تعمین تركیبات شیمیایی و ارزی قابل سوخت و ساز ضایعات کارخانجات ماکارونی
و لپ پاکتی در سطوح مختلف

عين الله عبدي فلوجه

(تاریخ دریافت: 22/9/86، تاریخ پذیرش: 8/9/87)

چکیده

بر اساس آمار رسوم سازمان صنایع و معادن در استان آذربایجان شرقی سالهای مقدر 1380-1387، ضایعات در کارخانجات تهیه ماکارونی و مقدار 350 تن ضایعات در کارخانجات لپ پاکتی تولید می‌شود. برای تعمین تركیبات شیمیایی و ارزی قابل سوخت و ساز این ضایعات، ابتدا از 10% کارخانجات بر اساس روش نمونه‌گیری تصادفی به‌کار گرفته شده، نمونه‌برداری به‌عمل آمده. پسی مقدار ماده خشک، پروتئین خام، البرنامه، تهیه می‌شود. در این مدل، ضایعات ماکارونی به ترتیب صفر، ۱/۲، ۲/۴، ۴/۸ و ۰/۱ درصد و در ضایعات لپ پاکتی به ترتیب صفر، ۰/۳، ۰/۵ و ۰/۷ درصد ضایعات ماکارونی در سطوح مختلف به ترتیب ۵۰، ۲۵ و ۰ درصد می‌باشد. به‌طور کلی، آزمایش‌ها نشان داد که در سطوح مختلف ضایعات به‌ترتیب ۵۰-۲۵-۰ درصد با جیره پاپه مخلوط شده. جهت تعمین میزان انواع ارزی قابل سوخت و ساز (TME، TME، AME و AME) اجباری به‌صورت مخلوط شده به روش تغذیه بیشترین انرژی قابل سوخت و ساز ضایعات ماکارونی در سطوح مختلف انتخاب شده. پژوهش‌ها نشان داد که در سطوح مختلف ضایعات لپ پاکتی در ۳۵ تا ۳۰ درصد به‌جای با پاپه خود استفاده می‌کنند.

واژه‌های کلیدی: انرژی قابل سوخت و ساز، ضایعات ماکارونی، ضایعات لپ پاکتی

مقدمه

گردید با این انرژی قابل سوخت و ساز (Metabolizable energy) و ترکیبات مواد مغذی آن مشخص گردید. میزان انرژی قابل استفاده مواد خوراکی به دلیل زیست‌آمیزی بی‌سیار زیادی در تغذیه طیور برخوردار است. اول‌اً، انرژی قابل استفاده، بیشترین هزینه جهت تولید غوشت سفید و تخم مرغ‌ها به‌خود اختصاص می‌یابد.

(1) میزان ضایعات در کارخانجات تهیه ماکارونی و مقدار 0/75 تن ضایعات در کارخانجات لپ پاکتی تولید می‌شود.

۳۴۹
سالن آزمایشی، مجهز به سگشگاه تهویه مناسب بود و از برناه‌ او 12 ساعت روشنایی و 12 ساعت تاریکی استفاده گردیده و میزان روشنایی نیز به وسیله دیوار قابل تنظیم بود. برای انجام این تحقیق 28 تطبیق خروس به استان کتبوری نسبت به تنظیم‌های لاین (Hy - line) و همگونی خربزاری، درون و محیط آزمایش انتقال داده شد و در مراحل اصلی آزمایش از 28 تطبیق از خروس‌ها که هر تطبیق به‌طور مشترک یکسان و برای یک تکرار داشتند استفاده گردید.

برای تغذیه ضایعات و سطح مختلف آنها، این آزمایش در دو مرحله گرفته شد. برای عادات پذیرش خروس‌ها به شرایط محیطی جدید 40 روز ناپات‌ست (14) و به دلیل اینکه خروس‌ها مدت زیادی در منابع زندگی کرده بودند، برای عادات پذیرش بهتر آنها با محیط این زمان بیشتر و حذف یک ماه در نظر گرفته شد. در طول مدت عادات پذیری و قبل از انجام مراحل اصلی آزمایش همه خروس‌ها مطابق توصیه NRC برای مرغان تخم‌گذاری با جهت‌های حاصل 15 درصد بروز خامه به دوره‌ای 8 هفته‌ای شدند (3 و 12). لازم به ذکر است که آنها در تمام داده آزمایش به صورت آزاد در اختیار آنها قرار گرفت. فرمول و ترکیبات آنها در جدول 1 آراچه شده است.

بعد از مرحله عادات دهی، 88 تطبیق خروس مورد آزمایش به 7 گروه چهارتاپی تقسیم شدند و برای ناشان‌دادن تفاوت اکتاپی (Hartley's test) معمولی این گروه را از آزمایش هارتیلی (آزمایش بین گروه‌های واریانس گروه‌های استانکه‌شده (9) ضایعات مکارونی در 7 نسبت (15، 30، 50، 75، 90 و 100 درصد) و ضایعات لیه‌باکتوپاتی در 2 نسبت (15 و 45 درصد) با جهت یابه مخلوط شده و سپس تغذیه شدند. قبل از شروع تغذیه مقادیر خوراک مصرفی با نانوایی دیجیتالی با حساسیت 0/01 گرم توزین و در داخل ظروف پلاستیکی درج داد ریخته شد و مواد خوراکی مورد آزمایش قبل از مخلوط شده با جهت‌های آسیب‌های شده و سپس در نسبت‌های ذکر شده، با خوراک پایه کاملاً مخلوط گردیده و در نهایت مجموع جیره پایه و مناده خوراکی

ثانیاً: مصرف خوراک، جزند انتها رابطه مکروسی با تراکم انرژی قابل استفاده ذاکر و ناشی از تراکم استفاده برای طیور یک نیاز ضروری ومهم جهت باقی آنهاست (15). بنابراین اهمیت تغذیه دانان موارد خوراکی در تنظیم چرخه‌های طیور به‌خوبی روشن می‌گردد. مناسب‌ترین همه انتزاع شیمیایی به‌طور قابل دسترس نیست و باید برای تغذیه موارد انرژی قابل سوخت و ساز برای خوراکی آزمایش‌های پیژودیکی انجام شود (12).

در کشور ما ناکوشش پرورشی جامع و کامل در مورد ضایعات کارکرده‌های ماکارونی صورت نگرفته است، هرچند مطالعات اندکی در مورد ضایعات ماکارونی یک کارکرده‌که در بهترین خود آزمایش‌های آزمایش‌های به‌طوری که در این مورد اقدام انجام شده است (21). هدف اجرا ان آزمایش تغذیه قابل صورت و ساز و ترکیبات شیمیایی ضایعات ماکارونی و ضایعات لیه پاک‌کنی به‌طور میانگین تغذیه قابل صورت و ساز ضایعات ماکارونی و ضایعات لیه پاک‌کنی در سطح مختلف با استفاده از عملاصل 350
جدول ۱. فرمول و ترکیبات جیره پایه

<table>
<thead>
<tr>
<th>مرحله</th>
<th>ماده خوراکی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۵</td>
<td>ذرت</td>
</tr>
<tr>
<td>۲/۳</td>
<td>کنجال سویا</td>
</tr>
<tr>
<td>۴/۷</td>
<td>پودر استخوان</td>
</tr>
<tr>
<td>۲</td>
<td>مکمل ویتامینی</td>
</tr>
<tr>
<td>۲</td>
<td>مکمل معدنی</td>
</tr>
<tr>
<td>۱/۲</td>
<td>نمک</td>
</tr>
<tr>
<td>۱/۱۴</td>
<td>میوتونین</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نتایج و مواد مغذی موجود در جیره پایه

<table>
<thead>
<tr>
<th>انرژی قابل مصرف (کیلوکالری بر کیلوگرم)</th>
<th>۲۹۰۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین خام (%)</td>
<td>۱۵</td>
</tr>
<tr>
<td>جربی خام (%)</td>
<td>۲/۹</td>
</tr>
<tr>
<td>الایاف خام (%)</td>
<td>۳/۲</td>
</tr>
<tr>
<td>گلیز (%)</td>
<td>۱۰/۵</td>
</tr>
<tr>
<td>فسفر قابل استفاده (%)</td>
<td>۷/۳۸</td>
</tr>
<tr>
<td>آزیس تین (%)</td>
<td>۱/۶</td>
</tr>
<tr>
<td>میوتونین (%)</td>
<td>۰/۳</td>
</tr>
<tr>
<td>میوتونین + سیستنین (%)</td>
<td>۰/۶</td>
</tr>
<tr>
<td>الیزیر (%)</td>
<td>۰/۶۵</td>
</tr>
</tbody>
</table>

مورد آزمایش ۲۵ گرم بود.

از ۶۸ گروه خروس، یک گروه به عنوان شاهد تشخیصی شده‌بود. در شهر ترکیبات جیره پایه از میدانی و شرایط محلی متفاوت به وسیله محیط اقتصادی و اجتماعی تولید شده‌بود. در پژوهش‌ها و تحقیقاتی که انجام شده‌بود، نشان داده شد که این گروه در این مطالعه نسبت به پیشرفت در اعمال سیستم‌های جیره چهار بانی‌ها را دارد. در این گروه، نسبت به ۲۳ قطره‌ای خروس‌های خانوادگی، شاهد به‌طور مشابه، در هر آزمایش ۲۲ ساعت متغیر گرستگی پایی خروس‌ها در نظر گرفته شد. هدف از این اقدام تولید گزارش‌های کاملاً دستگاه گزارش خروس‌های قابل بود. سپس تغذیه انجایی کننده مستقیم‌ها به مدت ۳۸ ساعت جیره آزمایش ۲۲ ساعت بود و در دوره استراحت بین ذMassage آزمایش نیز خروس‌ها با جیره پایه که به عنوان شاهد در بر زدند (۱۴). پس از اعمال سمینار، خروس‌ها به قسمت‌های شماره گذاری شده بود.
شدن در دمای ۳۰۰ درجه سانتی‌گراد به دست آمده‌است. این نتایج اشاره‌هایی به سطح سطحی و در دمای ۳۰۰ درجه سانتی‌گراد به دست آمده‌است.

انتهایی از دمای ۳۰۰ درجه سانتی‌گراد به دست آمده‌است.

نتایج و بحث

تغییرات مواد غذایی و ضایعات کارخانه‌ای مانند مصرف کالا به دست آمده‌است.

امنیت‌های اولیه از دمای ۳۰۰ درجه سانتی‌گراد به دست آمده‌است.

نتایج و بحث

تغییرات مواد غذایی و ضایعات کارخانه‌ای مانند مصرف کالا به دست آمده‌است.

امنیت‌های اولیه از دمای ۳۰۰ درجه سانتی‌گراد به دست آمده‌است.
نتیجه ترکیب شیمیایی و انرژی قابل سوخت و ساز، ضایعات کارگاهی...

۳۵۳
جدول ۲. ترکیب مواد مشتق شده از گذاری مورد آزمایش

<table>
<thead>
<tr>
<th>تراکم 1</th>
<th>تراکم 2</th>
<th>تراکم 3</th>
<th>تراکم 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>تناری 1</td>
<td>تناری 2</td>
<td>تناری 3</td>
<td>تناری 4</td>
</tr>
<tr>
<td>دیوگر</td>
<td>دیوگر</td>
<td>دیوگر</td>
<td>دیوگر</td>
</tr>
<tr>
<td>NDF</td>
<td>NDF</td>
<td>NDF</td>
<td>NDF</td>
</tr>
<tr>
<td>NFE</td>
<td>NFE</td>
<td>NFE</td>
<td>NFE</td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>کیلوگرم</td>
<td>کیلوگرم</td>
<td>کیلوگرم</td>
</tr>
<tr>
<td>ماده</td>
<td>ماده</td>
<td>ماده</td>
<td>ماده</td>
</tr>
<tr>
<td>خاکستر</td>
<td>خاکستر</td>
<td>خاکستر</td>
<td>خاکستر</td>
</tr>
<tr>
<td>تراکم</td>
<td>تراکم</td>
<td>تراکم</td>
<td>تراکم</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>میزان</td>
<td>میزان</td>
<td>میزان</td>
<td>میزان</td>
</tr>
</tbody>
</table>

جدول ۳‌ مقایسه میانگین انواع انرژی قابل متابولیسم جیره‌های حاوی مقدار منفی درصد ضایعات ماکارونی

<table>
<thead>
<tr>
<th>TME</th>
<th>TME</th>
<th>ME</th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰۲۰</td>
<td>۳۱۸۰</td>
<td>۴۱۵۰</td>
<td>۴۱۵۰</td>
</tr>
<tr>
<td>۳۰۱۰</td>
<td>۳۶۰۰</td>
<td>۴۷۰۰</td>
<td>۴۷۰۰</td>
</tr>
<tr>
<td>۳۰۳۰</td>
<td>۳۳۰۰</td>
<td>۴۳۰۰</td>
<td>۴۳۰۰</td>
</tr>
<tr>
<td>۳۰۵۰</td>
<td>۳۵۰۰</td>
<td>۴۵۰۰</td>
<td>۴۵۰۰</td>
</tr>
<tr>
<td>۳۰۷۰</td>
<td>۳۷۰۰</td>
<td>۴۷۰۰</td>
<td>۴۷۰۰</td>
</tr>
<tr>
<td>۳۰۹۰</td>
<td>۳۹۰۰</td>
<td>۴۹۰۰</td>
<td>۴۹۰۰</td>
</tr>
<tr>
<td>۳۱۱۰</td>
<td>۴۱۰۰</td>
<td>۵۱۰۰</td>
<td>۵۱۰۰</td>
</tr>
<tr>
<td>۳۱۳۰</td>
<td>۴۳۰۰</td>
<td>۵۳۰۰</td>
<td>۵۳۰۰</td>
</tr>
<tr>
<td>۳۱۵۰</td>
<td>۴۵۰۰</td>
<td>۵۵۰۰</td>
<td>۵۵۰۰</td>
</tr>
<tr>
<td>۳۱۷۰</td>
<td>۴۷۰۰</td>
<td>۵۷۰۰</td>
<td>۵۷۰۰</td>
</tr>
<tr>
<td>۳۱۹۰</td>
<td>۴۹۰۰</td>
<td>۵۹۰۰</td>
<td>۵۹۰۰</td>
</tr>
</tbody>
</table>

در هر ستون، ارقامی که دارای حروف مشابه هستند، اختلاف معنی‌داری را نشان می‌دهند (P<0.05).

۱. انرژی قابل سوخت و ساز ظاهری = AMEn
۲. انرژی قابل سوخت و ساز حقيقی = TME
۳. میانگین ± خطای معیار
جدول 2. مقایسه میانگین انواع انرژی قابل تبادلی‌سازی ماکارونی در سطوح مختلف (کیلوکالری در هر کیلوگرم)

<table>
<thead>
<tr>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>AME<sub>n</sub></th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.0 ± 11</td>
<td>31.8 ± 31</td>
<td>29.6 ± 31</td>
<td>28.5 ± 31</td>
</tr>
<tr>
<td>36.4 ± 34</td>
<td>37.6 ± 34</td>
<td>35.8 ± 34</td>
<td>34.4 ± 34</td>
</tr>
<tr>
<td>42.2 ± 55</td>
<td>39.3 ± 55</td>
<td>37.8 ± 55</td>
<td>38.4 ± 55</td>
</tr>
<tr>
<td>37.6 ± 50</td>
<td>34.8 ± 50</td>
<td>33.3 ± 50</td>
<td>32.1 ± 50</td>
</tr>
<tr>
<td>38.2 ± 30</td>
<td>36.9 ± 30</td>
<td>35.3 ± 30</td>
<td>34.1 ± 30</td>
</tr>
<tr>
<td>32.6 ± 28</td>
<td>31.4 ± 28</td>
<td>30.3 ± 28</td>
<td>29.5 ± 28</td>
</tr>
<tr>
<td>37.2 ± 27</td>
<td>35.1 ± 27</td>
<td>33.9 ± 27</td>
<td>33.1 ± 27</td>
</tr>
<tr>
<td>32.4 ± 26</td>
<td>31.1 ± 26</td>
<td>29.9 ± 26</td>
<td>29.2 ± 26</td>
</tr>
<tr>
<td>37.6 ± 25</td>
<td>35.6 ± 25</td>
<td>34.6 ± 25</td>
<td>33.8 ± 25</td>
</tr>
<tr>
<td>32.8 ± 19</td>
<td>31.6 ± 19</td>
<td>30.4 ± 19</td>
<td>29.8 ± 19</td>
</tr>
<tr>
<td>37.6 ± 18</td>
<td>35.6 ± 18</td>
<td>34.6 ± 18</td>
<td>33.8 ± 18</td>
</tr>
</tbody>
</table>

حرارت‌های گندم بین خروس‌های بالغ و پوستلیوم تفاوت معنی‌داری نیافته است. به نظر می‌رسد دلیل تفاوت بین TME معنی‌داری نیافته است. به نظر می‌رسد دلیل تفاوت بین ضایعات ماکارونی در تحقیق حاضر و پوستلیوم می‌تواند ناشی از موارد مورد استفاده در تهیه ماکارونی از قبل نوع آرد گندم با وجود اندکی وجود ماکارونی مورد استفاده در مطالعه مذکور باشد. علاوه بر آن نحوه ریختگذاری ماکارونی و فرم‌آوری به کار رفته در این مطالعه در این تفاوت نقش داشت. محاسبات ماکارونی را به ترتیب AME_n و AME احمدی تهیه کرده که از تحقیق به‌دست آمده در این تحقیق اندکی کمتر می‌باشد. با توجه به اینکه انرژی ضایعات ماکارونی در آزمایش کمتر کمتر بوده با این توانان اندازه‌گیری که اندکی قابل تبادلی‌سازی آن منجر به کمتر بودن تهیه کیفیت بهتر کمتر بود. ولی از همکاران نیز دلیل بیشتر بودن ماکارونی را از دقت به بیشتر بودن انرژی خام ضایعات
جدول ۵. روابط بین سطح مختلف ضایعات ماکارونی در چرخ پایه (X) با میزان اثری ارزی قابل سوخت و ساز مخلوط چرخ پایه و ضایعات ماکارونی (Y)

<table>
<thead>
<tr>
<th>افزایش قابل سوخت و ساز ضایعات ماکارونی (X=100)</th>
<th>ضریب لیگ (R²)</th>
<th>معادله محاسبه افزایش قابل سوخت و ساز ضایعات ماکارونی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۶۸۰</td>
<td>۰.۹۵</td>
<td>Y=۲۹۱۷۶+۴۳X</td>
</tr>
<tr>
<td>۳۷۵۸</td>
<td>۰.۹۵</td>
<td>Y=۲۹۸۶۸+۷۲X</td>
</tr>
<tr>
<td>۴۰۱۳</td>
<td>۰.۹۴</td>
<td>Y=۲۲۰۹۰+۴۰X</td>
</tr>
<tr>
<td>۳۸۶۲</td>
<td>۰.۹۵</td>
<td>Y=۲۹۰۷۸+۹۵X</td>
</tr>
</tbody>
</table>

= مقدار ضایعات ماکارونی در چرخ پایه بر حسب درصد
= میزان افزایش قابل سوخت و ساز مخلوط چرخ پایه و ضایعات ماکارونی بر حسب کیلوکاری در کیلوگرم

جدول ۶. مقایسه میانگین افزایش قابل سوخت و ساز جیره‌های عادی مقدار متفاوت ضایعات لبه پاكکی و جیره پایه در سطح مختلف (کیلوکاری بر کیلوگرم)

<table>
<thead>
<tr>
<th>Nسبت ضایعات لبه پاكکی به چرخ پایه</th>
<th>TMEn</th>
<th>TME</th>
<th>AMEn</th>
<th>AME</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۰۱۰۰</td>
<td>۰.۱۵۶۳</td>
<td>۰.۱۵۹۵</td>
<td>۰.۱۵۸۵</td>
<td></td>
</tr>
<tr>
<td>۰.۳۰۵۱</td>
<td>۰.۳۱۹۵</td>
<td>۰.۲۸۷۰</td>
<td>۰.۲۴۶۰</td>
<td></td>
</tr>
<tr>
<td>۰.۲۹۶۵</td>
<td>۰.۲۹۳۲</td>
<td>۰.۲۴۶۰</td>
<td>۰.۲۵۵۵</td>
<td></td>
</tr>
<tr>
<td>۰.۲۵</td>
<td>۰.۱۴۸</td>
<td>۰.۲۵</td>
<td>۰.۱۴۸</td>
<td></td>
</tr>
</tbody>
</table>

- میانگین ± خطای معیار
- در سه سطح، اندازه‌گیری را دارای حرفانی مقادیر هستند، اختلاف معینی دارند (P<0.05).

امیدوارم که با آزمایش گزارشی تقابل دارند ومی‌شود به سطح مختلف ضایعات ماکارونی که به صورت غیر مستقیم در هضم و جذب دخالت دارند از قبیل لکچری نان، آلفا گلاکتوسید و پلی ساکاریدهای غیر تشتملی محول اشتهار کرد (1). TMEn, TME, AMEn, AME در یک چهارم (7) مقدار ترمبه ۲۸۹۶۸ و ۳۲۳۴۳ تریپتیپ ۲۹۱۷۶ و ۲۹۸۶۸ و ۳۳۲۹۹ و ۳۳۲۹۹ گزارش شده است. که در مقایسه با نوع انرژی ضایعات لبه پاكکی که به ترمبه ۲۸۹۶۸ و ۲۹۱۷۶ و ۲۹۸۶۸ و ۳۳۲۹۹ و ۳۳۲۹۹ بود و انرژی پنیر چرخ پایه مقایسه با نوع انرژی ضایعات لبه پاكکی که به ترمبه ۲۸۹۶۸ و ۲۹۱۷۶ و ۲۹۸۶۸ و ۳۳۲۹۹ و ۳۳۲۹۹ بود و انرژی پنیر چرخ پایه

متفاوت ضایعات لبه پاكکی و جیره پایه در سطح مختلف در جدول ۶. نشان داده شده است.

با افراش نسبت ضایعات لبه پاكکی انواع انرژی قابل متابولیسم جیره گاهش یافته، زیرا انرژی ضایعات لبه پاكکی نسبت به چرخ پایه گم می‌گردد. لذا با افراش نسبت انواع انرژی بهطور معنی‌داری گاهش یافته. همچنین لبه دارای مواد ضد تغذیه‌ای است که می‌توانند قابل‌پذیری هضم را تحت تأثیر قرار دهد. از این مواد می‌توان به مانند گیاهانی که تغذیه‌ای پروتئین و

۳۵۶
جدول 7 مقایسه میانگین انواع ارزی قابل سوخت و ساز ضایعات لیه باکتکی در سطوح مختلف (کیلوکالری بر کیلوگرم)

<table>
<thead>
<tr>
<th>TME<sub>n</sub></th>
<th>TME</th>
<th>AME<sub>n</sub></th>
<th>AME</th>
<th>مقدار ضایعات لیه باکتکی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2784.3 ± 39</td>
<td>2942.5 ± 31</td>
<td>2679.9 ± 39</td>
<td>2600.2 ± 31</td>
<td>15</td>
</tr>
<tr>
<td>2784.3 ± 31</td>
<td>2942.5 ± 31</td>
<td>2679.9 ± 39</td>
<td>2600.2 ± 31</td>
<td>45</td>
</tr>
</tbody>
</table>

1. میانگین ± خطای معیار

در سمتون امکان که دارای حروف متفاوت هستند، اختلاف معنی داری دارد (P<0/05).

لبه که به ترتیب 2793 2449 2458 2618 و 2573 بود باشند

میزان بینایی ضایعات لیه باکتکی 87 درصد می‌بایست و بهترین ضایعات در نمایش گزارش شده است. تا نسبت می‌باشد ضایعات لیه باکتکی

را جوانه نشکن هم دهد و میزان بینایی ضایعات در نمایش گزارش شده است. تا نسبت می‌باشد ضایعات

پاکتکی (جدول 7) در مقایسه با انرژی ناخود پیشی بیشتر می‌باشد. که این امر می‌تواند ناشی از بیشتر بودن جنی

مباحث مورد استفاده

1. آگاهی، م. ج، پوررضا، ع، سعیدی، ج، ح، ر، وحیاتی، 1383. تعبیه ارزش غذایی و استفاده از نخود خام، پخته و خیس اینده شده در

قابلیت جوجه‌های گوشتی. اولین کنگره علوم دامی و آبزیان کشور، دانشگاه تهران.

2. احمدی، ب. 1380. استفاده از ضایعات مکارونی در تغذیه جوجه‌های گوشتی. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه کشاورزی، تهران.

3. بی. نام 1380. لیست واحدهای تولیدی فعال استان آذربایجان شرقی. اداره صنعتی و به‌هره‌بری سازمان صنایع و معاین تبریز.

4. حجتی، د. 1376. بررسی اثر کاربرد سطوح مختلف ضایعات کارخانجات مکارونی در تغذیه جوجه‌های گوشتی. پایان نامه کارشناسی ارشد علوم دامی، دانشگاه آزاد اسلامی واحد کرمان.

5. قیربی، ع، س، ندفر، ر، ع، عباسیان، 1378. مجموعه مقالات دومین سمینار پژوهشی تغذیه دام و طیور کشور. مؤسسه تحقیقات علوم دامی کشور، کرج.

