بررسی نوع زننیکی لایه‌های سویا و استفاده از روش الکتروفروز پروتئین دانه

حمید غلامی، سیدعلی محمد میرمحمدی مهیدی و مسعود طاهری

چکیده
این پژوهش به منظور بررسی نوع زننیکی ۲۷۰ زننیپ هربورس‌سی، از نظر الگوها الکتروفروزی پروتئین دانه، و ارتباط آنها با برخی از ویژگی‌های دانه مانند درصد روز، درصد پروتئین، رنگ تکثیر شیمیایی و وزن صدها انجام شد. از میان روی‌های الکتروفروز، فلخت‌های ۱۰ و ۷/۵ درصد آکراپلیامید به ترتیب در درصد دانه اصلی و پایه فلخت ۱۳/۵ درصد در میلی‌گرم بالابر استخراج عصاره پروتئین، ۱۰ میکرولتر تزریق نموده در داخل چاک‌ها دانه زننیپ هربورس در ۷/۵ میلی‌امپر و ۲/۵ به ثانیه رنگ‌آمیزی، مناسب‌ترین تلفیق بیایه به دست آوردن نوارهای واضح و چشیدگانه پروتئینی تشخیص داده شد. نتایج الکتروفروز پروتئینی، ۳۰ نوار را بر نیاز حرکت نسی روز مسئول ساخته که نتایج بهتر هستند که از آنها در میان زننیپ‌ها پیشنهاد می‌شود. مشاهده واحد الگوهای کنترل الکتروفروزی میان زننیپ‌ها تشخیص داده شد. تجزیه خروجی میان زننیپ‌ها بر اساس ارزیابی کیفی نوارهای بیایه هر کدام از میان زننیپ‌ها چهار اندوه دانه را به درصد دانه، و تجزیه خروجی میان برای میان زننیپ‌ها آنها را در سه گروه جداسازی دسته‌بندی کرد. ضریب تطاویل ساده میان نوارهای با حرکت ۲ و ۴ درصد برای صفر بوده که با تغییر درجه حرارت نارنجی می‌باشد. این نوارها توسط یک زن‌تکیل می‌گردند. در زننیپ‌ها، الگوهای دوگانه و مقطع به صورت یکان‌های مقراضی را در زننیپ‌ها اصلاح می‌کنند. از میان روی‌های الکتروفروزی نظر دندان دانه از ویژگی‌های پروتئین می‌تواند در این روی‌های الکتروفروزی میان دانه اندازه‌گیری می‌شود. صفت مورد بهتری میان دانه از این روی‌های الکتروفروزی با حرکت نسی ۲/۵ درصد، دانه درصد دانه فسفر دانه را با حرکت نسی ۵ درصد، دانه سعی دارد درصد دانه را با حرکت نسی ۲۷ درصد، می‌باشد.

واژه‌های کلیدی: تجزیه خروجی، تکثیر شیمیایی دانه، زننیپ‌ها، الکتروفروزی صفات

مقدمه
اندیشته استفاده از فناوری کاتالیزور آنزیمی با روش‌های بیوشیمیایی منجر به رفع مشکل نشان‌گیری زننیکی از طریق روی‌های الکتروفروزی گردیده است (۶، ۹ و ۱۵). امرورز با گسترش روی‌های الکتروفروزی گردیده است (۶، ۹ و ۱۵). امرورز با گسترش روی‌های الکتروفروزی گردیده است (۶، ۹ و ۱۵). امرورز با گسترش روی‌های الکتروفروزی گردیده است (۶، ۹ و ۱۵).

۱. بی‌مروزی طراحی ساختار یافشی ارائه، استاد و استادیار اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
۲. مریم اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

۸۵
ماده ذراتی (DNA) استفاده می‌شود، پژوهش‌های بسیار از ارتباطات ارزشمندی در زمینه‌های گوناگونی، از جمله ارتباطات فیلوژنتیکی و تکاملی (37% و 19%), چگونگی روند زراعی شدن گیاهان و پرورش نژادی زنده، تعیین نقش‌های پیوندی و ارائه نشانگرینا پیوندی با زندگی مقاومت نسبت به آفات و بیماری‌ها و سرانجام تعیین مکانیزمی زندگی مربوط به صفات کمی (40% و 12%) به انجام رسیده و در مطالعه انجام است. با این وجود، استفاده از الگوی پروتئینی دانه به منظور تعیین گردش‌های بی‌پیش‌نهادی تشکیل دهنده مولکول‌های پروتئینی و شناسایی چند شکلی آنها در میان زرمالس موجد از جایگاهی و روش‌های جدید برای استفاده است. سالمانیچ و پرزیلیسکا (18) آبی‌پرک بال این دانه را در چند گونه نخود با روش الگویی مقایسه کرده و نتیجه گرفت که جنس سر به خاطر گروه پروتئینی متفاوت به یک طاقتی جدید تک جنسی یا سر قطع دارد. آزمون و کمیل 6 به نقل از آن سه بخش هموئز و قابل ترمزی در پروتئین‌های دانه نخود گرفته و جدابیت نمودنی. این سه بخش دو گل‌گیلیان جنسی و پیش‌نگار و نگارنده شدن، و در گروه آلی‌پترپرک بالی به مولکلی نگه‌داری گردید.

میرلی و همکاران (13) نش جزء گل‌گیلیان را از بخش ناحیه جدابیتی کرده و به علت این پژوهش یک جزء، که نسیب سیارکی داشته، از پروتئین‌های یا زن مولکولی سابقه است و منشا سنتز پرک‌دار دارد. از جزئیات دارای زن مولکولی سنتزی و ویژگی‌های این بخش بالا و قابلیت بالا بوده و مولکولی یا بخش‌هایی به مولکل شده.

بررسی نوع زنده‌ی درمانی‌ها با استفاده از روش الکتروفوروز پرتوپتین‌های

gوناگون تشکیل شده است. هر یک از این زیرواحدها شامل یک
پای‌یپید است. ترتیب که توسط یک بین‌مدفولید سولفیدی
بی‌پای‌یپید بازی می‌شود. وزن مولکولی زیر
واحدهای استمر 70 هزار و زیرواحدهای بی‌پای
45 هزار می‌باشد. با پرتوپتین-گلاسی‌نین با وزن مولکولی تقریبی
180000، حداقل دارای چهار زیر واحد متغیر (α، β، γ و
δ) با وزن‌های مولکولی بین 27 تا 57 هزار می‌باشد. گلاسی‌نین
با پتکا-گلاسی‌نین، به‌طور هروئیستیک این ساختار زنده‌ی
تعیین‌بردار است که به همراه به دست آوردن روز برای مشاهده
و نوارهای واضح مجزای پرتوپتین،

(ب) تعیین نوارهای پرتوپتینی آزمایش داخلی و بررسی تنوع
الگوی الکتروفوروزی.

(ج) بررسی ارتباط احتمالی میان برخی از ترکیبات داهن و
نوارهای پرتوپتینی داهن.

مواد و روش

زنده‌ی‌های مورد بررسی شامل ۲۷۵ لایه داخلی و خارجی
سوسی بنه شده از الکتریکمسی‌های اصلی و به‌هم‌نال و یک
کریک بود. در این پژوهش از روش الکتروفوروز در حضور بسیار
۱۰ میلی‌گرم رنگ‌آمیزی با اختلاف کوماسی
۵/۶/۲/۸ میلی‌گرم، اختلاف استیک و آب مطرق به همراه به‌مدت
۱۵۰ میلی‌گرم و ۱۰۰ میلی‌گرم و محلول رنگ‌آمیزی با
اختلاف ۲۰۰ میلی‌گرم برای مدت ۳۰ دقیقه، رنگ‌آمیزی و
۳۵ میلی‌گرم آب مطرح به است. همچنین
۱۵ میلی‌گرم رنگ‌آمیزی با اختلاف کوماسی
۱۰ میلی‌گرم و ۵ میلی‌گرم و محلول رنگ‌آمیزی با
اختلاف ۱۵۰ میلی‌گرم برای مدت ۳۰ دقیقه، رنگ‌آمیزی و
۱۵ میلی‌گرم آب مطرح به است. همچنین

۸. سالنگریزه‌های مدل PEG/SDS-Page

9. فرمول شکل PEG/SDS-

10. فرمول شکل PEG/SDS-

11. فرمول شکل PEG/SDS-

12. فرمول شکل PEG/SDS-

13. فرمول شکل PEG/SDS-

14. فرمول شکل PEG/SDS-

15. فرمول شکل PEG/SDS-

16. فرمول شکل PEG/SDS-

17. فرمول شکل PEG/SDS-

18. فرمول شکل PEG/SDS-

19. فرمول شکل PEG/SDS-

20. فرمول شکل PEG/SDS-

21. فرمول شکل PEG/SDS-

22. فرمول شکل PEG/SDS-

23. فرمول شکل PEG/SDS-

24. فرمول شکل PEG/SDS-

25. فرمول شکل PEG/SDS-

26. فرمول شکل PEG/SDS-

27. فرمول شکل PEG/SDS-

28. فرمول شکل PEG/SDS-

29. فرمول شکل PEG/SDS-

30. فرمول شکل PEG/SDS-

31. فرمول شکل PEG/SDS-

32. فرمول شکل PEG/SDS-

33. فرمول شکل PEG/SDS-

34. فرمول شکل PEG/SDS-

35. فرمول شکل PEG/SDS-

36. فرمول شکل PEG/SDS-

37. فرمول شکل PEG/SDS-

38. فرمول شکل PEG/SDS-

39. فرمول شکل PEG/SDS-

40. فرمول شکل PEG/SDS-

41. فرمول شکل PEG/SDS-

42. فرمول شکل PEG/SDS-

43. فرمول شکل PEG/SDS-

44. فرمول شکل PEG/SDS-

45. فرمول شکل PEG/SDS-

46. فرمول شکل PEG/SDS-

47. فرمول شکل PEG/SDS-

48. فرمول شکل PEG/SDS-

49. فرمول شکل PEG/SDS-

50. فرمول شکل PEG/SDS-

51. فرمول شکل PEG/SDS-

52. فرمول شکل PEG/SDS-

53. فرمول شکل PEG/SDS-

54. فرمول شکل PEG/SDS-

55. فرمول شکل PEG/SDS-

56. فرمول شکل PEG/SDS-

57. فرمول شکل PEG/SDS-

58. فرمول شکل PEG/SDS-

59. فرمول شکل PEG/SDS-

60. فرمول شکل PEG/SDS-

61. فرمول شکل PEG/SDS-

62. فرمول شکل PEG/SDS-

63. فرمول شکل PEG/SDS-

64. فرمول شکل PEG/SDS-

65. فرمول شکل PEG/SDS-

66. فرمول شکل PEG/SDS-

67. فرمول شکل PEG/SDS-

68. فرمول شکل PEG/SDS-

69. فرمول شکل PEG/SDS-

70. فرمول شکل PEG/SDS-

71. فرمول شکل PEG/SDS-

72. فرمول شکل PEG/SDS-

73. فرمول شکل PEG/SDS-

74. فرمول شکل PEG/SDS-

75. فرمول شکل PEG/SDS-

76. فرمول شکل PEG/SDS-

77. فرمول شکل PEG/SDS-

78. فرمول شکل PEG/SDS-

79. فرمول شکل PEG/SDS-

80. فرمول شکل PEG/SDS-

81. فرمول شکل PEG/SDS-

82. فرمول شکل PEG/SDS-

83. فرمول شکل PEG/SDS-

84. فرمول شکل PEG/SDS-

85. فرمول شکل PEG/SDS-

86. فرمول شکل PEG/SDS-

87. فرمول شکل PEG/SDS-

88. فرمول شکل PEG/SDS-

89. فرمول شکل PEG/SDS-

90. فرمول شکل PEG/SDS-

91. فرمول شکل PEG/SDS-

92. فرمول شکل PEG/SDS-

93. فرمول شکل PEG/SDS-

94. فرمول شکل PEG/SDS-

95. فرمول شکل PEG/SDS-

96. فرمول شکل PEG/SDS-

97. فرمول شکل PEG/SDS-

98. فرمول شکل PEG/SDS-

99. فرمول شکل PEG/SDS-

100. فرمول شکل PEG/SDS-

101. فرمول شکل PEG/SDS-

102. فرمول شکل PEG/SDS-

103. فرمول شکل PEG/SDS-

104. فرمول شکل PEG/SDS-

105. فر
بررسی پروتئین‌های خاص، برای تهیه محلول‌های آمیز، میلی‌گرم کوماسی ۱۵۰ میلی‌لیتر آناتون، محلول ۶۰ گرم ترا کاریاستیک است. در ۱۵۰ میلی‌لیتر آب متخلخل و TCA ۸۷/۵ میلی‌لیتر ادیست است. پس از رنگ‌دانی محلول ۶۰ گرم TCA در یک میلی‌لیتر آب متخلخل به کار رفته، پس از پریمی‌بر به داخل یک زیرغیره تزریق گردید.

صفن مورد بررسی و محاسبات آماری افزون بر گلگی نوارها پروتئینی، چنین به‌ناهی بررسی استخراج از پروتئین‌ها و پروتئین‌های روستیک در کلسترول به کمک تهیه و گوگرد با روستیک‌فوتونیاثی، کلیسیمبی روش جذب آمیتیا، و مقادیر ماده خشک درنت و وزن صد دنش نیز اندسانتی‌گیر شد. پس از رنگ‌دانی زلک خوراک میکروبا بررسی حبیبی نسبی (RF) یا فاکتور وضعی (RM) گردیدند:

\[RF = \frac{RM}{\text{حرکت آبی} + \text{حرکت ترکیب سانتی متر}} \]

درجه ساختار گلگل‌پرند پروتئین‌های خاص نیز ۳۰ میلی‌گرم آر در یک میلی‌لیتر محلول استخراج (۸ میلی‌لیتر آب متخلخل، ۳/۶ میلی‌لیتر یافت از محلول سد به تغذیه شده و ۶/۵ میلی‌لیتر ۲-مکروتابوتونات) به استخراج نیز ۲ میلی‌گرم کوماسی مضیف شد و سپس از دو زیرغیره استخراج در دمای ۴۰ درجه سانتی‌گراد با تغذیه شده.

برای انتخاب پروتئین‌های خاص نیز ۱۰۰۰ rpm در دمای ۳۰ درجه سانتی‌گراد متخلخل گردید. برای تهیه پروتئین‌های خاص نیز ۱۰۰۰ rpm در دمای چهار درجه سانتی‌گراد متخلخل گردید. درجه تغذیه پروتئین‌های خاص نیز ۱۰۰۰ rpm در دمای ۳۰ درجه سانتی‌گراد متخلخل گردید.

درجه ساختار گلگل‌پرند خاص نیز ۱۰۰۰ rpm در دمای ۳۰ درجه سانتی‌گراد متخلخل گردید. برای تهیه پروتئین‌های خاص نیز ۱۰۰۰ rpm در دمای ۳۰ درجه سانتی‌گراد متخلخل گردید.

برای این که حبیبی نسبی در داخل زل مشخص باشد، نخست پروتئین‌های استخراج شده سنگین و رنگ‌آمیزی شده بدين منظور از رسید پدرو آبی بر روی محلول TCA ۶/۵/۶ مولول با pH = ۸/۵ سرد ۱۰ درصد گلگل‌پرند و سپس مناسب سولفات محلول پریمی‌بر در حبیبی نسبی کننده محلول و تخلیه شد. تفاوت میان گلگل‌های پروتئینی از نظر رنگ‌پریمی‌بر و اندازه‌گیری شده مورد تجزیه و بررسی به این ترتیب و تجزیه و تحلیل شد. میکروبا بررسی و روابط قرار گرفت و نتیجه‌گیری شده عصبی‌بر در میکروبا بررسی و آمیت ۲-مکروتابوتونات ۲۰۰ گرم در دمای ۳۰ درجه سانتی‌گراد پریمی‌بر ۲۵ میکروبات از محلول میکروبا بررسی و آمیت ۲-مکروتابوتونات ۲۰۰ گرم در دمای ۳۰ درجه سانتی‌گراد پریمی‌بر

6. Simple matching coefficient 7. Unweighted pair group method
بیش از ۲۰۰۰ میلیون زنده بودند و شمار
کل آنها به ۳۵ میلیون رسید. موقعیت نوارهای پروپتئین نسبت
به یکدیگر و حیرت نسبی آنها در شکل ۳ و شماری
در شکل ۳ آنها شده است. افزون بر نوارهای یاد شده، شماری
نوار ضعیف نیز در طول زل پراکنده بودند. برای شناسایی بهتر
نوارهای و تعیین موقعیت هر نوار در زل، مقدار حرکت آنی
بی‌موقت برای ۱۰۰ (یا یک) در نظر گرفته شد و مقدار حرکت
نوارهای آنلاین شده تعیین گردید.

نسبی (RF) یا RM نسبی (RF) یا RM
گوناگون محاسبه گردید.

نتایج و بحث
روش عملی مناسب الکتروفوروز
نتایج نشان داد از میان شرایط و روش‌های مختلف بررسی شده،
غلظت‌های ۱۰ و ۲/۵ درصد اکلراید بهتر برای پیامدهای
اصلي و پايه، غلظت‌های ۱۳/۵ میلی‌گرم در میلی‌لتر بیان استخراج
عصاره پروپتئین، ۱۰ میکرولیتر تزریق نمونه در داخل
چاک‌های زل، ۲۵ میلی‌آمپر، و دور ساخت رگ‌آمیزی،
مناسب‌ترین تلفیق برای به دست آوردن نوارهای واضح و
جداگانه پروتئین‌ها می‌باشد. این‌گونه نتایج، که از پرپتئین‌های اصلی تشکیل دهنده سیویا می‌باشد (۲۰)، درار
ساختنی مرکب بوده و از چندین ژیرواید تشکیل شده‌اند.
و با توجه به شکل فضایی جدا و جهت ان پروتئین‌ها و
تعداد زیروایدهای تشکیل دهنده آنها، حیرت و جداسازی آنها
در داخل زل احتمال معنای‌دار بینهم زیستگی زل دارد. انتخاب زل
پایه با غلظت ۱/۵ درصد و زل اصلی با غلظت ۱۰ درصد،
باعث شده که ابعاد پروتئین‌ها با طبق منطقه زل مناسب گردد، و
به خویش در زل اصلی حرکت کند واز هم جمع سواده، آن
چاک‌های در میان حیوانات، سیاه پشت‌ترین مقدار پروپتئین بذر
در حدود ۶۴ درصد (را دارای یکدیگر) (۲۰) در هم رفت نوارهای
پروپتئین و کشیدگی آنها در صفحه زل در طی الکتروفوروز
تشکیل می‌شود. انتخاب غلظت عصاره پروپتئین (۱/۵
میلی‌لیتر) و میزان نمونه تزریقی داخل چاک‌های زل و
مکرواتراز از هم رفت نوارهای پروپتئین و کشیدگی آنها
جلوگیری نمود، و امکان حصول نوارهای واضح و جداسازی
پروپتئین‌های فراهم ساخت.

تنوع نوارهای پروپتئین دانه
الکتروفوروز پروپتئین‌ها روی ۱۵۶ زنده مورد بررسی شمار
سیب‌ای نوار روی زل آن‌ها ساخت. شمار نوارهای اصلی که
برخی دندان‌گوم (شکل ۳) درب‌های مشابه، تطبیق می‌سازد.
جدول 1. اگهای متفاوتی زننیپی‌ها از نظر تیپ نوار پروتئینی و قرواتی آنها

<table>
<thead>
<tr>
<th>نوع نوار</th>
<th>عدد RF</th>
<th>۵/۲۵</th>
<th>۲/۵</th>
<th>۲/۵</th>
<th>نوع نوار</th>
<th>عدد RF</th>
<th>۵/۲۵</th>
<th>۲/۵</th>
<th>۲/۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
<td>۲/۵</td>
<td>۵۲</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

ضريب تطابق ساده 5/2 در میان نوارهای ۱/۸ و ۲/۵

پیوند بینگا این انکه باشد که این سه نوار تقریباً در ۵۰ درصد زننیپی‌ها به هم می‌گذارند. ضرب تطابق ساده میان نوارهای ۱/۸ و ۲/۵ برای صفر بوده، که نشان دهنده عدم ظهور همزمان این دو نوار با هم است. بنابراین، انتساب می‌شود که زننیپی‌ها مربوط به این دو نوار از هم مستقل هستند و در صورت پیوستن بین میزان پروتئین میان آنها ۵ درصد است. البته در صورتی که موضوع این موضوع صدق است و ضریب تطابق ساده میان این دو نوار را توجه می‌کند، که سطح تخمین احتمال گامهای نوترکیب به وجود آید، زیرا گامهای والدینی حامل هر دو زننیپی مربوط به این نوارها می‌باشند. از سویی می‌توان گفت که این دو نوار محصول پروتئین یک زن نیستند، که در حالت هموزیگوت غالب و محلوب به صورت یک نوار منفرد ظاهر می‌شوند. توجه دوم در ارتباط میان این دو نوار منطقی تر به نظر می‌رسد.

به طور کلی، ندرو، درحالی‌که تجزیه خوش‌زمان نوارهای سه گروه متفاوت را از فاصله 24/5 نمایان ساخت. گروه یک متعلق به نوار 24گروه 2 متعلق به نوارهای 18/2 و 22/2 و گروه 2 متعلق به نوار 21 است. با توجه به این که نوارهای 2 و 18 در پیشتر زننیپی‌ها وجود دارند و ضرب تطابق ساده میان آنها 375/۵ است، می‌توان توجه گرفت که آنها دارای شیب‌های نسبتاً زیادی بوده و احتمالاً زننیپی‌ها مربوط به آنها دارای پیوستگی منظمی می‌باشند، به طوری که در پیشتر زننیپی‌ها ظهور یکی همراه با ظهور دیگری و عدم ظهور یکی با عدم ظهور دیگری همراه است.
مقایسه الگوهای پروتئینی از نظر بروز و پیگیری های دانه
تجزیه واریانس الگوهای پروتئینی از نظر صفات مورد بررسی در جدول 2 نشان داده شده است. نتایج مشخص نمی‌آید اختلاف میان الگوهای پروتئینی از نظر وزن صد دانه معنی‌دار است. مقایسه میانگین‌های وزن صد دانه در الگوهای مختلف نشان داد که الگوها 4 و 8 دارای اختلاف معنی‌دار می‌باشند، ولی نتایگه‌ای با دیگر الگوها معنی‌دار نبود. اختلاف
میانگین‌های وزن صد دانه الگوها 4 و 1 از آن جا ناشی می‌شود که الگوها 4 تنها الگویی است که فقط دارای دو نوار پروتئینی با حركت نسبی 1/5 و 46 درصد از میان پنج نوار متشکل در زن تویپ‌ها می‌باشد، در حالیکه وزن صد دانه‌های را دارد. با توجه به ارتباط قوی الگوی نوع 4 وزن صد دانه، و از آن جایی که وزن صد دانه معیاری می‌باشد در عملکرد دانه است، انتخاب بر اساس الگوی پروتئینی نوع 4 در مراحل اولیه به‌طوری‌ای می‌تواند در گروه‌بندی گیاهان هم عملکرد مؤثر واقع شود. اختلاف میان الگوهای پروتئینی از نظر درصد کلسیم، درصد گود و درصد ماده خشک دانه معنی‌دار نیست، ولی الگوی نوع 4 که با 19 درصد ماده خشک را داشت، کمترین درصد پروتئین دانه را دارا بود. این موضوع ابزار مکروس می‌باشد و درصد پروتئین دانه را تاثیر می‌گذارد.
اختلاف الگوها از نظر درصد فسفر بی‌معنی معنی ندار گردید.
الگوی نوع 4 کمترین درصد فسفر را دارا بود. با توجه به این که الگوی نوع 4 دارای کمترین میزان پروتئین در بین الگوها می‌باشد، در ساختار بدنی از پروتئینی و آنزیمها، مانند سنتز کروم 5، فسفر وجود دارد، کم بودن درصد فسفر زن تویپ‌های دارای این الگوی پروتئینی قابل توجه است.

<table>
<thead>
<tr>
<th>شماره نوار</th>
<th>حركت نسبی نوارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7/5</td>
</tr>
<tr>
<td>2</td>
<td>2/5</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>63</td>
</tr>
<tr>
<td>13</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>87</td>
</tr>
<tr>
<td>17</td>
<td>93</td>
</tr>
<tr>
<td>18</td>
<td>99</td>
</tr>
</tbody>
</table>
جدول ۲. میانگین مربعات الگوهای الکتروفورتیک برای صفت‌های لونت‌های میاه و مقایسه میانگین‌های الگوها

<table>
<thead>
<tr>
<th>صفت</th>
<th>میانگین مربعات الگوها</th>
<th>وزن صد دانه</th>
<th>درصد ماده خشک</th>
<th>درصد پروتئین دانه</th>
<th>درصد پروتئین گذاره</th>
<th>درصد روزن دانه</th>
<th>درصد روزن گذاره</th>
<th>درصد کلسیم دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۸۴</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
</tr>
<tr>
<td>۳۱/۱۱۲</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
</tr>
<tr>
<td>۲۳/۱۷</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
<td>۱/۸۱۹۶</td>
</tr>
</tbody>
</table>

* ۱. برای هر صفت میانگین‌های که حداقل دارای یک حرف مشترک هستند، بر مبنای میانگین‌های حداقل مربعات، در سطح احتمال پنج درصد فاقد نخواهد می‌باشد.

** ۲. به ترتیب معنی‌دار در سطح احتمال ۵ و ۱ درصد.

![جدول ۲. میانگین مربعات الگوهای الکتروفورتیک برای صفت‌های لونت‌های میاه و مقایسه میانگین‌های الگوها](attachment:figure.png)

شکل ۳. نمودار درختی نوارهای پروتئینی متغیر در زنوتیپ‌ها

به‌پیشترین میزان روزن را دارا هستند و مقایسه نوارهای پروتئینی این دو الگو نشان داده که الگوی نوع ۸ فاقد دو نوار پروتئینی با حکمت نسبی ۳/۵ و ۲۶ درصد از میان نوارهای مربوط می‌باشد. اختلاف الگوها از نظر درصد روزن بذر معنی‌دار شد به گونه‌ای که زنوتیپ‌های دارای الگوی پروتئینی نوع ۲ پیشترین میزان روزن را داشتند. از سویی، الگوی نوع ۲ تنها الگویی است که فاقد نوارهای پروتئینی با حکمت نسبی ۳/۵ و ۴۹/۵ درصد است. بنابراین، عدم وجود این سه نوار پروتئینی در ارتباط با درصد پالای روزن بذر می‌باشد. پس انتخاب بر اساس الگوی نوع ۲ برای اندازه‌گیری میزان روزن در مراحل اولیه بهتر خواهد بود. این امر مؤید ارتباط قوی این الگوها و درصد پروتئین دانه است، که در ادامه مورد بحث قرار می‌گیرد.
جرجدنده 3. ضرایب هم‌ویژگی میان ویژگی‌های دانه

<table>
<thead>
<tr>
<th>ماده خشک</th>
<th>پروپتین</th>
<th>گل‌پذیر</th>
<th>فسفر</th>
<th>روغن</th>
<th>کلسیم</th>
<th>وزن صد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/17</td>
<td>0/0/17</td>
<td>0/0/0/17</td>
<td>0/0/0/17</td>
<td>0/0/0/17</td>
<td>0/0/0/17</td>
<td>0/0/0/17</td>
</tr>
<tr>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
<td>0/21</td>
</tr>
<tr>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40</td>
</tr>
</tbody>
</table>

و **: به ترتیب معنی‌دار در سطوح احتمال 5 و 1 درصد.

جدول 4. همبستگی نوارهای پروپتینی منتگل در زوتپیپا و ویژگی‌های دانه

<table>
<thead>
<tr>
<th>صفات</th>
<th>52</th>
<th>29/5</th>
<th>47</th>
<th>27/5</th>
<th>2/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن صد دانه</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
</tr>
<tr>
<td>درصد خشک دانه</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
<td>0/29</td>
</tr>
<tr>
<td>درصد پروپتین دانه</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
</tr>
<tr>
<td>درصد گل‌پذیر دانه</td>
<td>0/47</td>
<td>0/47</td>
<td>0/47</td>
<td>0/47</td>
<td>0/47</td>
</tr>
<tr>
<td>درصد فسفر دانه</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>درصد روغن دانه</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>درصد کلسیم دانه</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
</tr>
</tbody>
</table>

و **: به ترتیب معنی‌دار در سطوح احتمال 5 و 1 درصد.

ارتباط میان انواع گل‌پذیر و برخی صفات دانه

هم‌ویژگی میان صفات (جدول 3) نشان داد که افزایش دشدگی ماده خشک دانه درصد پروپتین کاهش می‌یابد. شرایط‌های آن ج‌اف‌ی‌سی می‌شود که افزایش دشدگی ماده خشک، غلظت پروپتین را در واحد وزن کاهش دهد و نهایتاً درصد پروپتین کاهش می‌یابد. همبستگی وزن صد دانه و درصد فسفر دانه (0/40) در سطح احتمال 5 درصد معنی‌دار بود. با توجه به این که فسفر نسبت به دیگر عنصر معدنی (کلسیم، گل‌پذیر) به میزان زیادی توسط گیاه جذب می‌شود و از عنصر ضروری برای رشد گیاه می‌باشد، نتایج معنی‌دار بودن این همبستگی
کلکتیون دوم: DNA های ویژه این گونه های بودن مورد استفاده است.