تغییرات خواص فیزیک‌شیمیایی و ساختار مولکولی نشانگن تحت تأثیر دما و فشار تشییع

مهسا مجذوبی و علی فر هناکی

(تاریخ دریافت: 89/9/26 ؛ تاریخ پذیرش: 89/2/18)

چکیده

در این تحقیق تأثیر دما و فشار حرارتی می‌تواند در یک مواد غذای شامل اتانول و اکستروزر بر خواص فیزیک‌شیمیایی و ساختار مولکولی نشانگن تحت تأثیر دما و فشار به طور خاص دیلی فیبر است. نتایج نشان داد که ایجاد باعث افزایش غلظت، کاهش و سیکوزتی نموده‌ها می‌شود که خود دلیل بر احتمال شکستگی مولکول‌های نشانگن بود. بعلاوه با تغییرات دمایی و فشار و تغییراتی که ساختار آمالوز

s-value

امپلایکین نموده‌ها با افزایش دما تأکیدی بر تجزیه مولکولی نشانگن خصوصاً آمالوز می‌کردی. به‌ج معادله که ساختار آمالوز

s-value

امپلایکین نموده‌ها با افزایش دما تأکیدی بر تجزیه مولکولی نشانگن خصوصاً آمالوز می‌کردی. به‌ج معادله که ساختار آمالوز می‌کردی. به‌ج معادله که ساختار آمالوز

s-value

امپلایکین مشخص گردید. هنگام زیاد که با کاهش آب مصری بیشتری محصول نهایی افزایش و لی و سیکوزتی آب سرد و نهایی آنها کاهش یافته است. این مشاهدات می‌تواند دلیل بر تأثیر خواص مولکولی نشانگن بر بعضی خواص فیزیکی محصول نهایی باشد که خود اهمیت مطالعات مولکولی را به توجه خواص فیزیکی محصولات آشکار می‌سازد.

واژه‌های کلیدی: نشانگن، اکستروزر، اتانول، ساختار مولکولی، ضریب تنظیم

مقدمه

نشانگن مهم‌ترین منبع انرژی ذخیره‌ای در گیاهان به‌شمار می‌رود که به‌طور در داته غلات (مانند گندم، ذرت و برنج) و در گیاهان غددای (مانند انواع سبز زمینی) یافت می‌شود. از نظر تغذیه‌ای نشانگن تأمین کنندهٔ 12% از انرژی مورد نیاز روغن‌های نشانگن می‌باشد و به ویژه از لحاظ تأمین کالری مورد نیاز روغن‌های سالم قرار می‌گیرد. نشانگنی در شکر، جهان سوم حاوی اهمیت فراوانی می‌باشد. نشانگنی مهم‌ترین دارایی نشانگنی و کاربردهای بیشتر در صنایع غذایی.

1- استفاده‌الومنیو و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز

majzoobi@shirazu.ac.ir

* مسئول مطالعات، پست الکترونیکی

335
(High Performance Liquid Chromatography; HPLC)

نشان دادن که نشانه محلول شده با روش قبل دچار تجزیه می‌گردد (19). وسیع‌ترین و همکارانش نشانه درب ایمپوز بالا را در دمای 140°C و 150°C اینکولوژ به مدت 30 دقیقه حرارت دادن و ساختار مولکولی آن را با استفاده از تکنیک جداسازی بر اساس استفاده مولکول‌ها مورد مطالعه قرار می‌دهند. و نشان دادن که ایمپوز تجزیه می‌گردد (31). در مورد تأثیر اکستروژن بر مولکول‌های نشان دادن کلوئی و همکارانش گندم را با استفاده از ایکستروژن در رطوبت 26-19 در دمای 180-160°C اکستروژن نموده و ساختار مولکولی نشانه را با استفاده از روش ویسکوزیتی (Intrinsic viscosity) گستره و مشاهده گردد (GC) و زیست‌بیولوژی (Light Scattering) گستره. تا این تحقیق نشان داد که بر روی مولکول‌ای که ایمپوز می‌گردد (8). در تحقیق دیگری توسط کمی و همکارانش نشانه گندم با اکستروژن را در بیش از 30 دقیقه روش 100 اکستروژن شد. آنها مطالعات مولکولی خود را توسط روش جداسازی انژام دادن و نشان دادند تا آمپیکین را در طی این فرآیند تجزیه می‌گردد (7). برای و همکارانش با استفاده از تکنیک جداسازی بر اساس اندمازه مولکول‌ها معابد به سیستم افتراق چند راوی یون لیزر

Size Exclusion Chromatography Multi Angle Light Scattering (SEC-MALLS) که اکستروژن در طی این فرآیند اکستروژن را نشان دادند (4).

تعیین این که کدام یک از مولکول‌های سازنده نشانه (آمپوز و آمپیکین) در طی این فرآیند دچار تغییر می‌شوند در تجزیه و تحلیل بهر خواص فیزیکی و عملکردی محصولات اینکولوژ شکل کاربرد دارد (12 و 11). اگرچه این طرح در اینجا مولکول‌های نشانه فرآیند شده از اهمیت بسیار برخوردار است، انجام آزمایشات و تجزیه و تحلیلٔ خواص مولکول‌های پیچیده نشانه دارد. از لحاظ این امر می‌توان به ساختار پیچیده مولکول‌های نشانه رشته‌ها تا ۲۰۰–۱۰۵ دانل است (۱۲ و ۳1). آمپیکین دیگر بین ساکارب سازنده نشانه، دارای ساختار توازنی و شکافته آنست. ساختار آمپوز چهار این دیگر اکستروژن شده به آن واحدی‌های گلوکسی انتقالات (۱۶) در آن خریده می‌گردد. در حدود ۲۵این مولکول‌های شده به آمپوز است که در آن واحدی‌های گلوکسی انتقالات (۱۶) به ساختار اصلی وصل می‌شود که این امر ساختار توازنی با اینکولوژ را ایجاد می‌کند و مولکول‌های انتقالات ۴۰–۷۰ دانل است (۱۱ و ۱۲). تحقیقات مولکولی نشان داده که این انتقالات این ساختار سبب‌ورانیل مولکول‌های خصوصی استخراج اکستروژن می‌شود (۱۲ و ۱۸). سپسیس این انتقالاً فرآیندهای تغییرات ثابت در نشانه و در نتیجه باعث روز خواص عملکردی جدیدی در آن می‌شود (۱۸ و ۹). مطالعه ترین این فرآیندها فرآیندهای در دمای بالا می‌باشد که از انتها آن می‌توان به فرآیندهای اکستروژن و اکستروژن اثر اکستروژن که در آنها از دما و فشار بالا و نیروی بررسی استفاده می‌گردد. فرآیندهای اکستروژن علائم به‌جای اینفراشات نشانه در آب استریت‌ژریون سری عناصر و ایجاد تکنیک‌شناسی چرخه کاربرد دارد (۱۲ و ۹). از فرآیندهای اکستروژن که امرزه کاربرد زیادی در صنایع غذایی دارد در تولید غلات صحبتانه، انتواً اکتشاف‌ها، غذاهای آماده مصرف، غذاهای زمینی و غذاهای می‌شود (۱۲ و ۲۵).
نتیجه‌گیری‌های آزمایشات نشان داد که دو مولکول آمینول و آمیلوبیکین دارای یک طرف‌بندی وسیع از نظر مولکولی می‌باشند و لذا جدا سازی آنها بسیار مشکل است (24، 26 و 32). مخلوط جدایی آمینول و آمیلوبیکین یک مخلوط اصلی و در حین دو عوارض و بحث بین‌آگیر در بیماری از تکیه‌گاه مولکولی بررسی نشانه‌ها می‌باشد (24 و 32). علاوه بر آن جهت دریافت نتایج دقیق لازم است نشانه‌ها به‌طور کامل در حلال مسانسی محیط شود (11 و 37). به‌هیچ‌กรณی حالت نشانه‌ها شده مخلوط 90% دی‌میت سولفانیلید (DMSO) در آب مقرر می‌باشد که می‌تواند تحت شرایط خاصی (دمای 100°) و هم زدن ماده‌های تردیدی به 100% ترکیب گونه‌های مولکولی در حواله 15 (17، 18، 61 و 62). از آن تحقیقات با استفاده از یک روش جدید در مطالعات مولکولی نشانه‌ها که نام تکیه‌گاه اولترا سانتریفیژو از (AUC) ضریب نشانیشن شدن (s-value) آمیلول و آمیلوبیکین تعبیه شده است. این ضریب شاخصی از وزن مولکول‌ها است. انداده‌ها و نشانه‌های مولکول‌ها، اندام‌ها و نشانه‌های فضایی این مولکول‌هاست (24، 26 و 32). به علاوه، مقادیر s-value (مقدار افزایش می‌باشد) (30 و 32) با مقایسه نشانه‌ها رایانه‌ای شده با حالت رایانه‌ای نشانه آن می‌توان به تغییرات مولکولی نشانه‌ها در طی رایانه‌پرداز (17 و 27) یکی از مزایای این روش نسبت به سایر روش‌های مولکولی مدل‌سازی عدم نیاز آن به کالیبراسیون با استفاده از استانداردهای خاص است (30 و 32). به علاوه نیاز به جداسازی مقدرات آمیلول و آمیلوبیکین تعبیه که اینبک مانع خودکینی مخلوط در حلال سایر روش‌های مولکولی نشانه‌های می‌باشد در حالی مناسب کاملاً لازم گردید، زیرا در غیر این صورت به‌طور کامل وجود

نکات

1. در موقعیت‌های مختلف رضایت‌مندی می‌تواند از مخلوط‌های مولکولی استفاده شود.
2. این روش به‌طور کامل در حلال مسانسی محیط شود (11 و 37).
3. مقایسه s-value (مقدار افزایش می‌باشد) (30 و 32) با مقایسه نشانه‌ها رایانه‌ای شده با حالت رایانه‌ای نشانه آن می‌توان به تغییرات مولکولی نشانه‌ها در طی رایانه‌پرداز (17 و 27) یکی از مزایای این روش نسبت به سایر روش‌های مولکولی مدل‌سازی

337
شکل 1. نمودار دما- زمان نمونه‌ها ی نشانگر گندم اتوکلری شده در دمای دمای 130-100 و فشار 15psi

توسط نمونه (1) و خلال DMSO (9/90%) محاسبه گردد.
نسبت این دو زمان ویسکوزیتی نسبی نمونه‌ها (V_{rel}) به دست می‌آید (21).

\[
V_{rel} = \frac{t_0}{t_c}
\]

s-value

اندازه‌گیری به این منظور از دستگاه مدل Beckman Palo Alto ساخت شرکت مخزن نمونه (Centrifuge cell) مخصوصی است که خود از دو محفظه تشکیل شده است. در یکی از محفظه‌ها محکوم 200 میکرونگ نمونه در 380 میلیلیتر DMSO حل شده و در دیگری 400 میکرونگ حلول (9.90%) تریکل گردد. پس از قرار دادن مخزن نمونه به حرارت دوباره و در دمای 300 در داخل روتور دستگاه آزمایش در دمای 60 درجه C، آزمایش در دمای 30 درجة C در سرعت 35000 rpm برای اندازه‌گیری UV محفظه با صورت موج متحرک توسط سیستم نوری رایلی (Rayleigh) در 30 ثانیه یک با کار دارد. و این کار تا زمان که هر مولکول آمیلوز و آمیلوپنتنی کاملاً تنشین شدند و دستگاه دیگر موج حرکتی را نشان داده ادامه نمایش داده که در مجموع حدود هفته ساعت به طول انجامید. سپس برنامه کامپیوتری TCDT تصادفی گرفتگی شده را به منحنی‌هایی DCDT U-tube

بعد به مدت یک دقیقه با سرعت 400 g سرعت ویژه نشان می‌گردد.
سپس ميان گربه‌های داده دار یک فونول- آسید سولفونیک (تیم‌نیک گردد) (21). میزان قند موجود در ماژ فونتی نسبت به وزن کل نشانه‌های 3 کرم (5/3 کرم) با اجتناب وقت نمونه‌ها به آپ در قد در حالی نشانده در آب را مشخص می‌کند. به بیمه ماژ فونتی با عنوان نمونه محلول در DMSO در دمای 20 درجه C در ظروف غیر قابل نفوذ به رطوبت نگهداری شد.

نمب‌های آزمایش یا محلول با استفاده از خشک کن تصفیه خشک گردد و در دمای 130-100 و فشار 15psi

به این جهت انجام مطالعات مولکولی از نمونه‌های خشک شده دمای 300 درجه C و در آب محلولی به 8 mg/ml غلظت داده و در 9/90% DMSO خلق شده. این کار با حرارت دادن نمونه‌ها در دمای 70 درجه C به مدت 30 دقیقه و هم زدن مدای آنها انجام گردد (27) و جهت انجام مطالعات مولکولی روش‌های زیر به کار گرفته شد.

اندازه‌گیری ویسکوزیتی نسبی

ویسکوزیتی نسبی نمونه‌ها که شاخشی از وضعیت مولکولی از لحاظ اندازه و شکل در محلول است توسط روش ویسکوزومتری U-tube

این منظور زمان‌های لازم جهت طی مسافت معمول در 1387
ASME (Megazyme) Cextral BC-21 Firming

Bakery Choice (انگلیسی) تهیه شد
برای انجام آزمایش اکستروزن با کمکی رفت. در این نمونه‌بندی درصد نشانه‌ها به روش آزمایش و با استفاده از کیت شرکت مکزایم (4 مگاژایم) در (30 7/3% تبادل شد (15%). فرمول اکستروزل با استفاده از یکی از اکستروزون‌های شرکت ساخته شده است.

فرمول (کیلوگرم/سیکلوگرام) هم جهت با طول 300 میلی‌متر جهت تهیه شد. میزان ورود مواد جامد 12 kg/h و میزان آب برای تهیه (F=4) مکزایم در (150 میلی‌متر) انرژیابی 375 میلی‌متر و تبادل 75/3% و 95/3% همراه با ظرفیت مشابهی در دستگاه خارج

در این روش ابتدا نمونه‌های پودر درد در آب یا فیبر بکار رفته در (IPA) معلام شدن و سپس توسیع میکروسکوپی مجهز به نور پولاریزه (Polarized light) مورد مطالعه قرار گرفته.

بررسی نمونه‌های کاملاً قابل تشخیص می‌باشد. در حالی که در ابتدا آسیب‌های بی‌دیده در آن با افت و جذب شکل ندارند.

بررسی حالت کریستالی نشانه‌های اکستروزان در این آزمایش پودر نمونه‌های اکستروزان شده با استفاده از محلول نمک فوق آتشیاب (NaCl) در یک گام به‌کامال‌های بسته در دمای 230 درجه سانتی‌گراد و پس از اکسترووزیون با استفاده از شیمکاری باکتری (انگلیسی) مورد مطالعه Bruker Analytical X-Ray System فوربرگرفتند (32).

SME = \frac{\text{مقدار ورودی مواد جامد} \times \text{سرعت پیچ}}{\text{مقدار مواد جامد} \times \text{میزان}} (kg/h)
اندازه‌گیری ویسکوزیتی نمونه‌های اکستروود شده

جهت اندازه‌گیری ویسکوزیتی نمونه‌های اکستروود Rapid Visco Analyser (RVA) استفاده شد. دما، زمان و سرعت در گونه‌ای مشابه آزمایشات قبل تنظیم شد. دمای 940rpm

انتظار بود در 15 گرم آب متغیر در درون ظروف آلیمنومی مخصوص دستگاه وزن شدند و سپس با سرعت

شک دیق‌های رپید یک معنی‌دار دمای 25 درصد شدند. در سرعت قله ویسکوزیتی در این مخلوط برای 18 C/min

گوشید. سپس نمونه‌ها با اندازه‌گیری دمای ثابت 180 C/min دما شدند. در این حالت ویسکوزیتی اوج (Peak viscosity) در دمای 95 درصد شدند. سپس نمونه‌ها در 10 گرم یک معنی‌دار 180 C/min در دمای 95 درصد شدند. سپس نمونه‌ها در این حالت تغییرات شدند. در این مخلوط

ویسکوزیتی نهایی (Final viscosity) در اندلاع‌گیری شد (3 و 27).

مطالعات مولکولی روى ناشست نمونه‌های اکستروود شده

جهت انجام مطالعات مولکولی از روش AUC استفاده گردید و نمونه‌ها با و 80 rpm

DMSO در 35 در دمای 75 یکه نرم در دمای 180 C/min در سرعت مورد آزمایش کار گرفته که در طی این زمان مدل ویسکوزیتی قرار گرفته مدل آپیلور و آپیلیتین تنظیم شده و به آنها در شرایط آزمایش تعیین گردید.

340
تغییرات خواص فیزیکوشیمیایی و ساختار مولکولی نانواده‌های گندم

شکل 5 نمودار تنظیم شدن آمپیلز نمونه‌های اتوکلاور شده در دماهای مختلف به دست آمده با دستگاه AUC نشان می‌دهد. نمونه AUC نمایش داده‌کننده حرارت دیده تا دماهای 800، 80، 600 و نمونه‌های 50، 100، 150، 200، 250، 300 و 350 می‌باشد.

می‌باشد که خود اینجا بر تجزیه این ماده با افزایش درجه حرارت

است. مقایسه ترتیب تنظیم شدن آمپیلز اتوکلاور شده نشان را نشان می‌دهد (شکل 5). این می‌تواند دلیل بر عدم تأثیر حرارت بر مولکول آمپیلز باشد که در این این فراورد ساختار آمپیلز دست تغذیه بانی مانند بررسی تأثیر آمپیلز اکستریون بر نشانه‌های در تغییر سرعت یانه‌های (اردپت اولیه + میزان آب مصرفی جهت نهایی آنها) و نیز مقدار نیاز برای هر SME نمایش دهد شدن. هر 6 تغییرات SME نسبت به رطوبت داخل نشان می‌دهد (شکل 6). این نشان می‌دهد که با افزایش حرارت، مقیاس SME به طور منجر به کاهش می‌باشد. این می‌تواند دلیل با سیستم و سیستم مواد داخل اکستریون با افزایش مقدار آمپیلز باشد که در این امر آن‌ها را لازم جهت حرکت مواد به انتها لوله اکستریون کاهش می‌یابد (14 و 18).

اندازه‌گیری شاخص اینسبست حجم محسوب و دانه‌های نمونه‌ها در هنگام خروج از اکستریون نمونه‌ها به صورت پف کرده در آمده. از لحاظ شکل ظاهری با کاهش مقدار آب مصرفی،

شکل 6 نمودار تنظیم شدن آمپیلز نمونه‌های اتوکلاور شده در دماهای مختلف به دست آمده با دستگاه AUC نشان می‌دهد. نمونه AUC نمایش داده‌کننده حرارت دیده تا دماهای 800، 80، 600 و نمونه‌های 50، 100، 150، 200، 250، 300 و 350 می‌باشد.

کاهش ویسکوزیته نسبی می‌تواند دلیل تجزیه مولکول‌های نشانه‌های باشد (21). اگرچه با انجام این آزمایش نمی‌توان

مشخص کرد که کدام یک از مولکول‌های نشانه‌های دچار تجزیه شده‌داند. کاهش ویسکوزیته می‌تواند به دلیل متقابل شدن مولکول‌ها از لحاظ شکل فضایی نیز باشد. مثلاً نشان داده شکستگی در اتصالات مولکول آمپیلکین می‌تواند شکل آن را تغییر دهند متقابل کرد و در نتیجه ویسکوزیته نسبی را کاهش دهد. در صورتی که می‌توانم تغییر شکستگی در مولکول متقابل آمپیلز ممکن است تأثیر چندانی در ویسکوزیته نسبی این تغییرات (21). با این حال برای دریافت اطلاعات دقیق‌تر از روش AUC مولکولی استفاده شد.

AUC تعیین s-value مولکول‌های نشانه‌های اتوکلاور شده با روش نمودارهای نشانه‌های آمپیلکین و آمپیلز به ترتیب در شکل‌های 4 و 5 نشان داده شده است. در این اشکال مقدار s-value می‌باشد که نشان می‌دهد ایجاد مقدار x محبوب به نقطه اوج هر محدوده روی محور محاسبه می‌شود. نتایج نشان می‌دهد که سیستم شدن آمپیلز پیکربندی نمونه‌های اتوکلاور شده در دماهای 100‌این درجه سانتی گراد نسبت به نمونه شاهد (شکل 4) کاهش دارد (این مقدار به معنای کاهش در وزن مولکولی و اندامزه آمپیلکین 800 درجه سانتی گراد نسبت به نمونه شاهد (شکل 4) کاهش دارد (این مقدار به معنای کاهش در وزن مولکولی و اندامزه آمپیلکین 800 درجه سانتی گراد نسبت به نمونه شاهد (شکل 4) کاهش دارد (این مقدار به معنای کاهش در وزن مولکولی و اندامزه آمپیلکین
پایه‌های خمیر در محل دیواره‌های حباب‌های هوای جداً‌سازی‌شده یودنده می‌باشد. همان‌طور که در تصاویر مشخص است با افزایش اجزای دیسک‌های دیواره‌های هوایی در قسمت اجرای کامل گردیده. این افراد با لیزر افزایش نیروی تغییر حباب‌های هوایی در توزیع و گام‌های آن‌ها در مورد نمونه‌ها و برای بدنش گزارش شده است (18).

مطالعه خواص کریستال‌های مولکول‌ها
با استفاده از دستگاه‌های X-ray اکسکاری، مولکول‌های کریستالی نمونه‌ها به‌دست آمده (شکل 10). نشان‌دهنده غلظت در حاله تغییر‌های به‌کارگیری کریستالی با نام افزایش Au A از شروع نشان دهنده انجام شده است. این ساختار و افزایش مولکول‌های در نمونه‌ها و برای افزایش حجم در این خروج آب دیده می‌شود. در این نمونه‌ها به‌عنوان یک کریستالی ریپ در نمونه‌ها باعث کاهش دانسته‌ای آنها می‌گردد.

مطالعه شکل ظاهری اجزای نمونه‌ها و بررسی وجود
گرانول‌های ناشتا با استفاده از میکروسکوپ نوری
با مشاهده دیواره‌های اکسکاری پیش‌بینی که اثرات در شدت دیده می‌شود در میکروسکوپ نوری تغییرات در ظاهر و شکل این ذرات دیده شد (شکل 9). ظاهر ذرات از حالت ضخامت و شکل به دو دسته عمده قابل تقسیم می‌باشد. یکی اجزای تقریباً کریستال نامفون به‌کارگیری

RVA

نتایج اندک‌گری ویسکوزیته توزیع دستگاه (شکل 11) اندک‌گری ویسکوزیته نمونه‌ها توزیع دستگاه (RVA) نشان داد که نمایی نمونه‌های استرود شده دیوار و پیسکوزیته آب سرد در دمای 150 درجه سانتی‌گراد به‌عنوان میان‌بردار نشان‌دهنده ظرفیت و شیب‌های رونده و دیگر اجزای دیوار دیکش که می‌باید ملاحظه شود. در مورد نمونه‌ها و برای بدنش گزارش شده است (32) WE3 و WE2

WE1

ایجاد کریستال آموزش با نمایاندن نسیم نمونه‌ها باعث کاهش دانسته‌ای آنها می‌گردد.
عکس های مختلف نمونه‌های اکسترودر شده ناشأهای گندم در SME

شکل 7. تغییرات انبساط حجمی نمونه‌های اکسترودر شده ناشأهای گندم در SME

شکل 8. تغییرات دانه‌های نمونه‌های اکسترودر شده ناشأهای گندم در SME مختلف

شکل 6. تغییرات SME با میزان آب مصرفی جهت نمونه‌های ناشأهای گندم در اکسترودر

\[
\begin{align*}
\text{WE1} &= \frac{78}{100} \text{ (kg/h)} \\
\text{WE2} &= \frac{25}{100} \text{ (kg/h)} \\
\text{WE3} &= \frac{75}{100} \text{ (kg/h)} \\
\text{WE4} &= \frac{35}{100} \text{ (kg/h)} \\
\text{WE5} &= \frac{45}{100} \text{(kg/h)}
\end{align*}
\]
شکل ۹ میکروگراف نمونه‌های اکسترود شده نشانه گذم با SME های متفاوت (خط زیر هر شکل ۱۰۰μm). ۱= WE1، ۲= WE2، ۳= WE3، ۴= WE4، ۵= WE5. فرمول‌بندی آب اپ. ۱= WE1 = نمونه تهیه شده با ۲۵ (kg/h)/۱۷۵ (Ap)، ۲= WE2 = نمونه تهیه شده با ۷۵ (kg/h)/۲۵ (Ap)، ۳= WE3 = نمونه تهیه شده با ۷۵ (kg/h)/۷۵ (Ap)، ۴= WE4 = نمونه تهیه شده بدون آب، ۵= WE5 = نمونه تهیه شده بدون آب.

شکل ۱۰. الگوی انکساری نمونه‌های اکسترود شده نشانه گذم با SME های متفاوت (WE1 تا WE5) در مقایسه با آرد گندم X-ray.

شکل ۱۱. نمودار ویسکوزیته آب سرد (در دمای ۷۵°C) به دست آمده از دستگاه RVA نمونه‌های اکسترود شده با SME های متفاوت.
تغییرات خواص فیزیک‌شیمیایی و ساختار مولکولی نشانه‌گذار می‌کنند.

این امر به این دلیل است که نمونه‌های اکستروذ شده به‌دلیل آنکه بیشتر از آن‌ها زلالینه‌شده‌اند، بنابراین حتی در آب سرد هم می‌تواند ویسکوزیتی داشته باشد، حال آنکه آزاد شده قدرت جذب آب در دمای پایین را ناشی‌شده و با افزایش دما است که به تدریج آب جذب کرده اطرافی که پس از رسیدن دما مسطح‌بوده به افزایش ویسکوزیتی در اثر افزایش حرارت عمداً مربوط به جذب آب توسط نشانه‌ها و زلالینه‌شده آن می‌باشد. نشانه‌های گند به‌طور معنی‌دار در هر دمای حرارتی از ۵۵ تا ۷۵ درجه سانتی‌گراد نشانه‌های مولکولی افزایش زلالینه‌شده در دمای زلالینه‌شده گند نشانه‌ها و تغییر بین همه سطح مایعات به دست آمده (شکل ۱۱) نمونه‌های اکستروذ شده در دمای ۵۵ تا ۷۵ درجه سانتی‌گراد زلالینه‌شده قدرت نگهداری آب توسط آنها می‌باشد.

مطالعه خواص مولکولی نمونه‌ها

نمودار نشان‌دهنده شده تغییرات و اکستروذ شده در مقایسه با نمونه‌های اکستروذ شده در دمای ۲۵ درجه سانتی‌گراد در شکل ۱۲ نشان داده شده است. نتایج نشان می‌دهد که مقادیر v-value آمپلیکاتین نمونه‌های SME ۱۸ کمتر می‌باشد. SME

شکل ۱۲. نمودار ویسکوزیتی ناهی نمونه‌هایی اکستروذ شده نشانه‌گذار ME تا دمای (۵۵ درجه سانتی‌گراد)