آثار تنش‌های شوری و خشکی بر رشد و ترکیب شیمیایی و بیوشیمیایی (Allium cepa) چهار رقم پیاز خوراکی

محمدمحمدی آریویسی و نسرین کاظمی پور

چکیده
آثار شوری و خشکی بر رشد و ترکیب شیمیایی و بیوشیمیایی چهار رقم پیاز خوراکی (دکسکس) گزارش شده، دهیدراتور و پرآکس ۴۹۲ در یک آزمایش گلخانه‌ای در آندیان بررسی گردید. تیمارهای تنش شوری و خشکی ۱۲٪ و ۲۰٪ میلی‌مول کلرور سدیم و ۲ میلی‌مول کلرور کلسیم در چهار رقم پیاز خوراکی تهیه شده و در ظرفیت مزرعه و خودداری از آب‌گیری تا زمانی که ۵۰ درصد آب تا فاصله‌ای به مصرف نشده و سپس آب‌گیری تا حد ظرفیت مزرعه، گیاهان پس از چهار هفته از اعمال تیمارها به‌دست رسانیده و وزن خشک اندام هوا و ریشه و سدیم، نمادی کلسیم، پروتئین کل، قند و پروتئین در اندام هوا و ریشه و خشکی‌های اندازه‌گیری گردید.

مقدمه
تنش‌های شوری و خشکسالی یکی از مشکلات تولید فراورده‌های کشاورزی در سراسر دنیا و به ویژه مناطق خشک و نیمه‌خشک است. در ایران حدود ۱۵۰ هزار هکتار خاک شور و وجود دارد که دوسرنگ در مناطق گرم و خشک واقع است. استفاده پروریه از کوه‌های بخشی و مدیریت نادرست کشت و آب‌رات باعث تبدیل گشت مشکلات منطقه خشک شود می‌گردد. تنش شوری از طریق پتانسیل اسمی، سویت پونا و اختلال در چسب بخشی از مناطق غذایی، آثار سوء خوراکی را اعمال می‌کند (۲۳ و ۳۵).

تنش شوری و خشکسالی می‌تواند یکی از مشکلات مربوط به اقتصاد کشور باشد و باعث تغییرات در نوسازی و توقف اعمال در مناطق مختلف گردی می‌شود. این تنش‌ها باعث تغییرات در یک نظر سیاست‌های کشاورزی می‌شود که نتیجه‌گیری‌های زیادی از اثرات اقتصادی گردی در منطقه را به میان ارگانیت و واردات می‌کند. با توجه به گسترش کشت پایه‌ای پیاز در مناطق گرم‌تر کشور و مشکلات شوری و خشکسالی گسترده‌تر در این مناطق، بررسی‌های در زبان اقتصاد مربوط به این تنش‌ها ضروری به نظر می‌رسد. این پژوهش به منظور بررسی آثار تنش‌های شوری و خشکسالی در چندرن مناطق کاشت پایه‌ای و مکانیزم‌های اقتصادی مربوط به این تنش‌ها انجام گرفت.

مواد و روش‌ها
برای این آزمایش از چهار رقم پایز به نامه دسکس، از گیاه کابل گاز و نیز از گیاه کابل دوم استفاده گردید. نیم‌های شوری عبارت بود از به دار آب شور با مخلوط ۲۵ میلی‌متر کربوهیدرات و ۴۵ میلی‌متر سدیم و مخلوط در نتیجه، ۲۰۰ میلی‌متر کربوهیدرات و ۴۵ میلی‌متر سدیم همراه با پنج میلی‌متر کربوهیدرات کلسیم، و نیز تیمارهای خشکسالی عبارت بود از این نوع مخلوط شده در حیاطهای مختلف گل‌گانها در حد یک میلی‌متر مرزه، و خود در این آزمایش تا

1. Dessex
2. Texas Early Grano (Texas)
3. Dehydrator
4. PX 492
نتایج

صفات مورفولوژیک مقایسه میانگین های وزن خشک اندازه‌گیری شده در آزمون مختلف و در جدول ۱ آورده شده است.

اندام هواپیا

ارقام از نظر تولید وزن خشک اندازه‌گیری شده هر گونه که رطوبت شده به طور معنی‌دار بوده و نهایتاً وزن خشک این آزمایشات را نسبت به ارقام دیگر تولید کرد. رقم دسکس کمترین وزن خشک را تولید نموده و این کاهش معنی‌داری با ارقام دهیدراتور و تغذیه معنی‌دار بود.

این شناسه معنی‌داری بوده که در مقایسه با بیمار شاهد، تیمار‌های کلرودسیم و خشکسالی باعث کاهش معنی‌دار وزن خشک اندازه‌گیری شده و در اکثر ارقام به تیمار‌های شوری و خشکسالی متفاوت بود که در مقایسه با شاهد، تیمار کلرودسیم همراه با کلرور کلسیم در رقم دسکس باعث کاهش معنی‌دار، و در رقم نگران باید افزایش معنی‌دار وزن خشک اندازه‌گیری گردید. در رقم دیگر نگرانی با شاهد نشان داده شده‌است. همچنین، در واکنش به تیمار کلرور سدیم، وزن خشک از واکنش رویکرد و نگرانی اخلاقی با شاهد نشان دادند و به دو رقم دیگر کاهش معنی‌دار داشتند. در واکنش به تیمار خشکسالی، فقط رقم دسکس کاهش معنی‌داری نسبت به تیمار شاهد نشان داد.

ریشه از نظر وزن خشک ریشه، ارقام تفاوت زیادی با یکدیگر نشان ندادند و اثر شناسه با تفاوت معنی‌دار باعث کاهش وزن خشک نسبت به دیگر ارقام گردید. اثر شناسه بسیار معنی‌دار بود، و پیش‌تر کاهش وزن خشک ریشه تحت تأییر هنگامی که ۵۰ درصد آب قابل استفاده مصرف شده بود، لازم به یادآوری است که در تیمار شروع به مصرف شوری و خشکسالی در حقیقت یک تیمار باشد و از آن در نگهداری و روطبی گلدان‌ها در حد ظرفیت مزدوج با استفاده از آب شیر

هر گلدان با شش چیلیورم واحد پر شده و شش دانه بذر در آن کشت گردید. دو گلدان با یکدیگر به بیانگین دائمی به آنها اضافه و سه گلدان اضافه گردید. این مقدار مولکول برای رسانش خاک گلدان به حد ظرفیت مزدوج کافی بود. در این مقدار مولکول به تدریج می‌تواند به قطع چند روزی گلدان‌ها اضافه شد و بس از آن گلدان‌ها تحت تنش شوری یک درمان با آب شیر تا حد ظرفیت مزدوج آبیاری گردیدند. پس از چهار هفته از اعمال تیمارها (۱۶ هفته از کاشت پنداشته) کلیه گیاهان هر گلدان برای اندازه‌گیری وزن خشک اندام هواپیا و ریشه برخوردار بودند.

مقدار فندریا احیا کننده با استفاده از روش سوموگی-تیسون (۴۴)، پرولین آزاد با استفاده از روش بی‌پز و همکاران (۷۴)، پرولین کل با روش لوری و همکاران (۶۴) و مقدار سدیم و نگرانی با استفاده از سطح اکستنژن اندام‌های گرده، این اندازه‌گیری‌ها از نمونه‌های انجام گرفته که از کلیه گیاهان هر گلدان به شده بود.

آزمایش بهصورت فاکتوریال شامل ذکر داشته و رقم هر کدام در هر صفحه، در چارچوب یک طرح یک‌فصل تصادفی با استفاده انجام شد. برای اندازه‌گیری‌های شیمیایی و بیوشیمیایی از میزان دربرگیرنده استفاده گردید. داده‌های جمع‌آوری شده پس از اطمنان از یک‌نویختگی واریانس‌ها، با...
جدول ۱. اثر تنش‌های گوگانگون بر وزن خشک اندام هواپی و ریشه (سیلی‌گرم) ارگام پیاز

<table>
<thead>
<tr>
<th>کلولر سدیم</th>
<th>دسکس دی‌هیدراتور</th>
<th>یک‌آکس</th>
<th>نگرس</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>۱۸۶/۳</td>
<td>۱۷۲/۹</td>
<td>۱۶۸/۹</td>
<td>۱۷۲/۹</td>
</tr>
<tr>
<td>کلولر سدیم</td>
<td>۱۴۶/۲</td>
<td>۱۳۸/۲</td>
<td>۱۴۲/۲</td>
<td>۱۴۲/۲</td>
</tr>
<tr>
<td>کلولر سدیم + کلولر کلسیم</td>
<td>۱۸۶/۹</td>
<td>۱۷۲/۹</td>
<td>۱۶۸/۹</td>
<td>۱۷۲/۹</td>
</tr>
<tr>
<td>خشکی</td>
<td>۱۶۸/۹</td>
<td>۱۵۸/۹</td>
<td>۱۶۸/۹</td>
<td>۱۷۲/۹</td>
</tr>
<tr>
<td>میانگین</td>
<td>۱۷۲/۹</td>
<td>۱۷۲/۹</td>
<td>۱۷۲/۹</td>
<td>۱۷۲/۹</td>
</tr>
</tbody>
</table>

شده در تیمار شاهد و این تیمار مشاهده نگردید.

تیمار کلولر سدیم به دست آمده تیمار خشکی نیز باعث کاهش معمای دار وزن خشک ریشه و تیمار کلولر سدیم همراه با کلولر کلسیم باعث افزایش معمای دار آن نسبت به تیمار شاهد گردید.

واکنش ارگام به نشانه متقاوت بوده به طوری که تیمار کلولر سدیم باعث کاهش معمای دار وزن خشک در ارگام دسکس ۲۹۷/۲ گردید و در بقیه ارگام را افزایش کرد. در نتیجه نشان داده شد که ارگام همراه با کلولر کلسیم کلیه ارگام به رقیم بر یک آکس ۲۹۷/۲ به طور معمای دار وزن خشک بیشتر نسبت به شاهد تولید کردند. در واکنش به تیمار خشکی، بر رقیم دهیدراتور در مقایسه با تیمار شاهد سطح آزمون صورتی که رقیم بر یک‌آکس ۴۹۲/۲ علائم معمای داری داشت.

توزیع شیمیایی

تیمارهای مختلف شوری و خشکی بر میزان تنش اندام هواپی به تیمارهای مختلف پیاز در جدول ۳ آمده است. رقیم پی‌اکس ۴۹۷/۲ در مقایسه با ارگام دیگر کمترین مقدار تنش اندام هواپی جذب کرد.

از میان تیمارهای تنش‌های میزان تنش باعث کاهش کلولر سدیم و خشکی باعث کاهش نشان داد که نشانه اندام هواپی و ریشه به طور معمای دار به تسکین کردن تیمار کلولر سدیم همراه با کلولر کلسیم مانع جذب سدیم توسط ارگام گردیده به طوری که هنگام اختلاف معمای داری میزان سدیم جذب.
جدول 2. آثار افزایش گوناگون بر مقدار سدیم (گرم وزن خشک/میلی‌گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>اندام هوازی</th>
<th>نش / رقم</th>
<th>دسکس</th>
<th>دهیدرژن‌وتور</th>
<th>پی اکس</th>
<th>تگراز</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0/25</td>
<td>0/28</td>
<td>0/27</td>
<td>0/52</td>
<td>0/47</td>
<td>0/37</td>
</tr>
<tr>
<td>کلوئور سدیم</td>
<td>0/22</td>
<td>0/23</td>
<td>0/21</td>
<td>0/51</td>
<td>0/48</td>
<td>0/38</td>
</tr>
<tr>
<td>کلوئور سدیم + کلوئور کلسیم</td>
<td>0/38</td>
<td>0/35</td>
<td>0/32</td>
<td>0/57</td>
<td>0/54</td>
<td>0/45</td>
</tr>
</tbody>
</table>

جدول 3. آثار افزایش گوناگون بر مقدار پتاسیم (گرم وزن خشک/میلی‌گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>اندام هوازی</th>
<th>نش / رقم</th>
<th>دسکس</th>
<th>دهیدرژن‌وتور</th>
<th>پی اکس</th>
<th>تگراز</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0/25</td>
<td>0/27</td>
<td>0/25</td>
<td>0/57</td>
<td>0/51</td>
<td>0/42</td>
</tr>
<tr>
<td>کلوئور سدیم</td>
<td>0/21</td>
<td>0/22</td>
<td>0/21</td>
<td>0/53</td>
<td>0/49</td>
<td>0/40</td>
</tr>
<tr>
<td>کلوئور سدیم + کلوئور کلسیم</td>
<td>0/38</td>
<td>0/35</td>
<td>0/32</td>
<td>0/57</td>
<td>0/54</td>
<td>0/45</td>
</tr>
</tbody>
</table>

مقدار پتاسیم جذب شده توسط ریشه در رقم تگراز به طور معمول کلسیم نیز در ارقام پی اکس و دسکس افزایش می‌یابد و بیشتر در جذب کلسیم به ریشه تاثیر می‌گذارد. تیمارهای کلوئور سدیم و خشکی باعث کاهش و تیمار کلوئور سدیم همراه با کلوئور کلسیم باعث افزایش می‌شود.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار پتاسیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار پتاسیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار پتاسیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار پتاسیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار پتاسیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار پتاسیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.

مقدار سدیم جذب شده در بند هوازی توسط ارقام پی اکس و دسکس.
جدول 2. اثر تنش‌های گوناگون بر مقدار کلیسم (گرم وزن خشک/میلی‌گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>لیست</th>
<th>تنش / رقم</th>
<th>دسکس</th>
<th>زیتون</th>
<th>نگارس</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0.25/67</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>کلرور سدیم</td>
<td>0.25/75</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>کلرور سدیم + کلرور کلیسم</td>
<td>0.25/80</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>خشکی</td>
<td>0.25/75</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.25/75</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

للمقدار کلیسم (گرم وزن خشک/میلی‌گرم) ارقام پیاز

<table>
<thead>
<tr>
<th>لیست</th>
<th>تنش / رقم</th>
<th>دسکس</th>
<th>زیتون</th>
<th>نگارس</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>0.25/67</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>کلرور سدیم</td>
<td>0.25/75</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>کلرور سدیم + کلرور کلیسم</td>
<td>0.25/80</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>خشکی</td>
<td>0.25/75</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>میانگین</td>
<td>0.25/75</td>
<td>0.26</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

کمتری پروپتین تولید کرده، و با تفاوتی با شاهد نشان دادند. ولی رقم تغذیه در همه تیمارها بطور معنی‌داری پرتوتین بیشتر تولید کرد. تنش‌های شوری افزایش مقدار پروتئین رشته را در کلیه ارقام بجای دهیدراتور باعث شدند، و در تیمار خشکی فقط رقم تغذیه بطور معنی‌داری نشان داد. ارقام پرتوتین بیشتری نسبت به شاهد تولید کرد.

پروتئین

تأثیر تنش‌های مختلف شوری و خشکی بر میزان پروتئین اندام هوایی و رشته ارقام در جدول 6 آورده شده است. مقدار پروتئین اندام هوایی در رقم تغذیه بسیار کمتر از دیگر ارقام بود. کلیه ارقام پرتوتین، رقم دسکس و پیارکس تحت تأثیر کلیه تیمارهای نشان داد، در رقم

مقدار پروتئین رشد در دو رقم دهیدراتور و تغذیه به طور معنی‌داری بیشتر از رقم دیگر بود. واکنش ارقام نسبت به تیمارها بسیار متفاوت بود. کل ارقام دسکس و پیارکس تحت تأثیر کلیه تیمارهای نشان داد. در رقم افزایش، رقم دهیدراتور کاهش معنی‌داری را نشان داد. در رقم

مقدار پرتوتین تولید کرده، و با تفاوتی با شاهد نشان دادند. ولی رقم تغذیه در همه تیمارها بطور معنی‌داری پرتوتین بیشتر تولید کرد. تنش‌های شوری افزایش مقدار پروتئین رشته را در کلیه ارقام بجای دهیدراتور باعث شدند، و در تیمار خشکی فقط رقم تغذیه بطور معنی‌داری نشان داد. ارقام پرتوتین بیشتری نسبت به شاهد تولید کرد.

پروتئین

تأثیر تنش‌های مختلف شوری و خشکی بر میزان پروتئین اندام هوایی و رشته ارقام در جدول 6 آورده شده است. مقدار پروتئین اندام هوایی در رقم تغذیه بسیار کمتر از دیگر ارقام بود. کلیه ارقام پرتوتین، رقم دسکس و پیارکس تحت تأثیر کلیه تیمارهای نشان داد، در رقم
جدول ۷: تشخیص مقادیر پرولین تحت تأثیر تیمار کلرود سیدم بدون تغییر بود، و در تیمارهای کلرود سیدم هرها با کلرود کلسیم و خشکی کاهش معنی‌داری داشت.

<table>
<thead>
<tr>
<th>ریشه</th>
<th>اندام هواپیمایی</th>
<th>میانگین</th>
<th>تنش / اسم</th>
<th>دسکس دیداروتور پی‌اکس</th>
<th>تنگراز</th>
<th>مینیگاس</th>
<th>دسکس دیداروتور پی‌اکس</th>
<th>تنگراز</th>
<th>مینیگاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>کلرود سیدم</td>
<td>۲۰/۵۱</td>
<td>۷۴/۳</td>
<td>۷۷/۳</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
</tr>
<tr>
<td>کلرود سیدم + کلرود کلسیم</td>
<td>۷۸/۳</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
</tr>
<tr>
<td>خشکی</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
<td>۷۹/۹</td>
<td>۷۷/۹</td>
<td>۷۷/۹</td>
</tr>
</tbody>
</table>

گزارش شده است. بدیل این اسکوری که تشخیص شوری و خشکی به‌طور تکنیک‌های میکروسکوپی و اعمال مختلفی که در نهایت، به نظر می‌رسد که روش تکنیک‌های میکروسکوپی به این دو نوع تشخیص نیز ممکن است یکسان باشد. از مقایسه واکنش در ریشه و شکر با تیمارهای کلرود سیدم و خشکی نتیجه‌گیری می‌شود که روش تنگراز تحت تأثیر این دو تشکیل پیش‌نهی، و روش دسکس کمترین مقادیر وزن خشکی اندام هواپیمایی را تولید کرده است، که شباهت دهنده مسامت احتمالی مشاهده آنها به این دو نوع تشخیص می‌باشد.

جدول ۷ نشان می‌دهد که مقادیر قند اندازه‌گیری در ارقام تفاوت‌های معنی‌داری دارد. به‌طوری که روش دسکس کمترین و رقم دیداروتور پی‌اکس مقادیر قند را در اندام هواپیمایی نشان داد. از میان نشان‌ها فقط تیمار کلرود سیدم هرها با کلرود کلسیم باعث کاهش معنی‌دار قند اندازه‌گیری نشان نمی‌دهد. واکنش ارگامی به مشاهده تفاوت بود، به‌طوری که رقم دسکس تحت تأثیر کلرود کلسیم کاهش نمی‌دارد.

به‌طور کلی دی‌میکرو ارزی‌دان هواپیمایی دوستانه دارد. و این به نظر می‌رسد که به‌طور کامل، به‌طوری که روش دسکس تحت تأثیر تیمارهای کلرود سیدم هرها با تیمار به‌طور معنی‌داری قند اندازه‌گیری نشان داد، و در تیمارهای دیگر معمولاً مشاهده نگردید.

بحث

به‌طور کلی، بی‌توجهی به-quality و خشکی در تیمارهای فیزی و شلواری؛ تفاوت‌های میان ارقام آزمایش شده مشاهده گردیده، که خود...
آزمایش نیز کلسیم موجود در تیمار کلسیم سرم همراه با کلسیم گردیده باشد و یا پروتئین های جدیدی سنگین شده باشد، که برای پاسخگویی به این بروز لازم است، پروتئین های به طور چندگاهن مورد بررسی قرار گیرند. البته اندازه پروتئین در ارقام بدن، میزان مقایسه شرایط پزشکی نیز گزارش شده است (19).

نتش پولین در افزایش مقاومت به تنش ها، با ۲۹ و ۳۰، و در استفاده از آن به عنوان یک شاخص مقاومت گزارش های ضد و تلقیشد و وجود دارد (۲۹ و ۳۰). مقدار پولین اندازه گیری شده در اندام هواپی و تغییر در ارقام پیژشی تحت تأثیر نشته با یکدیگر کاملاً متفاوت بود و از هیچ گونه ارتباط خاصی پیروی نمی کرد. در رقم تگراس به طور کامل استثنایی مقادیر پولین اندام هواپی تحت شرایط نشته و شرایط نشته بسیار کم بود. بنابراین، به نظر نمی‌رسد که مقدار پولین شاخص مناسب برای ارزیابی مقاومت ارقام پیژش نشته باشد.

با توجه به همبستگی‌های محاسبه شده میان شاخص‌های مورفولوژیکی، شاخص‌های فیتولوژیکی و بیوشیمیایی، مشخص گردید که همبستگی بسیار نزدیکی میان مقدار پروتئین و وزن خشک اندام هواپی وجود دارد. چنان‌که در اینجا، تغییرات مقدار پروتئین ارزیابی مقاومت پیوست به تنش شوری و خشکی استفاده شده است.
5. Arvin, M. J. and N. Kazemipoor. Response of onion cultivars to drought and salinity stresses at germination stage and possibility of seed applying chemicals to improve stress tolerance (In press).
International Conference for Plant Physiologists of SAARC Countries, Gorakhpur, India, P. 119.