاهش می‌گردد که به کاهش عامل مهم در جلوگیری از رشد
میکروگلیاسیمیا می‌باشد. نتایج ایجاد بسیاری دارد (12 و
13). با پژوهش ایجاد ایجاد کلوئز و زردی در برگ‌های شده,
استفاده از این ماده اگر کننده افزایش داده است
اما باعث ترکیب فتوسنتزی و زردی برگ‌ها گردید که دلیل دیگر
آن است که ترکیب باعث گسترش ایجاد باعث و
ساخت و همکاران مطابقت دارد (18).

8

Downloaded from jcpp.iut.ac.ir at 1:26 IRDT on Sunday May 19th 2019
تیجیه گیری

1- نتایج نشان داد، در مجموع ایجاد کننده غیر محیطی‌های کلیپ و گل بریدنی لیپوم در افزایش طول عمر و حفظ خصوصیات کمی و کیفی گل بریدنی لیپوم دارد.

منابع مورد استفاده

1. اکرامی، ت. 1359. کیفیت پایار ژنتیکی، مؤسسه انتشارات و جامعه دانشگاه تهران.

2. سیاحی، م. 1379. بررسی تیمپاره‌ای مختلف شیمیایی ژن‌های افزایش طول عمر گل بریدنی داوودی، پایان‌نامه کارشناسی ارشد علوم باغبانی، دانشگاه علوم کشاورزی، دانشگاه گیلان.

3. سلول ویژه، ی. و. ن. بهاری، 1382. بررسی ریزه محیطی‌های کلیپ مختلف بر روی خصوصیات لیپوم هیریدهای ژنی تحت شرایط کشت دون خاک، جهاریمن کنگره علوم باغبانی ایران، دانشگاه فردوسی مشهد.

