تعمیم میزان باقیمانده انواع آفت‌کش‌ها در برخی از سبزیجات تازه و گلخانه‌ای

ژهرا هادیان و محمدحسین عزیزی

(تاریخ دریافت: 1385/3/24، تاریخ پذیرش: 1386/3/30)

چکیده

به منظور تعمیم میزان باقیمانده انواع آفت‌کش‌ها در برخی از سبزیجات تازه و گلخانه‌ای، این تحقیق به روش توصیفی روى 25 نمونه Organochlorine Dicarboximides (گوچه فرتنگی، خیار گلخانه‌ای و هریت تازه) با هدف بررسی و جمع‌آوری 105 نوع باقی‌مانده سم از انواع Strobilurin، Pyrethroids، Triazine، Organophosphorus، Organonitrogeن شناسایی سموم و تعبیه مقدار آنها با استفاده از کروماتوگرافی گازی-طیف‌سنجی چری مجهز به آشکارساز طیبی (GC-ITMS) صورت گرفت. داده‌های تحلیل داده که fenvalerate، iprodione، permethrin، fenpropapathrin، chlorpyrifos درصد از مجموعه سموم باقی‌مانده سبزیجات تازه و گلخانه‌ای بوده و با ترتیب در حدود 76/11-116 درصد trifluralin و 9/55 درصد عنصر. نتایج آزمون مقایسه دوچندی میانگین باقی‌مانده آفت‌کش‌های مشابه در نمونه‌ها با میانگین حداکثر اختلافات معنی‌داری را نشان داد و برقراری ارتباط با ۵۰ درصد از افزایش سموم دفع آفت‌کش‌ها در محیط‌های کشاورزی و میزان باقی‌مانده آفت‌کش‌های بنیادی شناسایی شده در نمونه‌ها با میانگین حداکثر اختلافات معنی‌داری را نشان داد و کمتر از مقداری مجاز اعلام شده Codex Alimentarius FAO/WHO (MRLs) بود (50/500).

واژه‌های کلیدی: باقی‌مانده آفت‌کش‌ها، کروماتوگرافی گازی-طیف‌سنجی چری

مقدمه

 سموم شیمیایی دفع آفات پنبه به عنوان یکی از آلاینده‌های مهم مواد غذایی به شمار می‌آید (23). با توجه به روند رشد تولید و مصرف محصولات کشاورزی و میزان باقی‌مانده سموم خریداری و مصرف شده از منابع داخلی و خارجی برای کنترل آفات و کاهش حدود 211 ترکیب شیمیایی فرمولاسیون‌های مختلف کشور، بنیان بررسی مخاطرات بهداشتی نامطلوب ناشی از کاربرد آفت‌کش‌ها سلقات درمان و محیط زیست می‌باشد و به‌طور جدی تهدید می‌نماید (1). یکی از مهم‌ترین عوامل مهم‌ترین عوامل

1. علاوه بر این، این تحقیق دفع غذایی کشور، دانشگاه علوم پزشکی شهید بهشتی، تهران
2. دانشی‌ار علوم سیستم غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
3. مسئولیت‌های پست الکترونیکی: hadidan_z2004@yahoo.com

195
۱۶۴ سرطان باشند (۱۰). سازمان جهانی بهداشت در سال ۲۰۰۴ کلیه سموم دفع آفات تنبیه را اساس میزان مخاطرات بالقوه در رده طبقه‌بندی کره کا، این تقيیم‌بندی براساس ترکیبات اصلی فعال محتمله آنها می‌باشد (۱۳).

به دلیل وسط طیف خواص فیزیکی-شیمیایی مواد شیمیایی و آفت‌کش‌ها مخفیانه، روش‌های متعددی را جهت تحلیل عصاره استخراج‌مانند استخراج مایع-سابق (LLE)، استخراج مایع-بیابان (SFE) و طبیعی-بیابان (SPE) (Super Critical Fluid Extraction) (HGPC) (High Performance Gel Permeation Chromatography) به کار می‌برند. تحقیقات در این زمینه با انواع ستون فاز جامد به پایه مواد پلی استرین دی وینیل بناز (PS-DVB)، سیلیکاتLC (Matrix Solid Phase Extraction) (MSPD) فلورسیل (۲۲) ستون‌های سلولز متصل کردن استخراج مایع-سابق (Graphitized Carbon Black) تکسیمی (۱۱) غشاها و دارای کردن فعال، ترکیبی از کاراتریژ‌ها مختلف نشان داده است که ستون فاز جامد باید کردن گرافیت به تنهایی قادر به کردن انرژی رابط دارندگی مایع‌گیری در حضور فراوان ترکیبات نمی‌باشد و کارایی ستون‌های مایع بیشتر از سایر روش‌هاست. برای مثال ستون فاز جامد منیتر با C۲۱ و C۱۸ هیپاکیک هم اکنون عمومی حذف بازدارندگی مواد از روش فاز جامد-سابق است (۲۴)، هیپاکیک که حجم میزان تاخیری زیاد باشد، غشاها MSPD دارای کردن فعال مواد با کار رود همچنین خیلی سبب تهیه نشده است و برای تکثیر انواع حشره کش‌های باریک‌ترپنیک، فرآیند کردن و سایر ترکیبات شیمیایی مشابه می‌باشد (۲۱) استخراج با بهبود (ENVI-Carb و Avicel DB-5MS و DB-17MS) SPE از دست وطن برخی از انواع سموم در طی استخراج، وجود اثرات مداخله کننده ناحیه از ماتریکس، خصوصیات آفت کش (به دلیل آن آماده کردن پیشتر دارند،) نوع ماتریکس (موسم و سال) ۱۳۸۴ انجام گرفت.

اسناسی‌های روغن‌های گیاهی، غلظت ماتریکس‌ساز مهور با منظور استفاده به طور معمول دستیابی به حد تشخیص کم و حذف عوامل داخلی گر و ترکیب حجم پیش‌تر نمونه در حال فرآیند با هدایت کمتر به عنوان روشهای (On-Line Column Method) ماتریکس (۱۰) تغییر مقداری می‌توان به کار گرفت (۱۵). روشهای مبنی بر استخراج با استفاده از ترکیبات بسیاری از AOAC در تحلیل نمونه به عنوان روشهای سریع آمریکا پذیرفته شده است. در کشورهای اروپایی روشهای تحلیل محصولات اثرگذار محرومیت، غلافه سازی (۲۰) برخی از HGPC به عنوان روشهای انتخابی غلافه تصفیه شده با منظور شناسایی و تعیین مقادیر سموم را با استفاده از روشهای مانند کرومادیکای مایع به عنوان اجزای لمینه‌گذاری اکسایس در تحلیل نمونه به عنوان روش روشهای بناز (Luke) انگلیسی‌گویی روشهای متصل کردن در حضور فراوان ترکیبات نمی‌باشد و کارایی ستون‌های مایع بیشتر از سایر روش‌هاست. برای مثال ستون فاز جامد منیتر با C۲۱ و C۱۸ هیپاکیک که حجم میزان تاخیری زیاد باشد، غشاها MSPD دارای کردن فعال مواد با کار رود همچنین خیلی سبب تهیه نشده است و برای تکثیر انواع حشره کش‌های باریک‌ترپنیک، فرآیند کردن و سایر ترکیبات شیمیایی مشابه می‌باشد (۲۱) استخراج با بهبود (ENVI-Carb و Avicel DB-5MS و DB-17MS) SPE از دست وطن برخی از انواع سموم در طی استخراج، وجود اثرات مداخله کننده ناحیه از ماتریکس، خصوصیات آفت کش (به دلیل آن آماده کردن پیشتر دارند،) نوع ماتریکس (موسم و سال) ۱۳۸۴ انجام گرفت.

اسناسی‌های روغن‌های گیاهی، غلظت ماتریکس‌ساز مهور با منظور استفاده به طور معمول دستیابی به حد تشخیص کم و حذف عوامل داخلی گر و ترکیب حجم پیش‌تر نمونه در حال فرآیند با هدایت کمتر به عنوان روشهای (On-Line Column Method) ماتریکس (۱۰) تغییر مقداری می‌توان به کار گرفت (۱۵). روشهای مبنی بر استخراج با استفاده از ترکیبات بسیاری از AOAC در تحلیل نمونه به عنوان روشهای سریع آمریکا پذیرفته شده است. در کشورهای اروپایی روشهای تحلیل محصولات اثرگذار محرومیت، غلافه سازی (۲۰) برخی از HGPC به عنوان روشهای انتخابی غلافه تصفیه شده با منظور شناسایی و تعیین مقادیر سموم را با استفاده از روشهای مانند کرومادیکای مایع به عنوان اجزای لمینه‌گذاری اکسایس در تحلیل نمونه به عنوان روش روشهای بناز (Luke) انگلیسی‌گویی روشهای متصل کردن در حضور فراوان ترکیبات نمی‌باشد و کارایی ستون‌های مایع بیشتر از سایر روش‌هاست. برای مثال ستون فاز جامد منیتر با C۲۱ و C۱۸ هیپاکیک که حجم میزان تاخیری زیاد باشد، غشاها MSPD دارای کردن فعال مواد با کار رود همچنین خیلی سبب تهیه نشده است و برای تکثیر انواع حشره کش‌های باریک‌ترپنیک، فرآیند کردن و سایر ترکیبات شیمیایی مشابه می‌باشد (۲۱) استخراج با بهبود (ENVI-Carb و Avicel DB-5MS و DB-17MS) SPE از دست وطن برخی از انواع سموم در طی استخراج، وجود اثرات مداخله کننده ناحیه از ماتریکس، خصوصیات آفت کش (به دلیل آن آماده کردن پیشتر دارند،) نوع ماتریکس (موسم و سال) ۱۳۸۴ انجام گرفت.
Central Science Laboratory

Materials and Methods

Aims and objectives of the study were the development of a method for the determination of volatile organic compounds (VOCs) in indoor air, and the validation of the method against known standards. The study was carried out in a laboratory setting, using a combination of gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) techniques. The samples were collected using a Tenax TA (4mm x 1m) adsorption tube, and analysed using a Varian 3900 GC-MS system. The method was validated against a series of reference compounds, and the results were found to be consistent with the expected values. The study highlights the potential of GC-MS and LC-MS for the analysis of indoor air quality, and the importance of such studies for the development of effective public health policies.
جدول 1. لیست انواع آفت کش‌های بررسی شده در آزمایش‌های سیزیجات

<table>
<thead>
<tr>
<th>کد</th>
<th>حروف</th>
<th>رنگ</th>
<th>شاخص</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-phenylphenol</td>
<td>24</td>
<td>Prochloraz</td>
</tr>
<tr>
<td>2</td>
<td>DDD-pp</td>
<td>43</td>
<td>Fenitrothion</td>
</tr>
<tr>
<td>3</td>
<td>DDE-pp</td>
<td>44</td>
<td>Fenpropatrin</td>
</tr>
<tr>
<td>4</td>
<td>DDT-op</td>
<td>55</td>
<td>Fenvalerate</td>
</tr>
<tr>
<td>5</td>
<td>DDT-pp</td>
<td>56</td>
<td>Flucy thrinate</td>
</tr>
<tr>
<td>6</td>
<td>HCH-gamma</td>
<td>57</td>
<td>Flurochloridone</td>
</tr>
<tr>
<td>7</td>
<td>Atrazine</td>
<td>58</td>
<td>Fusilazole</td>
</tr>
<tr>
<td>8</td>
<td>Atrazine</td>
<td>58</td>
<td>Fenpropatrin</td>
</tr>
<tr>
<td>9</td>
<td>Azoxy strob in</td>
<td>59</td>
<td>2-phenylphenol</td>
</tr>
<tr>
<td>10</td>
<td>Bendiocarb</td>
<td>60</td>
<td>Chlordiflu vin phos</td>
</tr>
<tr>
<td>11</td>
<td>Bifenthrin</td>
<td>61</td>
<td>Deltamethrin</td>
</tr>
<tr>
<td>12</td>
<td>Biph enyl</td>
<td>62</td>
<td>Dicofol</td>
</tr>
<tr>
<td>13</td>
<td>Bromopropylate</td>
<td>63</td>
<td>Dichlorvos</td>
</tr>
<tr>
<td>14</td>
<td>Bupirimate</td>
<td>64</td>
<td>Dichloroflu imide</td>
</tr>
<tr>
<td>15</td>
<td>Buprofesin</td>
<td>65</td>
<td>Dichlofluanid</td>
</tr>
<tr>
<td>16</td>
<td>Captan</td>
<td>66</td>
<td>Dichlofluanid</td>
</tr>
<tr>
<td>17</td>
<td>Carbaryl</td>
<td>67</td>
<td>Dicofol</td>
</tr>
<tr>
<td>18</td>
<td>Carbofuran</td>
<td>68</td>
<td>Dicofol</td>
</tr>
<tr>
<td>19</td>
<td>Chlorfenincphos</td>
<td>69</td>
<td>Dicofol</td>
</tr>
<tr>
<td>20</td>
<td>Chlorpro pham</td>
<td>70</td>
<td>Dicofol</td>
</tr>
<tr>
<td>21</td>
<td>Chlorpyrifos</td>
<td>71</td>
<td>Dicofol</td>
</tr>
<tr>
<td>22</td>
<td>Chlorpyrifos-methyl</td>
<td>72</td>
<td>Dicofol</td>
</tr>
<tr>
<td>23</td>
<td>Chlozolinate</td>
<td>73</td>
<td>Dicofol</td>
</tr>
<tr>
<td>24</td>
<td>Cypermithrin</td>
<td>74</td>
<td>Dicofol</td>
</tr>
<tr>
<td>25</td>
<td>Deltamethrin</td>
<td>75</td>
<td>Dicofol</td>
</tr>
<tr>
<td>26</td>
<td>Dichlofluanid</td>
<td>76</td>
<td>Dicofol</td>
</tr>
<tr>
<td>27</td>
<td>Dichlorvos</td>
<td>77</td>
<td>Dicofol</td>
</tr>
<tr>
<td>28</td>
<td>Dicloran</td>
<td>78</td>
<td>Dicofol</td>
</tr>
<tr>
<td>29</td>
<td>Dicofol</td>
<td>79</td>
<td>Dicofol</td>
</tr>
<tr>
<td>30</td>
<td>Dimethoate</td>
<td>80</td>
<td>Dicofol</td>
</tr>
<tr>
<td>31</td>
<td>Diphenylamine</td>
<td>81</td>
<td>Dicofol</td>
</tr>
<tr>
<td>32</td>
<td>endosulfan (I)</td>
<td>82</td>
<td>Dicofol</td>
</tr>
<tr>
<td>33</td>
<td>endosulfan (II)</td>
<td>83</td>
<td>Dicofol</td>
</tr>
<tr>
<td>34</td>
<td>endosulfan-sulphate</td>
<td>84</td>
<td>Dicofol</td>
</tr>
<tr>
<td>35</td>
<td>Ethion</td>
<td>85</td>
<td>Dicofol</td>
</tr>
<tr>
<td>36</td>
<td>Ethofumesate</td>
<td>86</td>
<td>Dicofol</td>
</tr>
<tr>
<td>37</td>
<td>Ethoprophos</td>
<td>87</td>
<td>Dicofol</td>
</tr>
<tr>
<td>38</td>
<td>Ethoxyquin</td>
<td>88</td>
<td>Dicofol</td>
</tr>
<tr>
<td>39</td>
<td>Etridiazole</td>
<td>89</td>
<td>Dicofol</td>
</tr>
<tr>
<td>40</td>
<td>Etrin fos</td>
<td>90</td>
<td>Dicofol</td>
</tr>
<tr>
<td>41</td>
<td>Fenarimol</td>
<td>91</td>
<td>Dicofol</td>
</tr>
</tbody>
</table>
سنجش میزان باقیمانده انواع آفت کشاورزی در بقیه از سیریجات نازه و گلخانه‌ای

خلاصهٔ سنجش میزان باقی‌مانده انواع آفت کشاورزی در بقیه

با استفاده از آنالیز مکانیزم‌های تاثیرگذاری از نظر باقی‌مانده سومون مناسب از روش‌های است. حساسیت و قرارگیری در سطح عالی این روشهای، انجام کیفی و کمی مقادیر کم باقی‌مانده آفت کشاورزی در محصولات کشاورزی امکان‌پذیر نموده است در انواع (19).

شناسایی و اندerezه گیری باقی‌مانده سومون نمونه‌ها به کمک

دمتگاه گاز کروم‌تارگریافی (3800) (استیکروماتری جرمی) (Varian 3800) (مجهر به لبه بونی) با 3 تكرار انجام گرفت.

DB5-MS (25m × 0.25mm) در مقدار 0.05 نتریق شد. از همیشه (70/99/9) به عنوان گاز حامل استفاده شد. سپس از معادله بالا لیزر در

دقیقه بود. برای رنگ‌ریزی دمایی قسمت گرم کننده 24 دقیقه به طول

انجامید و شناسایی و تعیین مقدار سومون به تفکیک اجزا بر اساس

ونهای صورت گرفت. به جای ترتیب گرفته، دوباره ترتیب به رود مقدار کمی

نمونه تیخیر شده به معیت بیونی، در آتشفشان 100 میکرون به

بکم الکترودها عمل بینش و تجزیه (Ion Trap Detector)

بیون انجام شده و پس از ترتیب هر یک از انواع سومون به طول یون به

نتیجه است در میدان (نرمتر از یکدیگر جدا و اندوزه گیری)

شنده. مطالعه باقی‌مانده سومون با آزادی 100 میکرونی از استاندارد

سومون مورد بررسی به نمونه‌هایی که در تولید آنها هیچ نوع سمی

به کار ترفه بود با 5 تكرار و با غلظت 1 mg/kg انجام شد.

پس از تیخیر حلال با جریان هوا، نمونه کامل

نتایج و بحث

بررسی میزان باقی‌مانده آفت کشاورزی هر 15 میکرومتر در انواع سبزی عرضه شده در میدان اصلی میوه و تربر به تهران به

روش GC/ITMS مورد در نشان داد که 88 درصد از نمونه‌ها دارای انواع

سومون فارغ کش حشره کش و علف کش بودند.

با توجه به حد تنش خصوصی روست اساسی سومون در این تحقیق (50/60mg/kg) انواع باقی‌مانده آفت کشاورزی سومون .

Chlorpyrifos, fenvalerate, شده در نمونه‌ها شامل iprodione و permethrin, fenopropothrin, trifluralin

حاصیت مورد نیاز برای آنالیز محصولات کشاورزی از نظر باقی‌مانده سومون مناسب از روش‌های است. حساسیت و

گریزند. برای تولید محصولات کشاورزی، انجام کیفی و کمی مقادیر کم باقی‌مانده آفتکشاورزی

اکنون برای نموده است در انواع (19).
جدول ۲. مقایسه میانگین یافته‌های اندام آفت‌کش‌های موجود در نمونه‌های بررسی‌شده با Codex MRLs

<table>
<thead>
<tr>
<th>Codex MRLs (mg/kg)</th>
<th>حد بالای اطمینان (mg/kg)</th>
<th>Mean ± S. (mg/kg)</th>
<th>Max (mg/kg)</th>
<th>Min (mg/kg)</th>
<th>باقی مانده سم (mg/kg)</th>
<th>نمونه</th>
<th>رنگ</th>
<th>دسته‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵/۵ **</td>
<td>۹۵۶</td>
<td>۰/۴۲۴ ± ۰/۰۸۸</td>
<td>۰/۴۱</td>
<td>۰/۰۷</td>
<td>Iprodione</td>
<td>۱</td>
<td>خیار گلخانه‌ای زرد</td>
<td>۱</td>
</tr>
<tr>
<td>۵۰/۵ - ۱۱۱/۸ **</td>
<td>۵۹۷</td>
<td>۰/۰۸۵ ± ۰/۰۳۴</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>trifluralin</td>
<td>۲</td>
<td>خیار گلخانه‌ای چشمه</td>
<td>۲</td>
</tr>
<tr>
<td>۲ - ۱۶۶ **</td>
<td>۵۸۸</td>
<td>۰/۱۷۱ ± ۰/۱۳۷</td>
<td>۰/۰۸</td>
<td>۰/۰۷</td>
<td>chlopyrifos</td>
<td>۳</td>
<td>هویج یستن آباد</td>
<td>۳</td>
</tr>
<tr>
<td>۵ - ۹۹۵ **</td>
<td>۸۵۵</td>
<td>۰/۰۳۸ ± ۰/۰۲۵</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
<td>fenpropahrin</td>
<td>۴</td>
<td>کوهه فرنگی بندرعباس</td>
<td>۴</td>
</tr>
<tr>
<td>۱ - ۱۵۵/۰ **</td>
<td>۲۵۲</td>
<td>۰/۰۷۴ ± ۰/۰۲۴</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>Permethrin</td>
<td>۵</td>
<td>کوهه فرنگی بندرعباس</td>
<td>۵</td>
</tr>
<tr>
<td>۱ - ۱۵۵/۰ **</td>
<td>۲۵۲</td>
<td>۰/۰۷۴ ± ۰/۰۲۴</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>fenvalerate</td>
<td>۶</td>
<td>کوهه فرنگی بندرعباس</td>
<td>۶</td>
</tr>
<tr>
<td>۱ - ۱۵۵/۰ **</td>
<td>۲۵۲</td>
<td>۰/۰۷۴ ± ۰/۰۲۴</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>Iprodione</td>
<td>۷</td>
<td>کوهه فرنگی بندرعباس</td>
<td>۷</td>
</tr>
<tr>
<td>۱ - ۱۵۵/۰ **</td>
<td>۲۵۲</td>
<td>۰/۰۷۴ ± ۰/۰۲۴</td>
<td>۰/۰۱</td>
<td>۰/۰۱</td>
<td>Iprodione</td>
<td>۸</td>
<td>کوهه فرنگی بندرعباس</td>
<td>۸</td>
</tr>
</tbody>
</table>

1. وقتی که احتمال معیار میانگین‌ها ۵ یا ۵ صفر باشد، می‌توانم مقدار نیز برای کمیت مورد نظر میانگین انتخاب بندی یزد.
2. وقتی که ۵ یا ۵ صفر باشد، حدود احتمال برای میانگین می‌باشد و یک مقدار است.
جدول ۴: میانگین بازیابی (Mean Recovery ± SE) و تکرار پذیری انحراف معیار نسبی (R.S.D.%) روش GC-ITMS برای سموم شناسایی شده در سیریجات مورد بررسی

<table>
<thead>
<tr>
<th>سم</th>
<th>Mean Recovery ± SE</th>
<th>Mean Recovery ± SE</th>
<th>Mean Recovery ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>iprodione</td>
<td>۹/۱۷ ± ۲/۹۴</td>
<td>۹/۳۴ ± ۲/۱۲</td>
<td>۹/۱۷ ± ۲/۹۴</td>
</tr>
<tr>
<td>fenprothrin</td>
<td>۸/۶۰ ± ۲/۱۷</td>
<td>۸/۶۰ ± ۲/۱۷</td>
<td>۸/۶۰ ± ۲/۱۷</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>۸/۳۲ ± ۲/۳۱</td>
<td>۸/۳۲ ± ۲/۳۱</td>
<td>۸/۳۲ ± ۲/۳۱</td>
</tr>
<tr>
<td>iprodione</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
</tr>
<tr>
<td>fenvalerate</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
</tr>
<tr>
<td>permethrin</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
</tr>
<tr>
<td>phosalone</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
</tr>
<tr>
<td>trifluralin</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
<td>۱۰/۰۲ ± ۲/۴۵</td>
</tr>
</tbody>
</table>

۱. آنتی انزیم‌ها با توجه به Codex MRLs می‌تواند باعث نتایج خلافی باشد. بهتر است در مورد سموم به ترتیب fenprothrin > trifluralin > chlorpyrifos > iprodione توجه شود.

۲. در مقاله Codex MRLs میانگین مقدار کمتر از LD₅₀ در نظر گرفته شد.

۳. این مقاله کنترل شده برای سموم سایر موارد مورد بررسی قرار نگرفت.
شکل 2. میزان 5 نوع باقی‌مانده آفت کمک در 10 نمونه گوجه‌فرنگی گلخانه‌ای برخورداری

3000 میلی‌گرم بهار کریکومر را تقطیع بی‌همیلت در ایجاد مخاطره‌های امنیتی کرده است. بی‌کیفیتی کلیدی آلیاژ
باقی‌مانده سپری روی تخلیص مناسب است. در این تحقیق به موجب نشان شده که باقی‌مانده 105 آفت کمک از روش تخلیص
استفاده نشده با کاهش آن در مراحل پذیرش اثرات عمومی افزایش یابد. کاربری بکار رفته به موجب نشان‌داده و
تعیین کمی باقی‌مانده بسیار معادل این نتایج با تحقیق با تحقیق حاصل از بررسی چنین (92)، سوچو (43)، هایپولوا (18) و
نیسیر(1999) (21) سایری (21) همسایه درد تخصصی
روش‌های کاربردی از این تحقیق برای درصد سپری mgkg⁻¹ برای 10 درصد سپری 0.1 mgkg⁻¹ و
برای 2/5 درصد سپری 0.5 mgkg⁻¹ کلارش شده کم با تحقیقات انجام شده قبلی (2000)، دردیکر (27) اکیما (5) هم‌اکنگی دارد. متقابلیت مطلقین ارزیابی کاریا
روش‌های معیاری معمولاً را قبل از انجام روشن هر روش تجزیه‌ای در نظر می‌گیرند، به طوری که کیک از این پارامترها در
خطر فهر نهایی 5 برای حد تعیین باقی‌مانده سپری نشده می‌شود و
پایه در محدوده 60-110 درصد باشند. در این تحقیق میانگین
باقی‌مانده سپری شناسایی شده با کلیکی GC-ITMS می‌باشد
در نمونه‌های خیار

2/20* گوجه‌فرنگی 30/3 و همیشه 80/1 بوده

شکل 3. میزان باقی‌مانده آفت کمک بر قطعات موکین ۲۵ نمونه هوری

نمونه هوری

است که نماینده مطلوب به‌دست روش اندازه‌گیری در کلیه
مراحل استخراج، تصفیه و آنتی‌زیر بوش (جدول 3).
همچنین میانگین بازیابی و تکرار پذیری انحراف معماری نسبی
این سپری به‌طور محدود در ۱۷-۲۵ و ۲۶-۲۹ بوده
که سه حدا بازیابی تعیین شده (120) و تکرار پذیری
انحراف معماری نسبی (120) تعیین شده توسط اتصالی آریا به
عنوان یکی از معماری‌های تجزیه آزمایشگاهی مناسب
مطلب‌های مورد استفاده (20) از سوی دیگر این باقی‌مانده به‌صورت
بیشتر در تهیه (34) و هایپولوا (18) چه کاریا استخراج
باقی‌مانده سپری از مادریکس که با خواص فیزیکی و شیمیایی
مختلف و زیست‌های تشکیل و تخلیص را در افت‌ویژه‌های با
گرفت اطلاعات به‌دست آمده می‌دانند. بوده است. نیسیر (21) به
پایان (26)، بنیش (27) و بوشه (28) در تحقیقات حضور نشان
داده که دستگاه کاریاگرفتگی گزار- طیف سنجی جرمی به
پرنده مجهز به ردیاب بیونش شیمیایی و الکترونی، تکنیکی با
کارایی بالا در شناسایی و تعیین میزان باقی‌مانده انواع سپری
بیشتر با اندازه‌گیری باقی‌مانده سپری به‌طور کلی در RSA استخراج
آنتی‌زیر بوش در اندازه‌گیری باقی‌مانده آفت کمک‌ها در سیستم‌ها
موفقیت آمیز بوده و تأثیر قابل اعتبار و دقیقه را در بر‌دارشته است.
از نتایج این تحقیق چنین استنباط می‌شود که میزان
باقی‌مانده سپری موجود در سیستم‌ها بر سر به باشند بر
گرفت هیک که آنها در سری‌های خیاری را به‌دست‌آمده.
کشور در انجام این تحقیق و همکاری پرسنل آزمایشگاه‌های انجمن خاک و قدردانی می‌شود.

مباحث مورد استفاده

1. آمار نامه کشاورزی سال زراعی 68-69 معاونت بنیانه ریزی و بودجه و اداره کل آمار و اطلاعات وزارت جهاد کشاورزی 1381.
2. طرح جامع مطالعات الگوی مصرف مواد غذایی خانوار و وضعیت تغذیه‌ای کشور 1379-1380، انجام تحقیقات تغذیه‌ای و صنایع غذایی.
3. عبداللهی، م. 1378، مسمومیت با آفت کش‌ها. شیمی کنگره سراسری سم شناسی و مسمومیت‌های دارویی ایران. دانشگاه علوم پزشکی و خدمات بهداشتی درمانی اهواز.

