آثار تن‌های شوری و خشکی بر رشد و ترکیب شیمیایی و بیوشیمیایی
(Allium cepa) چهار رقم پیاز خوراکی

چکیده
آثار شوری و خشکی بر رشد و ترکیب شیمیایی و بیوشیمیایی چهار رقم پیاز خوراکی دسکس، تگرانس ارلی گراندی (تگرانس)، دهیدراتور و پرکاس در یک آزمایش گلخانه‌ای در گلستان بررسی گردید. تیمارهای نشان شوری هزار بوداز شاخص 45 میلی‌مول کلرور سدیم و 40 میلی‌مول کلرور کلسیم، و تیمارهای خشکی عبارت بود از شاخص گلن‌داری رطوبت گلدان‌ها در حد ظرفیت مزرعه، و خودداری از آب‌بارهای تا زمانی که 50 درصد آب تا قابل استفاده مصرف شده، و سپس آب‌بارهای تا حد ظرفیت مزرعه، گاهان پس از چهار هفته از اعمال تیمارها برداشت شدند، و وزن خشک اندام هوایی و ریشه، و سدیم، پتاسیم، کلسیم، پروتئین کل، قند و پروپیلین در اندازه‌های و روش اندازه‌گیری گردید.

نتایج نشان داد که تیمارهای کلرور سدیم و خشکی به طور معناداری باعث کاهش وزن خشک اندام هوایی و ریشه شدند. از میان ارقامی که نگران بهترین و رمک‌سکس کمترین مقدار وزن خشک اندام هوایی را تولید کرده کلرور سدیم به کلرور کلسیم، و کاهش نسبتی در اندازه‌های تایپوس و ریشه، و کاهش سیستم در رشته‌گردید. تیمار کلرور سدیم تا کلرور کلسیم آتار ناخورن از کلرور سدیم را خنثی نموده و دیده‌شده که به طور معناداری به‌اختلالات و وزن خشک اندام هوایی در دو روش تیمار کلرور سدیم، و تیمار خشک و پتاسیم، نرخ رشته‌گردید. کلیه نشانه‌ها در اندازه‌های هوایی و ریشه مربوط به گونه‌ای معنادارانداخته و در ادامه گزارش یا به‌تأثیر بودن یا بعث کاهش معناداران گردیدند. مقدار پروتئین رشته در کلیه ارقام، در اثر تیمارهای کلرور سدیم و کلرور کلسیم تا کلرور کلرور کلسیم موثری دارید یدا کرد، ولی تن‌های خشکی تأثیری بر مقدار آن نداشت. اندازه‌ها و کاهش مقدارند دندر پروپیلین در اندازه‌های و ریشه تحت تأثیر تن‌ها، از الگوی‌های خاصی پیروی نکرد. از میان ترکیبات بیوشیمیایی این اندام‌ها، مقدار پروتئین موجود در اندازه‌های هوایی گاهان، تحت تن‌های خشکی و ریشه، ممکن است سبب توزیع با وزن خشک اندام هوایی نشان داده که احتمالاً می‌توان از آن برای ارزیابی ارتباط پیاز به‌ین تن‌ها استفاده نمود.

واژه‌های کلیدی: تن‌های شوری و خشکی، وزن خشک اندام هوایی و ریشه، سدیم، پتاسیم، کلسیم، پروتئین، پروپیلین، قند

1. به ترتیب استادیار زراعت و دانشجوی سابق کارشناسی ارشد علوم گیاهی، دانشگاه شهید باهنر، کرمان
مقدمه
تشنه‌های شوری و خشکی یکی از مشکلات تولید مواد غذایی است که باعث کاهش جوده مواد غذایی می‌شود. این مشکل در زمینه‌های مختلفی مانند کشاورزی، خشکنی، بیماری‌ها و فرسایش محیط زیست می‌تواند رخ دهد. در این پژوهش، تغییرات در بیماری‌ها و مشکلات کشاورزی مورد بررسی قرار گرفته است.

تشنه‌های شوری و خشکی
باید توجه به گسترش کشت پاییزی پایان دهیم و جای خالی‌های مناطق کشاورزی را تجفیس کرد. این باید با بهبود بخشی‌های موجود، استفاده از جنگل‌های محلی و زراعت محصولات مناسب مثلاً بهترین کاهش جوده مواد غذایی بدهد. در این مقاله، سعی شده است تا مشکلات تولید مواد غذایی را بهتر بشناسیم و راه‌حل‌هایی پیشنهاد کنیم.

مواد و روش‌ها
برای این مطالعه از چهار رقم پایز به نام‌های دسک، تگراس کالائی، نیوکراس و کالائی، گردیده شده است. بررسی‌های ترکیبی انجام شده است که نشان دهنده اثرات مختلفی بر روی تغییرات در بیماری‌ها و مقدار خشکی بودند. در این پژوهش، تغییرات در بیماری‌ها و مشکلات کشاورزی مورد بررسی قرار گرفته است.

1. Dessex 2. Texas Early Grano (Texas) 3. Dehydrator 4. PX 492
نتایج

صفات مورفولوژیک مقایسه میانگین‌های وزن خشک اندام هواپی و ریشه در ارقام مختلف در جدول 1 ارائه شده است.

اندام هواپی

ارقام از نظر تولید وزن خشک اندام هواپی تفاوت‌های معنی‌دار با یکدیگر نشان دادند. به عنوان نمونه، رک دسکس کمترین وزن خشک را تولید نمود. این کاهش معنی‌دار در مقایسه با ارقام دهیدراتور و تگرگاس معنی‌دار بود. ابتدایی نیز معنی‌دار بود. به طوری که در مقایسه با میانگین کاهش معنی‌دار در وزن خشک اندام هواپی گردد. واکنش ارقام به دهیدراتور شوری و خشکی تفاوت بود. به معنی‌دار بود. انتشار دیدگان از این نتایج برای افراد نشان می‌دهد که این دیگری باعث کاهش همراه با کلرکسپم در رک دسکس باعث کاهش معنی‌دار، و در درچ کلرکسپم باعث افزایش معنی‌دار وزن خشک اندام هواپی گردد. این اثر باعث کاهش نشان دادند. همچنین، در واکنش به تیمار کلرکسپم، دو رک دیگر کاهش از دیگر نشان‌های اصلی باعث کاهش دیدگان نشان دادند، ولی دو رک دیگر کاهش معنی‌دار نشان دادند. در واکنش به تیمار خشکی، فقط رک دسکس کاهش معنی‌داری نسبت به تیمار شاهد نشان داد.

ریشه

از نظر وزن خشک ریشه، ارقام تفاوت زیادی با یکدیگر نشان ندادند، و تختا رک دهیدراتور به طور معنی‌دار باعث کاهش وزن خشک نسبت به دیگر ارقام گردید. اثر تنش‌ها بسیار معنی‌دار بود، و بیشترین کاهش وزن خشک ریشه تحت تأثیر هگامک به ظرف‌های مصرف شده بود. لازم به یادآوری است که در تیمار شاهد مریکه به تنش‌های شوری و خشکی در حیاتی کم تیمار می‌باشد. و دیگر از نگهداری روطبی گلدان‌ها در حیاتی ظرفیت مزه‌بیابان استفاده از آب شیرین می‌باشد. گلدان‌ها در شرایط نتایج میانگین دامنه‌های 18-22.7 درصد سانتیگراد برای میانگین استفاده می‌گردد تا خرد دراز تا کاهش خشکی دیدگان. این گلدان‌ها به ظرفیت تغذیه کافی بود. به این جهت گلدان‌ها به‌طور جهانی از آثار مهم‌ترین مواد غذایی، هر چند هفتکه یک پاره گیاهان با کود مشق تولید و گل‌های پنک در هزار محلول‌پذیر شده‌اند.

پس از گذشتن 15 هفته از کاشت به گیاهان داخل گلدان تنگ شده و فضه هایه گلدان‌گردیده شد. برای اعمال تنش شوری، به گیاهان هر کیلو لیتر از هر یک از تیمارهای مورد نظر به گلدان اضافه گردید. این این مقدار محلول مورد نیاز حاکی از گلدان برای حیاتی ظرفیت مزه‌بیابان کافی بود. به این جهت گلدان‌ها به‌طور جهانی با توجه با هماهنگی بیشتری با تیمار خشک کلرکسپم و ریشه کاهش معنی‌دار بود. این این نتایج برای افراد نشان می‌دهد که این دیگری باعث کاهش معنی‌دار وزن خشک اندام هواپی گردد. این اثر باعث کاهش نشان دادند. همچنین، در واکنش به تیمار کلرکسپم، دو رک دیگر کاهش از دیگر نشان‌های اصلی باعث کاهش دیدگان نشان دادند، ولی دو رک دیگر کاهش معنی‌دار نشان دادند. در واکنش به تیمار خشکی، فقط رک دسکس کاهش معنی‌داری نسبت به تیمار شاهد نشان داد.

مقدار قند، تسمین، مقدار پودر، کم‌درجه و نیاز به افزایش کالری به‌طور مثال از نمونه‌های مهم در تهیه تغذیه خشک کلرکسپم می‌باشد. در مقدار سدیم و پتاسیم با استفاده از این نتایج برای افراد نشان می‌دهد که این دیگری باعث کاهش معنی‌دار وزن خشک اندام هواپی گردد. این اثر باعث کاهش نشان دادند. همچنین، در واکنش به تیمار کلرکسپم، دو رک دیگر کاهش از دیگر نشان‌های اصلی باعث کاهش دیدگان نشان دادند، ولی دو رک دیگر کاهش معنی‌دار نشان دادند. در واکنش به تیمار خشکی، فقط رک دسکس کاهش معنی‌داری نسبت به تیمار شاهد نشان داد.

آزمایش به صورت فاکتوریال شامل دو فاکتور تنش و رقم هر کدام در چهار سطح، در چارچوب یک طرح پایه کامل تصادفی با هشت تکرار انجام شد. برای اندیشگری‌های شیمیایی و بیوشیمیایی از هم تکرار استفاده گردید. داده‌های جمع‌آوری شده پس از اطمینان از پیکرت‌های ارتباطی را با
جدول 1. تنش‌های گروه‌گونه بین وزن خشک انگلیس و ریشه (سیالگرم) ارتفاع پنجه

<table>
<thead>
<tr>
<th>تنش / ارتفاع</th>
<th>انگلیس</th>
<th>دیستریتو</th>
<th>پیاکس</th>
<th>نگارس</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>182/3</td>
<td>172/9</td>
<td>166/4</td>
<td>153/2</td>
<td>161/6</td>
</tr>
<tr>
<td>کلرور سدیم</td>
<td>121/6</td>
<td>112/6</td>
<td>108/2</td>
<td>106/3</td>
<td>110/6</td>
</tr>
<tr>
<td>کلرور سدیم + کلرور کلسیم</td>
<td>129/0</td>
<td>118/1</td>
<td>112/3</td>
<td>107/7</td>
<td>116/0</td>
</tr>
<tr>
<td>خشکی</td>
<td>215/2</td>
<td>204/9</td>
<td>195/7</td>
<td>187/3</td>
<td>200/9</td>
</tr>
<tr>
<td>میانگین</td>
<td>180/3</td>
<td>165/5</td>
<td>156/3</td>
<td>145/2</td>
<td>160/6</td>
</tr>
</tbody>
</table>

شده در تیمار شاهد و این تیمار مشاهده نگردیده.

تیمار کلرور سدیم به دست آمد. تیمار خشکی نیز باعث کاهش معنی‌دار وزن خشک رشد و تیمار کلرور سدیم همراه با کلرور کلسیم از ارتفاع انگلیس باعث افزایش وزن خشک شده و تیمار کلرور سدیم گروه‌گونه بین وزن خشک در ارتفاع دسکس و پیاکس گردیده و در بیشتر ارتفاع تفاوت با شاهد تنش نداشت. در تیمار کلرور سدیم همراه با کلرور کلسیم کلیه ارتفاع به جز رقم پیاکس 492 به طور معنی‌دار وزن خشک کلسیم نسبت به شاهد تولید کردند. در واکنش به تیمار خشکی، وزن نگارس تفاوت با تیمار شاهد نشان دادند. در صورتی که رقم پیاکس 492 کاهش معنی‌داری داشت.

ترکیب شیمیایی

سیلیم

مقایسه میانگین‌های مقدار سدیم چرب در حالت میانگین با دو ارتفاع است. مقدار سدیم در انگلیس با معنی‌دار مقدار یک در رقیم پیاکس 492 بیشترین رقم در میانگین مقدار سدیم را جذب کردند. از میان تیمارهای تنش فقط تیمار کلرور سدیم به طور معنی‌دار باعث افزایش چرب سیلیم می‌گردد. تیمار کلرور سدیم همراه با کلرور کلسیم با جذب سدیم بیشتری در صورتی که رقم پیاکس 492 کاهش معنی‌داری داشت.

پتاسیم

تأثیر تنش‌های مختلف شوری و خشکی بر میزان پتاسیم اندام هواپیما در ارتفاع مختلف پیاز در جدول 3 آمده است. رقم پیاکس 492 در مقایسه با ارتفاع دیگر کمترین مقدار پتاسیم را در اندام هواپیما جذب کرد.

از میان تنش‌های تیمارهای کلرور سدیم و خشکی باعث کاهش معنی‌دار مقدار پتاسیم اندام هواپیما در مقایسه با شاهد گردیدند و تیمار کلرور سدیم همراه با کلرور کلسیم نیز با حد زیادی باعث تخصیص این اثر مفنی کلرور سدیم شد.
جدول 2. اثر تنش‌های گوناگون بر مقدار سدیم (گرم وزن خشک/میلی‌گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>اندام هوایی</th>
<th>دسکس/دهیدراتور</th>
<th>دسکس/دهیدراتور</th>
<th>دسکس/دهیدراتور</th>
<th>دسکس/دهیدراتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0/8</td>
<td>0/56</td>
<td>0/22</td>
<td>0/14</td>
</tr>
<tr>
<td>کلورور سدیم</td>
<td>2/06</td>
<td>2/06</td>
<td>2/06</td>
<td>2/06</td>
</tr>
<tr>
<td>خشکی</td>
<td>0/8</td>
<td>0/86</td>
<td>0/91</td>
<td>0/91</td>
</tr>
<tr>
<td>میانگین</td>
<td>0/8</td>
<td>0/88</td>
<td>0/88</td>
<td>0/88</td>
</tr>
</tbody>
</table>

تنش / رقم (LSD) 5% رقم (180) تنش (16) اثر متغیری (26) (LSD)

جدول 3. اثر تنش‌های گوناگون بر مقدار پتاس (گرم وزن خشک/میلی‌گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>اندام هوایی</th>
<th>دسکس/دهیدراتور</th>
<th>دسکس/دهیدراتور</th>
<th>دسکس/دهیدراتور</th>
<th>دسکس/دهیدراتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0/32</td>
<td>0/32</td>
<td>0/32</td>
<td>0/32</td>
</tr>
<tr>
<td>کلورور سدیم</td>
<td>0/77</td>
<td>0/77</td>
<td>0/77</td>
<td>0/77</td>
</tr>
<tr>
<td>کلورور سدیم + کلورور کلسیم</td>
<td>0/77</td>
<td>0/77</td>
<td>0/77</td>
<td>0/77</td>
</tr>
<tr>
<td>خشکی</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
</tr>
<tr>
<td>میانگین</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
<td>0/22</td>
</tr>
</tbody>
</table>

تنش / رقم (LSD) 5% رقم (132) تنش (12) اثر متغیری (22) (LSD)

مقدار پتاسیم جذب شده تحتمالی در نوع گزرس به طور معمولی در یکسان بوده و بقیه ارقام تفاوتی با یکدیگر نشان ندادند. تیمارهای کلورور سدیم و خشکی باعث کاهش و تیمار کلورور سدیم همراه با کلورور کلسیم باعث افزایش معنی‌دار دار مقدار پتاسیم در رشته‌گرددند.

مقدار کلسیم جذب شده در اندام هوایی توسط ارقام یکسان بوده و تنشها نیز تأثیری در جذب کلسیم نداشتند. مقدار کلسیم ریشه در ارقام تفاوتی نداشتند. با طوری که رقم دسکس بیشترین و رقم دهیدراتور کمترین مقدار کلسیم را جذب کردند. در مقایسه با تیمار شاهد، تیمار کلورور سدیم باعث کاهش ترکیب بوشیمیایی پروتئین مقدار پروتئین اندام هوایی در رقم گزرس به طور معمولی در یکسان بوده و تنشها نیز تأثیری در جذب کلسیم نداشتند. مقدار کلسیم ریشه در ارقام تفاوتی نداشتند. با طوری که رقم دسکس بیشترین و رقم دهیدراتور کمترین مقدار کلسیم را جذب کردند. در مقایسه با تیمار شاهد، تیمار کلورور سدیم باعث کاهش می‌گردد.
جدول 2. اثر تنش‌های گوناگون بر مقدار کلیسم (گرم وزن خشک/میلی‌گرم) ارتاق پیاز

<table>
<thead>
<tr>
<th>رشته</th>
<th>اندام هواپیمایی</th>
<th>تنش / رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>منایگین</td>
<td>دسکس</td>
<td>0/02</td>
</tr>
<tr>
<td></td>
<td>هیدرداژترنر</td>
<td>0/002</td>
</tr>
<tr>
<td></td>
<td>یپاکس</td>
<td>0/005</td>
</tr>
<tr>
<td></td>
<td>نگراس</td>
<td>0/005</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
<td>0/005</td>
</tr>
</tbody>
</table>

جدول 5. اثر تنش‌های گوناگون بر مقدار پرپرتین (گرم وزن خشک/میلی‌گرم) ارتاق پیاز

<table>
<thead>
<tr>
<th>رشته</th>
<th>اندام هواپیمایی</th>
<th>تنش / رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>منایگین</td>
<td>دسکس</td>
<td>0/024</td>
</tr>
<tr>
<td></td>
<td>هیدرداژترنر</td>
<td>0/0026</td>
</tr>
<tr>
<td></td>
<td>یپاکس</td>
<td>0/005</td>
</tr>
<tr>
<td></td>
<td>نگراس</td>
<td>0/005</td>
</tr>
<tr>
<td></td>
<td>میانگین</td>
<td>0/005</td>
</tr>
</tbody>
</table>

کمتری پرپرتین تولید کرده و با تفاوتی با شاهد نشان دادند.

و با توجه به اینکه کلیه افزایشی در گوناگون سپاری کشوری افزایشی در پرپرتین به ویژه در ارتفاعات بالا و در تیمار خشکی فقط رقم نگراس به طور معنی‌داری تر است و در نتیجه آن تأثیر یافته است.

پرپرتین

تأثیر تنش‌های مختلف میزان پرپرتین اندام هواپیمایی و رشته ارتفاعات در جدول 6 آورده شده است. مقدار پرپرتین اندام هواپیمایی در رقم نگراس پرپرتین کمتر از دیگر ارقام بود. کلیه تنش‌ها کاملاً معنی‌داری در مقدار پرپرتین اندام هواپیمایی نداشتند.
جدول ۶: تنش‌های گوناگون مربوط به مقدار پرولین (گرم وزن خشک/هکتارمول) از نظر پیاز

<table>
<thead>
<tr>
<th>رشته</th>
<th>دسکس دهیدراتور</th>
<th>پی‌اکس دسکس</th>
<th>تنش/قدم</th>
<th>میانگین</th>
<th>دسکس دهیدراتور</th>
<th>پی‌اکس دسکس</th>
<th>تنش/قدم</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>21/2</td>
<td>1/9</td>
<td>19/2</td>
<td>21/2</td>
<td>21/2</td>
<td>1/9</td>
<td>19/2</td>
</tr>
<tr>
<td>کلر آرسنیک</td>
<td>27/8</td>
<td>1/9</td>
<td>21/2</td>
<td>27/8</td>
<td>27/8</td>
<td>1/9</td>
<td>21/2</td>
</tr>
<tr>
<td>کلر فلزات</td>
<td>20/2</td>
<td>1/9</td>
<td>21/2</td>
<td>20/2</td>
<td>20/2</td>
<td>1/9</td>
<td>21/2</td>
</tr>
<tr>
<td>کلر فلزات + کلر آرسنیک</td>
<td>27/8</td>
<td>1/9</td>
<td>21/2</td>
<td>27/8</td>
<td>27/8</td>
<td>1/9</td>
<td>21/2</td>
</tr>
<tr>
<td>خشکسازی</td>
<td>11/7</td>
<td>1/9</td>
<td>19/2</td>
<td>11/7</td>
<td>11/7</td>
<td>1/9</td>
<td>19/2</td>
</tr>
<tr>
<td>میانگین</td>
<td>11/7</td>
<td>1/9</td>
<td>21/2</td>
<td>11/7</td>
<td>11/7</td>
<td>1/9</td>
<td>21/2</td>
</tr>
</tbody>
</table>

جدول 7: تنش‌های میانه‌ای داری دارد، به طوری که بین دسکس کمترین و دسکس دهیدراتور بیشترین مقدار تنش را در آن‌ها نشان داد. از میان نشان‌ها این نتایج کلر سدیم همراه با کلر کلسیم باعث کاهش مقدار تنش در این دسکس می‌شود. واکنش اولیه به تنش‌های متفاوت بود، به‌طوری‌که رقیم دسکس دهیدراتور بین‌مقداری در میانان تنش اولیه نسبت به کاهش شد. داده‌های اولیه در نظر گرفته شده‌اند تا اینکه نشان‌ها میانه‌ای دارند و دسکس دهیدراتور بین‌مقداری در میانان تنش اولیه نسبت به خشکسازی کاهش نشان داد.

از نظر میزان منفی، واکنش اولیه به تیمارهای متفاوت بوده، به‌طوری‌که رقیم دسکس تحت تأثیر تیمارها به طور منفی داری در مقدار نشان داده و در دسته‌های کمترین روشی برای تثبیت در نظر گرفته شده‌اند و واکنش اولیه دیگر روون مشخصی ماهیت بی‌رخی داشته‌اند.

بحث

به‌طور کل، میانه‌های اولیه ارقام آزمایش شده مشاهده گردیده که خود

27
جدول ۷ اثر تنش‌های گوناگون بر مقادیر قند (گرم وزن خشک/مجسمه گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>اندازه‌های هواپیما</th>
<th>دسکس</th>
<th>ده‌داردن</th>
<th>پی‌آکس</th>
<th>نگرانس</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>ساده</td>
<td>۴۶</td>
<td>۴۷</td>
<td>۵۱</td>
<td>۶</td>
<td>۴۵۳</td>
</tr>
<tr>
<td>کلورور سدیم</td>
<td>۶۲</td>
<td>۶۳</td>
<td>۶۵</td>
<td>۶</td>
<td>۶۵۵</td>
</tr>
<tr>
<td>کلورور سدیم + کلرور کلسیم</td>
<td>۶۷</td>
<td>۶۸</td>
<td>۶۹</td>
<td>۷</td>
<td>۶۹۵</td>
</tr>
<tr>
<td>خشکه</td>
<td>۵۰</td>
<td>۵۱</td>
<td>۵۲</td>
<td>۴</td>
<td>۵۲۹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>تنشی / رم</th>
<th>دسکس</th>
<th>ده‌داردن</th>
<th>پی‌آکس</th>
<th>نگرانس</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاید</td>
<td>۴۶</td>
<td>۴۷</td>
<td>۵۱</td>
<td>۶</td>
<td>۴۵۳</td>
</tr>
<tr>
<td>کلورور سدیم</td>
<td>۶۲</td>
<td>۶۳</td>
<td>۶۵</td>
<td>۶</td>
<td>۶۵۵</td>
</tr>
<tr>
<td>کلورور سدیم + کلرور کلسیم</td>
<td>۶۷</td>
<td>۶۸</td>
<td>۶۹</td>
<td>۷</td>
<td>۶۹۵</td>
</tr>
<tr>
<td>خشکه</td>
<td>۵۰</td>
<td>۵۱</td>
<td>۵۲</td>
<td>۴</td>
<td>۵۲۹</td>
</tr>
</tbody>
</table>

میزان است است نشانگا باعث تغییری افزایش پروتئین‌های موجود گردیده یا باعث کاهش جذب سدیم، افزایش پتاسیم اندام‌ها، و وزن خشک ریشه در کلیه ارقام و دردینه افزایش وزن اندام هواپیمایی کاهش نسبی آن در پی از ارقام گردید. تأثیر مستقیم کلرور سدیم در ارقام دسکس و ده‌داردن ضعیف‌تر از رم تغییر

برنده قرار گرفت. به طور کلی اثر مثبت کلرور سدیم بر رشد ریشه قبری از اندام هواپیمایی بود. این اثر مثبت قرار تا احتمالاً به دلیل چربی پیشرفتی و پتروپتین ریشه نسبت به اندام هواپیمایی تحت تأثیر تنگرسس سدیم زیادی کلرور کلسیم در مقایسه با شاید می‌باشد.

با توجه به آثار مثبت کلرور سدیم بر رشد گیاهان و شکست گنبدی به‌طور کلی اثری از این عناصر و متقابلی بودند و باعث کاهش وزن اندام و درازای ارقم سازی بوده آن به ترتیب است از ارقام استفاده گردید

واندیمیت مثبت نسبت به سلسله نشان داده می‌شد. گزارش‌ها نشان می‌دهد که به طور کلی اگزیستاها مختلف باعث کاهش سنتز پروتئین‌کی در اندام‌های گوناگون لیپا قرمز (۳۲٪) چون (۳۱٪) و تنبکین (۸٪) می‌باشد. این موضوع نیز به آزمایش حاضر تأیید گردید. به طوری که

خشک‌های خشک و خشک‌در درهم ارقام پیاز بی‌بی‌بی در فاصله نگرسس سنتز پروتئین‌کی در اندام هواپیمایی گردیدند. در رقم

اگزیستاها به طور اندازه‌ای افزایش بسیار زیاد پروتئین و

توجه به هم‌سازی‌های محاسبه شده میان شاخه‌های مورفولوژیکی و شاخه‌های چسبینی و بی‌بی‌بی‌بی، مشخص گردید که همگونی بسیار تدریجی میان مقدار پروتئین و وزن خشک اندام هواپیمایی وجود دارد که احتمالاً می‌توان از این تغییرات مقدار پروتئین برای ازایی ارقام پیاز به تنش‌های شوری و خشک‌در استفاده نمود.

5. Arvin, M. J. and N. Kazemipoor. Response of onion cultivars to drought and salinity stresses at germination stage and possibility of seed aplping chemicals to improve stress tolerance (In press).

 International Conference for Plant Physiologists of SAARC Countries, Gorakhpur, India, P. 119.