تیمین ترکیبات شیمیایی و انرژی قابل سوخت و ساز ضایعات کارخانجات ماکارونی و لی پاک کنی در سطوح مختلف

عين الله عبده فرخیه

(تاریخ دریافت: 22/06/1387؛ تاریخ پذیرش: 16/06/1387)

چکیده

بر اساس آمار رسوم سازمان صنایع و معادن در استان آذربایجان شرقی سالهای مقدار 1000 تن ضایعات در کارخانجات تهیه ماکارونی و مقدار 100 تن ضایعات در کارخانجات له پاک کنی تولید می‌شود. برای تعیین ترکیبات شیمیایی و انرژی قابل سوخت و ساز این ضایعات، ابتدا از 10/09 درصد روش نمونه‌گیری تصادفی برای ضایعات اعمال می‌شود. سپس مقدار ماده خشک بین ضایعات، بررسی شد. برای بررسی ضایعات در سطوح مختلف به ترتیب، 5، 10، 20 و ۴۰ درصد ضایعات به ترتیب، 1/5، 1/10 و 1/20 درصد ضایعات به ترتیب و ضایعات له پاک کنی به نسبت 1/10 تن ضایعات، خام، به ترتیب، 1/5، 1/10 و 1/20 درصد ضایعات به ترتیب، با جیره پایه مخلوط شده، جهت تعیین میزان انواع انرژی قابل سوخت و ساز (TME، TMEα، AMEα، AME) ضایعات ماکارونی در سطوح مختلف به ترتیب، 1/5، 1/10 و 1/20 کیلوگرمی در کیلوگرم میزان، ضایعات له پاک کنی در سطوح مختلف به ترتیب، AMEα ضایعات به ترتیب و 1/5، 1/10 و 1/20 کیلوگرمی در کیلوگرم میزان، ضایعات له پاک کنی در سطوح مختلف به ترتیب، به جیره پایه مخلوط شده، با عواصی کلیدی: انرژی قابل سوخت و ساز، ضایعات ماکارونی، ضایعات له پاک کنی

مقدمه

گردد با این انرژی قابل سوخت و ساز (Metabolizable energy) و ترکیبات مواد مغذی آن مشخص گردد. میزان انرژی قابل استفاده مواد خوراکی به دلایل زیر اهمیت بسیار زیادی در تغذیه طیور بخوردار است. اول‌اً: انرژی قابل استفاده، بیشترین هزینه جهت تولید گوشت سفید و خام بوده و را به خود اختصاص می‌دهد.

واژه‌های کلیدی: انرژی قابل سوخت و ساز، ضایعات ماکارونی، ضایعات له پاک کنی

1. کارشناس ارشد مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی، تبریز
2. مسئول مکاتبات، پست الکترونیکی: e_abdi2005@yahoo.com

349
سالن آزمایشی مجهر به دستگاه تهویه مناسب بود و از برنامه 12 ساعت رشته‌ای و 12 ساعت تاریکی استفاده گردید. و میزان روشنایی نیز با وسیله دیم قابل تنظیم بود. برای انجام این تحقیق 28 تطعیف خروس لگنورن سفید باریک، با تاج ساده از سویه های‌لاین (Hy-line) از شرکت پروپر مایری تخم گذاری نموده بود. مخلوطهای خوک‌های بازنده و محل اجرای آزمایشات انتقال داده شد و در مرحال اصلی آزمایشی از 28 تطعیف از خروس‌ها که وزن تقریباً یکسان و برابر با 100.2 گرم داشتند استفاده گردید.

برای تغذیه ضایعات و سطح مختلف آنها این آزمایش در دوره مراحله انجام گرفت.

برای عادت پذیری خروس‌ها به شرایط محیطی جدید معمولاً 14 روز کافی است (16). ولی به دلیل اینکه خروس‌ها مدت زیادی در شرایط کوه بوده و عادت پذیری بهتر آنها به معنی این زمان بیشتر و حدود یک ماه در نظر گرفته شد. در طول مدت عادت پذیری و قبل از انجام مراحله اصلی آزمایشی همه خروس‌ها مطابق توصیه NRC برای مراحل تخم‌گذاری فرا در دو روندی نخورند. بنابراین خرس‌های حاوی ۱۵ روزه در دو تشکیل گذرانده شدند (6 و 12). لازم به ذکر است که آن این دم‌های آزمایش به صورت آزاد در اختیار آنها قرار گرفت. فرمول و ترکیبات جهش‌پذیر پرده در جدول ۱ راهشده است.

بعد از مراحل عادت دهی ۱۸ تطعیف خروس مورد آزمایش ب به ۷ روش که چهارتاپی تخم‌سکندن و سه روش بالاکنی تخم‌سکندن زنگی (Hartley’s test) معنی دار بیشترگی از آزمون هارلتی (A) ضایعات مکارونی در نسبت (15، 30، 45 و ۶۰ درصد) و ضایعات هی‌پاک‌کنی در نسبت (15 و ۴۵ درصد) با جهش‌پذیر مخلوط شده و سپس تغذیه شدند. قبل از شروع تغذیه مقدار خوراکی مصرفی با توزیع دیجینال با حسابی ۴۰/۰ کرم توزین و در داخل ظروف پلاستیکی درب دار ریخته شد و مواد خوراکی مورد آزمایش قبل از مخلوط شدن با جهش‌پذیر آسیاب شده و سپس در نسبت‌های ذکر شده، با خوراکی هی‌پاک‌کنی مخلوط گردیده و در نهایت مجموع جیره‌پذیر و ماده خوراکی ثانوی: مصرف خوراک، جز صورت انتهایی مکارونی با تراکم انرژی قابل استفاده دارد و ثانویه انرژی قابل استفاده دارد.

بنابراین هی‌پاک‌کنی مقدار جهش‌پذیری طیور به‌وجود می‌گردد. میزان اثره‌های انرژی شبیه‌سازی که غذای برای طیور قابل تمرین نیست و وابسته به رابطه میزان انرژی قابل تمرین سوخت و ساز که ماده خوراکی آزمایش‌های بیولوژیکی انجام شد (16).

در کشور ما تاکنون پرونده جامع و کاملاً در مورد ضایعات کارآخنیتی مکارونی صورت نگرفته است. هر چند مطالعات اندکی در مورد ضایعات مکارونی یک کارآخنیت در سال‌های اخیر انجام گرفته و در یک مورد میزان هم‌آنی‌های ضایعات مکارونی و قابلیت هم‌آنی‌های آنها در جوی‌های نوسنگ‌گری ناحیه شده است (21). هدف از اجرای این آزمایش تعبیه انرژی قابل سوخت و ساز و ترکیبات ضایعات مکارونی و ضایعات هی‌پاک‌کنی جهت استفاده در تغذیه طیور و همچنین تعبیه انرژی قابل سوخت و ساز ضایعات مکارونی و ضایعات هی‌پاک‌کنی در سطوح مختلف با استفاده از مداخلات رگرسیون بود.

مواد و روش‌ها
برای انجام این آزمایش، ابتدا از سازمان صنایع و معاونان استان آذربایجان شرقی لیست کارآخنجات همه مکارونی موجود در استان به‌طور گردید که در این لیست‌ها ترکیب تولیدی این کارآخنجات انرژی گذاری شده بود. به ۱۰ دسته این کارآخنجات مراجعه گردید و بر اساس روش نمونه برداری تصادفی طبقه‌بندی شد. نمونه‌برداری انجام پذیرفت. نمونه‌بردی جمع آوری شده به طور جدایی آساس و مخلوط گردیدند. از نمونه‌های جمع آوری شده در نهایت یک نمونه نهایی به‌دست آمد. این تحقیق در آزمایشگاه مناسبی طیور، واقع در مزرعه آموزش پرورش طیور واقع در روساتای آریپاده سی مجتمع آموزشی جهاد کشاورزی استان آذربایجان شرقی انجام گرفت.
جدول 1: فرمول و ترکیبات جیره پایه

<table>
<thead>
<tr>
<th>درصد</th>
<th>ماده خوراکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>71/65</td>
<td>درخت</td>
</tr>
<tr>
<td>27/83</td>
<td>گل سویا</td>
</tr>
<tr>
<td>7/69</td>
<td>پودر استخوان</td>
</tr>
<tr>
<td>0/3</td>
<td>مکمل ویتامین</td>
</tr>
<tr>
<td>0/3</td>
<td>مکمل معدنی</td>
</tr>
<tr>
<td>0/2</td>
<td>نمک</td>
</tr>
<tr>
<td>0/2</td>
<td>میتوین</td>
</tr>
</tbody>
</table>

له‌های و مواد مغذی موجود در جیره پایه

<table>
<thead>
<tr>
<th>انرژی قابل مصرف (کیلوکالری بر کیلوگرم)</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/98</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>بروزی خام</td>
</tr>
<tr>
<td>2/9</td>
<td>چربی خام</td>
</tr>
<tr>
<td>3/2</td>
<td>ایف خام</td>
</tr>
<tr>
<td>1/5</td>
<td>کلسیم</td>
</tr>
<tr>
<td>0/728</td>
<td>فسفر قابل استفاده</td>
</tr>
<tr>
<td>0/16</td>
<td>آرزه نیتر</td>
</tr>
<tr>
<td>0/33</td>
<td>میتوین</td>
</tr>
<tr>
<td>0/6</td>
<td>میتوین + سیستین</td>
</tr>
<tr>
<td>0/265</td>
<td>لیزین</td>
</tr>
</tbody>
</table>

مورد آزمایش ۲۵ گرم بود.

از ۲۸ قطعه خروس با گروه چهارتایی به عنوان شاهد تا مقایسه با آزمایشگاه مانند و یک گروه چهارتایی جیره پایه را دریافت کردند و هر جیره نیز به ۴ قطعه از خروسها خورانده شد. به‌دنبال دوره ۳۴ ساعت گرسنگی برای خروسها در نظر گرفته شد. هدف از این اقدام تحلیل کامل دستگاه گوارش از خروس اکلی بود. سپس تغییرات اجباری انجام شد و فضولات خروسها به مدت ۴۶ ساعت جمع آوری گردید. برای اینکه زمان اختصاص داده شده برای هر آزمایش ۷۲ ساعت بود و در دوره استراحت بین دو آزمایش نیز

خروسها با جیره پایه تغذیه شدند (۱۴). پس از تغذیه اجباری، خروسها به فسی‌های شماره‌گذاری شدند و سپس هر نمونه‌ای که با زور‌های آلمینیومی پوشانده شده بود در زیره سیستم به‌طور چگالی قرار گرفت. برای اطمینان از جمع آوری مساقنگی آلمینیومی و گل‌سیسیگی با مواد خارجی از روش پیشنهادی سیبالاد استفاده از کیسه‌های جمع آوری کننده مساقنگی به تغییرات مخصری در وسایل کار استفاده شد (۲۰).
نتیجه دریافتی (۱۸) مقدار پروتئین خام ضایعات ماکارونی در افزایش نسبت به ۲۲۲۵ کیلوکاری در کیلوگرم گریز کرد. که در مقایسه با مقدار پروتئین خام و افزایش ضایعات ماکارونی مورد آزمایش در این پژوهش، مقدار کمتری می‌باشد و لی این اختلاف بسیار ناچیز می‌باشد. یا

توجه به اینکه این نتایج ضایعات با کارکرده‌ها مورد آزمایش قرارداده باشد و لی این پژوهش از ۲۰ تا ۱۰ کلیه این کتاب خانجات تهیه‌داری شده است، لذا این اختلافات کاملاً تطبیقی به نظر می‌رسد. نتایج این آزمایش از نظر پروتئین خام ضایعات ماکارونی با نتایج یک دیگر خویش زیادی دارد (۲۱). نتایج یک پژوهش دیگر نیز از این نتایج خام نتایج به‌دست آمده در این تحقیق را تأیید و نتایج نشان می‌دهند که ضایعات ماکارونی یک منبع خوب از آنزیم (۱۸).

انواع آنزیم قابل تولید گریز‌های حاوی سطوح مختلف ضایعات ماکارونی در جدول ۲ آراشی شده است. همان‌طور که
در جدول ۲، مشخص است که این انواع گریز‌های حاوی مقدار مختلف ضایعات ماکارونی اختلاف معنی‌داری وجود داشت (۵/۰ >۵). با افزایش نسبت ضایعات ماکارونی به گریز یا به، انواع آنزیم قابل تولید گریز به‌صورت خصی افزایش یافته، به‌دست آمده از انواع آنزیمی مربوط به گریز حاوی ۱۰۰ درصد ضایعات ماکارونی و کمترین آنزیم مربوط به گریز حاوی لی معرفی ضایعات ماکارونی با همان گریز یا به، با خدمات اینکه آنزیم ضایعات ماکارونی بیشتر می‌باشد. لذا با افزایش

نتیجه ضایعات ماکارونی به گریز یا به، انواع آنزیم قابل سوخت و ساز گریز افزایش یافته، پروتئین‌های خوراکی به گریز پایه انواع آنزیم قابل تولید گریز‌های حاوی سطوح مختلف

نتیجه به گریز پایه اندوزگي شدهاند. در جدول ۴ آراشی شده

است. یا

با توجه به جدول ۴ منابع می‌گردد که انواع آنزیم قابل مقدار ضایعات ماکارونی در سطوح مختلف تفاوت

معنی‌داری دارند (۵/۰ > ۵). پیش‌بینی‌ای از رابطه به

درخت (۱۱) می‌باشد. این مسئله احتمالاً می‌تواند به دلیل اختلاف در گونه

مراجع: ترکیبات شیمیایی و انرژی قابل سوخت و ساز ضایعات کارکرده‌های...
جدول ۲. ترکیب مواد مغذی ضایعات غذایی مورد آزمایش

<table>
<thead>
<tr>
<th>ماده</th>
<th>خاکستر</th>
<th>پروتئین</th>
<th>قرص</th>
<th>عصاره عاری از (NFE)</th>
<th>نیتروزن</th>
<th>پروتئین در قرص (در کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیواره سلولی بدون هم سلوز (ADF)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(کیلوگرم)</td>
</tr>
<tr>
<td>دیواره سلولی (NDF)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(٪)</td>
<td>(کیلوگرم)</td>
</tr>
<tr>
<td>ماکارونی</td>
<td>۱/۷</td>
<td>۰/۰۵</td>
<td>۲/۳</td>
<td>۷/۸</td>
<td>۸/۸</td>
<td>۲/۳</td>
</tr>
<tr>
<td>۴۴۸۷</td>
<td>۴۵۴۹</td>
<td>۳۳/۳</td>
<td>۷۳</td>
<td>۹۴/۳</td>
<td>۱/۹۸</td>
<td>۹/۸</td>
</tr>
</tbody>
</table>

۱- Nitrogen Free Extract ۲- Neutral Detergent Fiber ۳- Acid Detergent Fiber

جدول ۳. مقایسه میانگین انواع انرژی قابل متابولیسم جب مصرف در مقدار متوسط ضایعات ماکارونی وجب پایه (کیلوگرام بر کیلوگرم)

<table>
<thead>
<tr>
<th>نسبت ضایعات ماکارونی به جب پایه</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TME<sub>n</sub></td>
<td>TME</td>
</tr>
<tr>
<td>۳۲۰۶<sup>a</sup>±۱۱</td>
<td>۳۱۸۰<sup>b</sup>±۳۰</td>
</tr>
<tr>
<td>۲۳۹<sup>a</sup>±۳۰</td>
<td>۲۲۲۷<sup>b</sup>±۶</td>
</tr>
<tr>
<td>۲۳۸<sup>a</sup>±۳۵</td>
<td>۲۲۷۱<sup>b</sup>±۱۰</td>
</tr>
<tr>
<td>۲۵۱<sup>a</sup>±۳۱</td>
<td>۲۵۱<sup>a</sup>±۱۳</td>
</tr>
<tr>
<td>۵۹۴<sup>a</sup>±۲۵</td>
<td>۵۹۴<sup>a</sup>±۲۵</td>
</tr>
<tr>
<td>۷۵۲<sup>a</sup>±۲۲</td>
<td>۷۵۲<sup>a</sup>±۲۲</td>
</tr>
<tr>
<td>۴۹۲<sup>a</sup>±۳</td>
<td>۴۹۲<sup>a</sup>±۳</td>
</tr>
<tr>
<td>۶۱۴<sup>a</sup>±۴</td>
<td>۶۱۴<sup>a</sup>±۴</td>
</tr>
<tr>
<td>۱۴/۲</td>
<td>۱۴/۲</td>
</tr>
</tbody>
</table>

در هر سطح ارقامی که دارای جدول ضایعات هستند، اختلاف معنی‌داری در دارد (P<۰/۰۵).

۱. انرژی قابل متابولیسم جب = AMEn
۲. انرژی قابل متابولیسم جب حقيقی = TME
۳. میانگین ± خطای معیار

۳۵۴
جدول ۲: مقایسه میانگین انواع انزیم قابل متاپالیسیم ضایعات ماکارونی در سطوح مختلف (کیلوکارایی در هر کیلوگرم)

<table>
<thead>
<tr>
<th></th>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>AME<sub>n</sub></th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۲۰±۱۱</td>
<td>۳۱۸۰±۳۰</td>
<td>۲۹۱۵±۱۱</td>
<td>۲۸۵۴±۳۰</td>
<td>۰</td>
</tr>
<tr>
<td>۳۳۴۰±۲۴</td>
<td>۳۷۳۹±۲۴</td>
<td>۳۵۴۲±۲۴</td>
<td>۳۴۳۱±۲۴</td>
<td>۱۵</td>
</tr>
<tr>
<td>۳۰۸۴±۵۵</td>
<td>۳۲۲۳±۵۵</td>
<td>۲۹۷۲±۵۵</td>
<td>۲۸۹۸±۵۵</td>
<td>۳۰</td>
</tr>
<tr>
<td>۳۷۷۴±۲۰</td>
<td>۳۴۸۴±۲۰</td>
<td>۳۳۳۲±۲۰</td>
<td>۳۲۵۱±۲۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۳۸۴۸±۱۸</td>
<td>۴۱۱۴±۱۸</td>
<td>۳۸۲۸±۱۸</td>
<td>۳۶۸۸±۱۸</td>
<td>۵۰</td>
</tr>
<tr>
<td>۷۹۱۹±۳۷</td>
<td>۷۶۸۱±۳۷</td>
<td>۷۵۴۹±۳۷</td>
<td>۷۳۱۴±۳۷</td>
<td>۷۵</td>
</tr>
<tr>
<td>۷۹۶۲±۱۹</td>
<td>۷۹۵۲±۱۹</td>
<td>۷۹۲۴±۱۹</td>
<td>۷۸۱۷±۱۹</td>
<td>۹۰</td>
</tr>
<tr>
<td>۳۸۱۹±۱۹</td>
<td>۳۹۴۴±۱۹</td>
<td>۳۸۱۷±۱۹</td>
<td>۳۷۱۷±۱۹</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

۱. میانگین ± خطای معیار

در هر ستون، تفاوت به‌طور احتمالی در اختلاف معیاری می‌باشد (P<0.05).

پرپناند مورد آزمایش باشد اکثر چه سیالا از آزمایش رود خرده‌های گندم که در خروش‌های بالغ و بوکومون تفاوت TME معنی دارد نیافته است، به نظر می‌رسد دلیل تفاوت بین ضایعات ماکارونی در تحقیق حاضر و بوکومون می‌تواند ناشی از مواد خام مورد استفاده در تهیه ماکارونی از قبل نوع آرد گندم یا وجود افزوده‌ها در ماکارونی مورد استفاده در مطالعه ملکر باشد. غلبه بر آن نحوه فرآیند ماکارونی و فن آوری به کار رفته در آن نیز می‌تواند در این تفاوت دلیل باشد.

امنیتی AME_n و AME ضایعات ماکارونی را بهتر ترتیب می‌دهد که در جدول ۳، در کیلوگرم گریازش کرده‌که از پلاکی به‌دست آمده در این تحقیق اندازه کمتر معیار. با توجه به اینکه این آزمایش ماکارونی در آزمایش رود کمتر بود از می‌توان اندازه‌ی کمتر قابل متاپالیسیم آن نیز کمتر باشد. ولی این نتایج دلیل بهتری به ماکارونی را از یک به‌بیشتر بودن افزوده‌های خام ضایعات

۳۵۶
جدول ۵. روابط بین سطوح مختلف ضایعات ماکرونی در جیره پایه (X) با میزان انواع انرژی قابل سوخت و ساز

مخلوط جیره پایه و ضایعات ماکرونی (Y)

<table>
<thead>
<tr>
<th>انواع انرژی قابل سوخت و ساز ضایعات ماکرونی (X)</th>
<th>ضریب تین ۲ (R۲)</th>
<th>ضایعات محاسبه انرژی قابل سوخت و ساز ضایعات ماکرونی</th>
<th>AME</th>
<th>AMEn</th>
</tr>
</thead>
<tbody>
<tr>
<td>سوزن و ساز</td>
<td>۰.۹۶</td>
<td>Y=۲۰۱۷۷+۰/۴۷X</td>
<td>AME</td>
<td>AMEn</td>
</tr>
<tr>
<td>نرم افزار</td>
<td>۰.۹۶</td>
<td>Y=۲۰۸۷۰+۰/۷۲X</td>
<td>TME</td>
<td>TMEn</td>
</tr>
<tr>
<td>نرم افزار</td>
<td>۰.۹۴</td>
<td>Y=۲۳۲۰+۰/۴۲X</td>
<td>AMEn</td>
<td>AME</td>
</tr>
<tr>
<td>نرم افزار</td>
<td>۰.۹۵</td>
<td>Y=۲۰۹۷۰+۰/۵۵X</td>
<td>AME</td>
<td>AMEn</td>
</tr>
</tbody>
</table>

جدول ۶. مقایسه میانگین انواع انرژی قابل سوخت و ساز جیره‌های حاوی مقدار متغیر ضایعات لی‌پاک‌کنی

<table>
<thead>
<tr>
<th>نسبت ضایعات لی‌پاک‌کنی به جیره پایه</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMEn</td>
<td>TME</td>
</tr>
<tr>
<td>۳۰۲۰۴±۱۱</td>
<td>۳۱۸۰۴±۱۱</td>
</tr>
<tr>
<td>۲۰۵۱۹±۵۵</td>
<td>۳۱۹۷۴±۵۵</td>
</tr>
<tr>
<td>۲۹۳۵۱±۶۵</td>
<td>۲۹۳۵۱±۶۵</td>
</tr>
</tbody>
</table>

- میانگین ± خطای معیار
- در هر ستون، ارقامی که دارای حروف متفاوت هستند، اختلاف معنی‌داری دارند (P<0/05).

آمیالاز که با آنزیم‌های گوارشی تقابل دارد همچنین به موادی که به صورت غیر مستقیم در هضم و جذب دخالت دارند از قبیل لکتن‌های تانن، آلفا-گالاکتوزید و پلی‌سازه‌ها و غیر
نشسته‌ای محلول اشتهار کرده (1).

جدول ۶ توضیح داده شده است.

با انواع نسبت ضایعات لی‌پاک‌کنی انواع انرژی قابل

متانول‌سی جیره کاهش یافته، زیرا انرژی ضایعات لی‌پاک‌کنی

نسبت به جیره پایه کم‌تر، هر چند با انواع نسبت آن انرژی

بطری معنی‌داری کاهش یافته، همچنین لی‌پاک‌کنی به دلیل اثرات ضد

تغذیه‌ای است که می‌تواند قابلیت هضم را تحت تأثیر قرار دهد.

از این نتایج می‌توان به ممانعت کندن‌های پرتوشیم و
جدول ۷. مقایسه میانگین انواع آنزیم قابل سوخت و ساز پلاکتین در سطوح مختلف (کیلوکالری بر کیلوگرم)

<table>
<thead>
<tr>
<th>TME</th>
<th>TME</th>
<th>AME</th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>238.9 ± 31</td>
<td>238.9 ± 31</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>278.8 ± 39</td>
<td>278.8 ± 39</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

1. میانگین ± خطای معیار

لیبه که به ترتیب ۲۷۸.۸، ۲۷۸.۸ و ۲۵۷.۸ بود، بیشتر میزان تحریک خام در ضایعات لیه پاکتکنی ۸۸ درصد می‌باشد. در حالی که میزان چربی خام در ناحیه ۱۳ درصد گزارش شده است. به دلیل اینکه بخش قابل توجهی از ضایعات لیه پاکتکنی را جویانه تشکیل می‌دهد و میزان چربی خام و پروتئین خام جویانه بیشتر می‌باشد. لذا بیشتر بودن انرژی قابل متابولیسم ضایعات لیه پاکتکنی از ناحیه ۱۳ درصدی بودن چربی

منابع مورد استفاده

1. آگاه، م. ج. پور، درون، ج. و م. ن. رحمانی. ۱۳۸۳. تعبین ارزش غذایی و استفاده از نخود خام، پخته و خیسانده شده در نوع جوجه‌های گوشی. اولین کنگره علوم دامی و آموزش کشاورزی، دانشگاه نیشابور.

2. احمدی، ب. ۱۳۸۰. استفاده از ضایعات مکاوانی در نوع جوجه‌های گوشی. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه کشاورزی، تبریز.

3. به نام، م. ۱۳۸۰. لیسه و واحدهای تولیدی فعال استان آذربایجان شرقی. اداره صنعتی و بهره‌وری سازمان صنایع و معدن، تبریز.

4. هجی، د. ۱۳۷۴. بررسی اثر سطوح مختلف ضایعات کارخانجات مکاوانی در نوع جوجه‌های گوشی. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه آزاد اسلامی واحد کرج.

5. قصیری، ع. س. تنزیلی، ف. ع. و عباسیان، ص. ۱۳۷۸. مجموعه مقالات دومین سمینار پژوهشی تغذیه دام و طیور کشور، مؤسسه تحقیقات علوم دامی کشور، کرج.

