آثار تلقیح برای ت réserve کاربرد ور و وئین علف هرز بر روند رشد
و سرعت پر شدن دانه در سویا

یعقوب راعی، محمد صدیقی، و رونف سید شریفی

(تاریخ دریافت: ۱۳۸۹/۰۶/۳۰ تاریخ پذیرش: ۱۳۸۹/۰۷/۰۱)

چکیده
برای ارزیابی آثار تلقیح با بکتری برای رزیروپیوم، اوره و وئین علف هرز رز کاربرد سویا در مزرعه، ازمایشی به صورت فاکتوریال بر
پایه بلوک‌های کامل تصادفی در سه نکار پایه گردید. فاکتورها شامل تلقیح و عدم تلقیح، سطح صفر و ۲۰۰ و ۴۰۰ کیلوگرم در هکتار
اوره و کنترل و آلوگی به علت هرز بوهد. نتایج نشان داد که تکنل علف هرز، تلقیح و کاربرد اوره عملکرد دانه و پولی‌وژری را افزایش داد.
کنترل علف هرز بی‌تیترین تاثیر را بر عملکرد داشت و به دنیال ترقی و کاربرد اوره قرار داشتند. نتایج: وئین علف هرز و مصرف
۳۰۰ کیلوگرم در هکتار اوره درصد پروتئین دانه سویا را افزایش داد. در این مورد، تلقیح بی‌تیترین تاثیر را بر درصد پروتئین دارا داشت و به
دنیال آن کاربرد اوره و کنترل علف هرز قرار گرفتند. در مقاله، نتایج علف هرز به‌طور معنی‌داری درصد رون در دانه را افزایش داد.
سرعت پر شدن دانه در نتیجه عمل تلقیح افزایش نشان داد.اما دوره پر شدن دانه تحت تاثیر تلقیح قرار نگرفت. کنترل علف هرز سرعت و
دوره پر شدن دانه را افزایش داد. کاربرد اوره نیز، دوره پر شدن دانه را افزایش داد، اما بر سرعت پر شدن دانه تأثیری نداشت.

واژه‌های کلیدی: سویا، عملکرد، رونگ، پروتئین، و سرعت پر شدن دانه

مقدمه
سویا (Fabaceae) گیاهی است از تیره فاباسه (Glycine max L.) که مهم‌ترین محصول از نظر تولید رزین و پروتئین در سراسر
جهان محصول می‌شود. دانه سویا ارزش غنایی بالایی از نظر
مواد معنی‌دار و پیشامدها دارد و پروتئین آن حاوی تمام
امیدهای آبیه لازم برای تغذیه انسان و دام می‌باشد. ۱) سویا از
گیاهان تیتین کننده نیتروژن بوده و در شرایط مناسب می‌تواند به
میزان ۱۴۰ تا ۲۰۰ کیلوگرم در هکتار تیتین نیتروژن را از طریق
(Rhizobium) هژی‌ستی با بکتری برای رزیروپیوم جایگزین که
تلیث نماید. ٢) استفاده از مزایای تیتین هژی‌ستی (japonicum)

1. استفاده در زراعت و اصلاح نباتات، دانشگاه شکاری، دانشگاه تبریز
2. استفاده در زراعت و اصلاح نباتات، دانشگاه شکاری، دانشگاه محقق اردبیلی، اردبیل
Yaegoob@yahoo.com
* : مستند مکاتبات، پست الکترونیکی:
گیاهی با حرکتی محلی منتقلیون به سوی‌های روشنی به دانه‌های موجب ریزش برگ‌ها و نیروز زودرس می‌شود. نش نیروزی در دوره پر‌شده دانه‌ها مقدار نیروز دانه و کاهش می‌دهد(26). چنان‌که در شرایط مناسب محیطی فتوسنتز گیاه افزایش یافد و نیروزی کافی است انتخاب نشاند. وزن خشک دانه افزایش می‌یابد و چند مقدار نیروز دانه کاهش نشان می‌دهد (14). با اکتشفگسی دسترسی به نیروز طی دوره پر‌شده دانه نخود میزان نیروز دانه نیز به ترتیب کاهش و افزایش نشان داد. ولی به نظر می‌رسد که تجربه نیروز و ماده خشک در مرهچی بر شدن دانه نخود می‌کاند. مشاهده کنترل منی‌شور. به طوری که طی نیروز دو مرحله اقتصادی دارد و در هر مرحله وابسته است (15). با توجه به موارد مذکور، هدف این پژوهش بررسی تأثیر حضور علف هرز در کار، مقاومت آثار کود نیروزن و نیروزن حاصل از ثبتی هم‌سانتی بی و برگه‌های کیسه دانه سویا و روند پرشن دانه آن بوده است.

مواد و روش‌ها
آزمایش در طول فصل زراعی 1384 با استفاده از رقم و یلیوم سویا در استان‌های تحقیقات کشاورزی دانشگاه تبریز واقع در 8 کیلومتری شرق تبریز بپایه گردید. اقلیم منطقه در زمینه اقلیمی نیمه بی‌سو و نیمه خشک قرار دارد. فصل نبسته علی‌رغم برای‌های براکانده خشک است. میانگین حساسیت، متوسط و حداکثر دمای سالانه در طی یک‌ساله ده ساله بوده و 10 درجه سانتی‌گراد و میانگین بهار سالانه برای ۲۷۱ میلی‌گرم کارگردان شده اکتشفگسی پر‌روشن دانه، خاک مزرع جو بر خاک‌های شبی لومی با ۶۰ درصد شن، ۱۴ درصد رس و ۲۳ درصد سیلت است. میزان pH خاک در حدود ۷/۳ و ماده آلی آن ناجی و در محدوده ۰/۸ درصد قرار دارد. ارتقای از سطح دریا ۱۳۴۰ متر و طول و عرض جغرافیایی آن به ترتیب ۱۷۱۷ و ۳۶ درجه و ۵۰ درجه بینی است (2).

منفی قرار می‌گیرد. به عنوان مثال ارقامی از سویا که شاخص سطح برگ بیشتری در اواخر فصل رشد داشته باشد. اندازه‌گیری می‌روک در مقایسه با رقم بروز نازی در شاخص سطح برگ کمتر، قدرت رقابتی بهتر را با بررسی از علف‌های هر دانه باشد(9). تعداد اثرات مقابل رقابتی بین گیاهان زراعی و علف‌های هر تحت تأییر عوامل بیماری از جمله عناصر غذایی قرار می‌گیرد. در بین عناصر غذایی، بیشترین رقابت در مورد نیروزن صورت می‌گیرد (8). در تراکم‌های پایین علف‌های افزایش یافته نیروز به دانه، است. است به طور معمولی داری عملکرد کیسه گیاهی را افزایش دهد و رقابت با علف‌های هر را به حداکثر برساند. در حالی که در تراکم‌های بالای علف هرز، افزایش نیروز موجب رشد علف‌های هر شده و نفس انگیزگی در بهبود عملکرد کیسه‌های زراعی دارد (18). بنابراین کود نیروز به دست اکتشفگسی دانه به مراتب بهتر از این پژوهش نیروز به دست اکتشفگسی دانه به مراتب بهتر از این پژوهش

82
طرح آزمایشی به صورت فاکتوریل در قالب طرح پایه

بیولوژی کامل تصادفی در سه تکرار آزمایش شد. فاکتورهای

آزمایش شامل علف هرز در دو سطح حضور و عدم حضور

علف هرز، کود نیترایژن در سطوح صفر (شاهه)، 150 و 300

کیلوگرم در هکتار و باکتری بیوریوم جایوکومین در دو

سطح تلقیح و عدم تلقیح بودند. به واحدها آزمایش شامل شش

رده کاشت با فاصله 60 سانتی متری از یکدیگر و به طول

شش متر بودند. تراکم کاشت 50 بوته در متر مربع (تراکم

علاوه منطنقه) در نظر گرفته شد. در تیمارهایی که نیاز به

آگهش سایزی با باکتری بیوریوم جایوکومین بود، از

محلول 1/4 ساکارز و 250 گرم باکتری برای 70 کیلوگرم بذر

استفاده شد. به طوری که بهره‌های رقم و پیلاملوزیا قبل از کاشت

با یا بعدی آگهش شدند. باکتری مورد استفاده از سویلیهای

تولیدی داخل کشور و محصول شرکت بیداره نام نام

تجارتی “سویر” بود که به وسیله اصلاح و تهیه نهال و بذر

کره همین شد. پس از تهیه زمین کور مورد نیاز هر کرت بر

اساس نقشه کاشت با هزار مکلوهدگی و به کرت مورد نظر

اضافه گردید. وکالله علیه هرز در تیمارهای علیه از علف

هرز به طریق وحق ویژن جدید و به تعداد سه مربوط به

وضعیت علف‌های هرز انگیز گرفت. لازم به ذکر است که

علف‌های هرز را سالم به رسم (Chenopodium album) زیاد

پیچک صنایع (Convolvulus arvensis)، ناح خروس (Convulvulus arvensis)، (Acropitlon repens) تالخه (Amaranthus retroflexus)

گندم ترك‌های (Centaura virginata) و یayo مادان (Achillea millefolium)

یکپاره در این آزمایش کار نکرد.

پیکار در این آزمایش کار نکرد. به منظور ارزیابی روند رشد و سرعت پرشتان دانه، بعد از

گندم و تشکیل دهنده در غلاف‌ها از هر یک آزمایش سه

کود و تاکید می‌کرد. به تصدیق انتخاب و بعد از انتقال به

آزمایشگاه دانه‌ها از غلاف خارج گردیده و به مدت دو ساعت

در آن الکترکسی تهیه و در دو میلی‌متر در 130 درجه سانتی‌گراد

قرار گرفتند. سپس نمونه‌های خشک شده با نزاری حساس با

نتایج و بحث

نتایج حاصل از جدول تجربی و ارتباط برای صفات اندامه گری

شده در جدول 1 آمده است.

نتایج نشان داد که تئیه نجیر با باکتری و ویژن علف‌های

هرز به ترتیب منجر با توسعه مصرف حبیلوزیک به میزان 19 و

۴۰ درصد گردید. همچنین مصرف کود انورژنی همکرد

پیئلوژیک را در مقایسه با باغیه به طور معنی‌داری افزایش داد

W = \begin{cases} a + b t + \frac{c}{1 + \frac{d}{e}} & t \leq tm \\
\frac{a + b t}{1 + \frac{c}{e}} + d & t \geq tm \end{cases}

\[[1] \]
جدول ۱: جدول تجزیه و تحلیل صفات مورد بررسی در آزمایش

<table>
<thead>
<tr>
<th>میانگین مجموع</th>
<th>میانگین مجموع</th>
<th>مربعات عاملکرد</th>
<th>درجه آزادی</th>
<th>معنی تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۵*</td>
<td>۳۹۸*</td>
<td>۲۲۰۰۰/۲۷۰۰*</td>
<td>۲</td>
<td>۵۸۰/۸۷۰۰*</td>
</tr>
<tr>
<td>۵۴۰**</td>
<td>۳۲۹۱۸**</td>
<td>۵۱۱۲۲/۲۳**</td>
<td>۲</td>
<td>۴۵۷/۶۵۰۰*</td>
</tr>
<tr>
<td>۳۲/۲۲**</td>
<td>۵۰/۷۸/۸*</td>
<td>۱۰۹۶۲/۲۱**</td>
<td>۲</td>
<td>۲۹۲۳۸/۸۸**</td>
</tr>
<tr>
<td>۳۰۰۴**</td>
<td>۱۰۵/۷۵**</td>
<td>۴۶۸۱۷/۹۳**</td>
<td>۱</td>
<td>۱۸۶۵۰/۷۴**</td>
</tr>
<tr>
<td>۲۳۳۲**</td>
<td>۱۲۸۵۱/۲۸**</td>
<td>۳۳۰۳/۲۴**</td>
<td>۲</td>
<td>۱۶۴۲/۹۹**</td>
</tr>
<tr>
<td>۸۸/۳۷**</td>
<td>۷۴/۲۵**</td>
<td>۲۷۸۲/۰۰**</td>
<td>۲</td>
<td>۹۸/۶۱**</td>
</tr>
<tr>
<td>۶/۳۷</td>
<td>۸۱/۶۰**</td>
<td>۸۸۸۸/۲۷۵**</td>
<td>۱</td>
<td>۱۸۶۵۰/۷۴**</td>
</tr>
<tr>
<td>۹۹/۶۵</td>
<td>۱۳۹/۰۹</td>
<td>۸۷۲/۰۹</td>
<td>۲۲</td>
<td>اشتراک آزمایش</td>
</tr>
<tr>
<td>۲/۴۰</td>
<td>۴/۶۵</td>
<td>۷/۲۲</td>
<td>۱۹/۱۰</td>
<td>ضریب تغییرات</td>
</tr>
</tbody>
</table>

، *: به ترتیب معنی‌دار در سطح احتمال ۰.۱، ۰.۰۵ و ۰.۰۱ رقم درصد و غیر معنی‌دار.

شدا (۱). با توجه به میانگین عاملکرد بیولوژیک به ترکیب تیماری سریع، متوسط و خفیق در گروه اول به ترکیب تیماری عدم تلقیح در جنین و کمترین آن به ترکیب تیماری عدم تلقیح در شرایط عدم و جنین علیه هرز تلقیح داشت (شکل ۲). کنتور علیه هرز تأثیر بیشتری نسبت به تلقیح با印象 در مورد افزایش عاملکرد بیولوژیک باعث است. به طوری که ترکیب تیماری عدم تلقیح در شرایط و جنین علیه هرز با مقدار عاملکرد ۴۲/۹ در مترمیک، عاملکرد بیشتری را نسبت به ترکیب تیمار تلقیح در شرایط عدم گزارش نمی‌کند (شکل ۳). این ترتیب نشان داد که تأثیر ترکیب علیه هرز بیشتر از اثر تلقیح بر عاملکرد بیولوژیک بوده است. رونالد و همکاران (۲۳) و سوئیتوم و همکاران (۲۴) نیز تجربی مشابه را کار خرد کردند.

در نتیجه، دانشمندان، نشان داد که تلقیح با باکتری و کنترل علیه هرز به ترکیب عاملکرد دانه‌ای را ۲۴ درصد افزایش داده است. مصرف کود نیتروژن نیز موجب افزایش معنی‌داری در سطح متوسط مختلف تیماری بیولوژیک در علیه هرز در سطح احتمال بالا در تجربه معنی‌داری می‌باشد.

۸۴
جدول 2 مقایسه میانگین‌های اثرات‌الصرف مختلف کود نیتروژن بر صفات مورد بررسی

<table>
<thead>
<tr>
<th>صفت کود</th>
<th>عملکرد دانه</th>
<th>عملکرد بیولوژیکی</th>
<th>درصد پروتئین دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>3/37</td>
<td>196/89</td>
<td>37/23</td>
</tr>
<tr>
<td>150</td>
<td>2/233</td>
<td>251/87</td>
<td>27/33</td>
</tr>
<tr>
<td>300</td>
<td>2/265</td>
<td>253/98</td>
<td>38/67</td>
</tr>
</tbody>
</table>

اختلاف میانگین‌های هر ستون که دارای حروف مشترک هستند بر اساس آزمون دانکن از نظر آماری در سطح احتمال 5٪ معنی‌دار نیست.

شکل 1 اثر توانایی ریزوبیوم بر عملکرد بیولوژیکی کود نیتروژن

شکل 2 اثر مقایسه ریزوبیوم با علف هرز بر عملکرد بیولوژیک سویا
علف‌های هرز برای منابع محیطی ناشی می‌شود. در طولی که با دسترسی مناسب گیاه به منابع محیطی و استفاده مناسب از فصل رشد، میزان اثر برای سنت درصد مناسب روغن از هیدرات‌های کربن در مراحل اول از پروپتین در مراحل بعدی پرندان دانه فراهم می‌گردد. اثر مقابله مرگ‌بار به گل‌های هرز تلفیق بررسی کرد که در مطالعات استعمال کود نیترزون به مقدار 168 قیمت‌کود در هکتار، درصد پروپتین افزایش و درصد روغن کاهش داشت. در مقابل، نتایج حاصل از پژوهش دیگر نشان داد که کاربرد مقدار بالا کود نیترزون (360 کیلوگرم در هکتار) باعث کاهش درصد پروپتین و افزایش درصد روغن شد (19).

بررسی روند سرعت پرندان دانه تحت تأثیر سطوح مختلف کود، نشان داد که در اولی مرحله پرندان دانه سرعت پرندان در تابع فاکتور کود پیشتر از تامپراها کودی بود، و لی این تیمار سریع تری به حداکثر وزن رسیده و بعد از آن بر وزن خشک دانه اضافه نشد. تیمارهای کودی در مقایسه با تیمار فاکتور کود سرعت پرندان دانه کمی اشتدت. اما دولت پرندان دانه بیشتر بود. به‌طوری که مقادیر حداکثر وزن خشک دانه در این تیمارها ملاحظه شده (شکل 8). وجود عفون‌های در مزرعه‌های سرعت پرندان دانه هم در دوره پرندان آن را کاهش داد (شکل 9). در مسیره از رابطه عفون‌های هرز برای جذابیت نیترزون ناشی می‌شود. گزارش شده است که کمیابی نیترزون قابل دسترس موی جیسن نسبت تجربه ماند. خشک دانه (16) و کاهش دوره پرندان دانه می‌گردد (12). تلفیق گیاه با باتری سرعت پرندان دانه را افزایش داد که این امر را تنها به فرآهم بودن نیترزون حاصل از نتیجه بیولوژیک نیترزون نسبت داد (شکل 10). سریع‌تر نیترزون (360 کیلوگرم) کود روزانه روغن دانه تحت تأثیر تیمارهای افزایش یافته بود و همکاران (25) در مورد سویا مطالعات دارد.

اثر مقابله روی‌پردن با کود نیترزون معنی‌داری در سطوح تامپراها داشت (جدول 1). در طولی که بالارسان عامل‌کنی مرگ‌بار به تلفیق به وقوع بود، این امر نشان داد که استفاده از کود نیترزون، میزان نتیجه بیولوژیک نیترزون را کاهش داده است، به‌طوری که زیادی کود نیترزون است، به ابعاد شرایط تلفیق بودن استفاده از کود بر افزایش عملکرد دانه مؤثر بوده.

از آثار ساده تلفیق عفون هرز و کود اثر افزایش سبزیجات دانه معنی‌دار دارد (جدول 1). در مورد کود اثری مشخص و گردید که افزایش سبزیجات گیاه به نیترزون باعث افزایش پروتین‌های دانه شد (جدول 2).

اثر مقابله روی‌پردن با اصل عفون هرز نیز در سطح احتمال 5 درصد بر درصد پروتوپتین دانه معنی‌دار بود (جدول 1). بر این اساس کم‌ترین و بیشترین درصد پروتوپتین به ترتیب مرگ‌بار به ترکیبات تامپراها عدم تلفیق با عدم وقوع عفون‌های هرز و تلفیق با وقوع عفون‌های هرز به‌مدت ایست (شکل 5). در پژوهش گزارش کردید که گیاه سویا در شرایط تلفیق با باکتریه، هر درصد پروتوپتین بیشتر نسبت به شرایط تلفیق دارد و کاربرد کود نیترزون می‌تواند مقدار پروتوپتین دانه را تقریباً به سطح معمول گیاهان تلفیق شده برساند (16).

در مورد آثار تاثیر کود بر عفون‌های بالارسان درصد پروتوپتین مرگ‌بار به صورت 30 کیلوگرم کود در شرایط وقوع عفون‌های هرز بود (شکل 6). کنترل عفون هرز موی جیسن افزایش درصد روغن دانه به میزان 34 درصد شد. این امر از عدم مقابله
اثرات تلفیق برای ریزویوم. کاربرد اوره و ویژین علف هرز بر رویت رشد ...
شکل 9: روند سرعت پرشدن دانه در شرایط کنترل و عدم کنترل علف هرز

شکل 10: روند سرعت پرشدن دانه در شرایط تلقیح و عدم تلقیح با انرژی بکتریا
الاثار تلقیح برایدی ریزویوم کاربرد اوره و وجوه علف هرز بر روند رشد ...

![گراف 11: روند سرعت پرشندان دانه در اثر تثبیت تلقیح و علف هرز](image1)

![گراف 12: روند سرعت پرشندان دانه در اثر متقابل کود و علف هرز](image2)

به فراهم بودن نیتروژن در شرایط تلقیح و عدم وجود رقابت برای آن در حالت کنترل علف هرز توسط نسبت داد. ترکیب تجاری تلقیح با عدم کنترل علف هرز اختلاف پذیرانی نسبت به عدم تلقیح با کنترل علف هرز از نظر سرعت و دوام پرشندن طول مرحله پرشندان دانه قرار می‌گیرد.

بررسی اثر متقابل تلقیح با علف هرز حاکی از آن بود که کمترین سرعت و دوام پرشندان دانه به شرایط عدم تلقیح و عدم کنترل علف هرز اختصاص داشت (گراف 11). این امر را می‌توان

89
دانه نشان داد. با این حال کنترل علف هرز در مقایسه با عمل تلقیح نتیجه "بیشتری" در بزرگ تعداد میزان نیز به شکل عمده خشک هر صبح داشته است. این عملکرد توجه به مشابه بودن سرعت پرشدن دانه (شیب خط) به دوام پرشدان مربوط بود. بالاترین وزن خشک دانه در مراحل پرشدن و وزن خشک نهایی به تکیب تیماری- تلقیح با کنترل علف هرز اختصاص داشت (شکل 11). نتایج مربوط به اثر متقابل کود یا علف هرز در مورد سرعت پرشدن دانه نشان داد که هم سرعت و هم دواوی پرشدن دانه تحت تأثیر کودهای و کنترل علف هرز قرار می‌گیرد. وجود علف هرز در کلیه ترکیبات تیماری با مقدار کودی مشابه در مقایسه با کنترل آن باعث کاهش دواوی پرشدن دانه گردیده به‌طوری که عدم کنترل علف هرز می‌تواند با ایجاد نش انزیمی از طول دوره پرشد دانه کاهش‌یابد. بالاترین سرعت پرشدن دانه به تکیب تیماری کنترل علف هرز با مقدار کودی

منابع مورد استفاده

1. آبی، آ. 1364. رواج از مناطق خشکه (ترجمه. کوچکی، ع.) انتشارات جهاد دانشگاهی دانشگاه مشهد.
2. جعفری، ع. 1377. مطالعات آزمایشگاهی. دانشگاه کشاورزی دانشگاه صنعتی، نشر، دانشگاه علوم انسانی و اجتماعی دانشگاه علوم انسانی و اجتماعی
3. صالح راستی‌ن. 1380. کودهای پیشی رفت‌کننده ناشی از راستای نیل به پرورش پایدار و به‌هنداره. (پژوهش پیشی رفت‌کننده ناشی از راستای نیل به پرورش پایدار و به‌هنداره. جلد ۷، شماره ۷- ۸) 27- ۳۰.
4. کافو، ش. س. گلی، ع. وغ. ع. کیانوش. 1384. بررسی آزمایش تکیبی تلقیح بذر با پاک‌کننده و اجراء عمل‌کرد در رضم سویا، علوم کشاورزی و منابع طبیعی (پیش‌بینی)
12. Guldan, S. J. and W. A. Brun 1988. Relationship of cotyledon cell number and seed respiration to soybean seed
 ASA, CSSA, and SSSA, Madison, WI.
 Department of Plant, Soil and General Agriculture, Southern Illinois University, Carbondale, I L 62901.