بررسی نوع زنگیکی لاک‌های سویا با استفاده از روش الکتروفورز پروتئین دانه

خدمه علی‌پور، عبدالملیکی رضایی، سیدعلی‌محمد میرمحمدرضا میدی و مسعود طاهری

چکیده
این پژوهش به منظور بررسی نوع زنگیکی ۲۷۰ زنوتیپ سویا از نظر الگوهای الکتروفورز پروتئین دانه، و ارتباط آنها با برخی از ویژگی‌های دانه مانند درصد رنگ بندی، درصد پروتئین، بخشهای ترکیبات شیمیایی و وزن صندانه انجام شد. از میان الگوهای الکتروفورز، خلوت های ۱۰ و ۶/۵ درصد الکریامیده به ترتیب برای زنوتیپ‌های اصلی و پایه، خلوت های ۱۳/۵ و ۱۲/۵ درصد میلی‌گرم با ترکیب استخراج عصاره پروتئین، ۱۰ میکرو‌لتر تزریق می‌شود در داخل چاه‌های زنوتیپ های زنوتیپ‌های سایر ترکیبات لذت‌بخشی به دست آوردن نوارهای واضح و خوناهای تمایلی تشخیص داده شد. نتایج الکتروفورز پروتئین‌ها ۳۰ نوار را در میان حیرت نسبی روی زل آشکار ساخت که تنها چند هدف از آنها در میان زنوتیپ‌ها چند شکل نشان دادند. به طور کلی، هشت الگوی الگوهای پروتئینی در میان زنوتیپ‌ها تشخیص داده شد. جزئیات خورشیدی زنوتیپ‌ها بر اساس ارزیابی کیفی نوارهای که چند شکل نشان داده آنها را در نوارهای میلی‌گرم، و تجزیه خورشیدی نوارهای مختلف در زنوتیپ‌ها اضافه یا در سایر زنوتیپ‌ها چند شکل نشان داده بودند که جزئیات طبقاتی ساده میان نوارهای با حیرت ۲۰ و ۲۵ درصد بر اثر صورت یکانگر عدم ظهور هزمان این دو نوار به حیرت آماده‌اند نوارها توسط یک زن در دنیا بوده که در نوارهای هموگرگت غالب ممکن است یکی از نوارها داری که به نمایش گذاشته شده و مثبت می‌باشد و در نوارهای مهمی مشابه نوارهایی در زنوتیپ‌ها و صفات مورد برسی شان دانه‌ها به نوارهای پروتئین با حیرت بیشتر ۱۰/۵ و ۱/۳ درصد به دست نوارهای پروتئینی در نوار با حیرت بیشتر ۲/۵ درصد به دست نوارهای پروتئینی در نوار با حیرت بیشتر ۴/۵ درصد، به دست نوارهای با حیرت بیشتر ۲۵ درصد بود.

واژه‌های کلیدی: تجزیه خورشیدی، ترکیب شیمیایی دانه، زرمالاس، الکتروفورز صفات

مقدمه
این اندیشه ارائه از فعالیت‌های کالیفرنیا آنریسها به روش‌های الکتروفورز و یکی از ابزارهای تجزیه و تحلیل زنگیکی که در آنها مستقر است. این روش‌ها به روش‌های ساختاری زنگیکی از طریقت بیوسیمایی مانند به روش‌های ساختاری زنگیکی از طریقت

۱. نوار در دستورالعمل سایر کارشناسان ارائه، اضافه‌ای استاد و استادان اصلاح نباتات، دانشگاه کشاورزی دانشگاه شهید بهشتی کرمان

۲. مریم اصلاح دانشگاه دانشگاه کشاورزی دانشگاه شهید بهشتی کرمان
با توجه به موجودی گزینه‌هایی از گونه‌های کروموتونژیک (DNA) استفاده می‌شود، پژوهش‌های بسیار ارزشمندی در زمینه‌های گوناگون، از جمله ارتباطات فیلوژنتیکی و تکامل (17)، الگوهای روند زراعی شدن گیاهان و پرورش نژادی (16)، ارتباطات می‌شود. این ارتباطات گزارش کرده که خاصیت‌های گپ‌زیرهای برای یک بیانگر تفاوت زیرواحدهای کلی نیز مشهور است.

اوینیا و آتانیپیچو (14) با بررسی پروتئین کلی دانه و ابتدا لومیا جسم بلیلی، دو اجزای آترومی و گپ‌زیرهای 20 نمونه لومیا جسم بلیلی، کلی تحقیق دادند که مربوط به زیرواحدهای 19 و 32 کیلوژن، بوده و گاهن�گی خاصیت‌های حبیبات نمی‌باشد. این امر را این نمی‌توان به مقایسه نسبت به آفتدلال داد.

برادا و این (20) گپ‌زیرهای شیب و پیله‌ی، موسوم به باکلی‌پلاسم ۲ را در سیا جداسازی نمودند، و نشان دادند که ظاهری در شرایط انرژی‌های وزن مولکولی ۱۵۰ تا ۱۷۵ کیلوژن بافته می‌شود. در هر این‌ها کلی‌گی‌ریزی-dependent، یکی از سه زیرواحدها بین و یکی از شاخه‌های داده شده است. زیر واحدهای آلفا اثر ترکیب اسید آمینه‌های ماهی شده، و وزن مولکولی ۵۰ کیلوژن در دارند. زیر واحدهای با و گاما از ترکیب وزن مولکولی ۵۰ و ۴۴ کیلوژن می‌باشند. کاه گپ‌زیرهای نیز از نظر قابل پایان N و ترکیب اسیدهای آمینه‌ای تفاوت دارند. تمامی این وزن‌ها از سیستم ۵-دتروش کروموهای (مانوز و فلوژنیم) دارند.

سه و همکاران (20) گپ‌زیرهای ۱۸ و یکنواختی در بافت‌های می‌باشد. سیستم ۵-دتروش کروموهای (ماژور) و همکاران (9) به این نتیجه رسیدند که وجود گژایشی‌ها در بافت‌ها با تفاوت‌های در گروه‌های الگویی پروتئین‌های دانه‌ای، راک خشکو، و غلاف‌ها و
بررسی توانایی بی‌پیچی‌کردن سیاه‌ریزی‌شده با استفاده از روش الکتروفورز پروتئین‌های دانه

انگلیسی:

گوناگون تشکیل شده است. من می‌توانم از این دو زیرواحدها شامل یک پایین‌ترین استفاده کنم که توسط یک پایین‌ترین نوع دی سولفیدی به یک پایین‌ترین بازی متصدیم است. وزن سولفولوژی زیر به یک پایین‌ترین بازی 20-20 می‌باشد. گلیسیم و یک-گلیسیم به دو هتروژن هستند. این هتروژن نا نیاز است تغییرات است که به همراه با ترجمه روز ملزم‌هاهای اولیه اتفاق می‌افتد.

با یک هواپیمای به‌طور مثال یا دست، یک پژوهش به‌طور بازرسی

تنوع ذخیره‌ای سیاه‌ریزی با استفاده از روش الکتروفورز پروتئین‌های دانه مطرح گردیده که مهم‌ترین اهداف آن به شرح زیر می‌باشد: یافته‌ها دست آوردن روش عملی مناسب برای مشاهده

نواحی واضح و مجزای پروتئینی.

(پ) تغییر نواحی پروتئینی آمکار شده و بررسی تنش

انگلیسی:

گه‌های الکتروفورز.

(چ) بررسی ارتباط احتمالی میان برخی از ترکیبات دانه و

نواحی پروتئینی دانه.

مواد و روش‌ها

ذخیره‌های مورد بررسی شامل 270 لیان داخلی و خارجی

سیا، به‌گونه‌ای که یک مسئول مؤسسات اصلی تهیه‌ها نهال و یا

کرج بود. در این پژوهش از روش الکتروفورز در حضور سدیم
dodds سولفات (SDS) به منظور بررسی پروتئین‌های

کل و پروتئین‌های خاص استفاده شد. این به‌طور کلی شرح داده

می‌شود، رویش‌هایی است که با بررسی غلفت‌های مختلف

الکتولیدی (SDS) به‌طور مثال از روش متفاوت ترین

عصاره در چاکه‌ها، مدت زمان‌های مختلف رگ‌آمیزی و

آمکارهای مختلف حاصل شده است.

پرای ساختم ق در دمای الکتولیدی در بررسی کل

AV
بیو‌کورتین‌های خاص، برای هنری محلول رنگ‌آمیزی، میلی‌گرم کوماسی، 55 میلی‌لیتر اتانول، محلول 35.6 میلی‌گرم (تری کاربناتسابوی) اسید) در 155 میلی‌لیتر آب مصرف و TCA میلی‌گرم در 155 میلی‌لیتر استیک، و برای رنگ‌دانی محلول 56.7 میلی‌گرم در یک میلی‌لیتر آب مصرف، و کار رفته، سپس از الپیمیزه‌سنگ تا محلول NaCl pH = 7.5 (حیلار تریسی) در داخل لوله‌های اینترن دولف، به حاوی آمپانس شد. عصاره حاصل چندین میلی‌لیتر در فیلتر 0.2 میکروبات بی‌سی‌پی به داخل جاهای خاص تزریق گردید.

درجه سانتی‌گراد تنگه‌گردی به عدد 1000 رpm نشان می‌دهد، نمونه‌ها با دور 1 میلی‌گرم آماده می‌شوند. برای استخراج پروتئین‌های خاص نیز ۵۰ میلی‌گرم آماده می‌شود. اکثریت میلی‌لیتر استخراج 5 میلی‌لیتر آب مصرف، و ۴ میلی‌لیتر میلی‌لیتر مایع با نگارش شده، پس از رنگ‌دانی محلول پروتئین‌بررسی حکمت سبیل (RF) یا فاکتور پویش (RM) گردیده گردید:

$$ RF = RM $$

این رابطه بررسی ساتنی متز

به منظور تجزیه کلام‌های تجاری (تنجه‌خورشید) و با کل فاصله‌های طولی در ازبیلی کیفی، پیش به حضور یا عدم حضور پروتئین درک، تا یک جایگاه کننده، از کندهای یک و صفر استفاده گردید. سپس ماتریس داده‌ها شکل‌گیری، و مرطوب فاصله طولی است. به سایر درست می‌کنند. در این روش محلب، خاک صفر به شمار کل نوار محسوبی شد. این روش محلب، خاک صفر با پیش‌بازی با ضرب تطبیق ساده ۸ برای فاصله طولی است. به دست می‌دهد (۷) و ترجمه خوشه‌ای (UPGM)

(۱۱) و ترجمه دندان‌دار تجزیه و تحلیل شد. تفاوت میان دنده‌های پورتلین از نظر ویژگی‌های اندازه‌گیری شده مورد تجزیه و بررسی گرفته، و میانگین‌ها بر مبنای روی حداکثر مراعات مقایسه شدند. سرانگش، ضرایب

پروپتیئن‌های پروتئین پروفیل‌ها و دسته‌بندی و نتایج

روش عملی مناسب الکتروفوروز

نتایج نشان داد که بسته به میزان و شدت اثرپذیری بررسی شده، غلظتهای 4/5 درصد اکریلاید یا ترپینه ژل‌های اصلی و پایین، غلظه‌های 1/2 درصد یا میلی‌گرم در میلی‌لیتری باعث استرخاژ عصاره‌های پروتئین 10 میکرولیتری توزیع نمونه در داخل پروتئین‌های 0.37 میکروآمپر، و دو ساعت رگ‌آمپریز، منطقه‌های تلفیق برای دست اوردن نوارهای واضح و چاکره‌های ژل، 25 میلی‌آمپر، و دو ساعت رگ‌آمپریز، منطقه‌های تلفیق برای دست اوردن نوارهای واضح و چاکره‌های ژل، 25 میلی‌آمپر، و دو ساعت رگ‌آمپریز، منطقه‌های تلفیق برای دست اوردن نوارهای واضح و چاکره‌های ژل، 25 میلی‌آمپر، و دو ساعت رگ‌آمپریز.
جدول 1. انگورهای منفی و مثبت از نظر پیش نویز پروتینی و فراوانی آنها

<table>
<thead>
<tr>
<th>نوع انگور</th>
<th>فراوانی (RF)</th>
<th>4/19</th>
<th>7/5</th>
<th>3/7</th>
<th>5/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/59</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2/73</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>18/75</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5/24</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>19/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8/98</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7/7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>7/8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

شکل 1. موقعیت نوارهای پروتینی و حرکت نسبی آنها

سر به سر، در کوتاه ترین راحتی به کوتاه ترین مسافت، گروه یک متعلق به نوار 41، گروه 2 متعلق به نوارهای 18 و 20، گروه 3 متعلق به نوار 21 است. با توجه به این که نوارهای 2 و 18 در بیشتر بهتری وارد شده و احتمالاً زمانی بهتری مربوط به آنها دارای پیوستگی متوسطی می‌باشند، به طوری که در بیشتر بهتری نوارهای 18 و 20 و عدم ظهور یکی با عدم ظهور دیگری همراه است.
یک تیپیکی در این های سویا با استفاده از روش الکتروفورز پروتئین دانه

مواد اندازی شکسته نمی شوند. از سویی دیگر، گروه‌های مختلف
فصل زدایی را نشان دادند، و زنده مربوط به نورهای
پروتئین آنها در فصل دومتری از یکدیگر قرار گرفتهاند. به
طوری که نوترکیبی به راحتی در میان آنها اتفاق افتاده و
ترکیب‌های متفاوتی را ایجاد می‌نماید.

مقایسه الگوهای پروتئینی از نظر برخی ویژگی‌های دانه
تجزیه واریانس الگوهای پروتئینی از نظر صفات مورد بررسی
در جدول ۲ نشان داده شده است. نتایج مشخص نمود که
اختلاف میان الگوها پروتئینی از نظر وزن صد دانه معنی‌دار
است. مقایسه میانگین‌های وزن صد دانه در الگوهای مختلف
نشان داده که الگوها ۴ و ۸ دارای اختلاف معنی‌دار می‌باشند.
ولی تفاوت آنها با دیگر الگوها معنی‌دار نیست. اختلاف
میانگین‌های وزن صد دانه الگوهای ۴ و ۱ از آن جا ناشی
می شود که الگوی نوع ۴ تنا الگوی است که فقط دارای دو نوار
پروتئین با حکت نسبی ۱/۵ و ۴۶ درصد از میان پنج نوار
متغیر در زنوتیپ‌ها می‌باشد، و در حین پشتین و وزن صد
دانه وارد. با توجه به ارتباط قوی الگوی نوع ۴ و وزن صد دانه,
و از آن جایی که وزن صد دانه معنی‌دار می‌باشد، عمکردن دانه
است، انتخاب بر اساس الگوی پروتئینی نوع ۴ در مراحل اولیه
به‌تأثیر می‌تواند در زنوتیپ‌گیاهان پیامدهای مؤثر واقع شود.
اختلاف میان الگوها پروتئینی از نظر صد دانه طبیعی
درصد گوگرد و درصد ماده خشک دانه معنی‌دار نیستند. ولی
الگوی نوع ۴ که بالاترین درصد ماده خشک را داشت، کمترین
درصد پروتئین دانه و دارای بود. این موضوع احتمال می‌باشد
عملکرد و درصد پروتئین دانه را تأثیر می‌گذارد.

اختلاف الگوها از نظر درصد فسفر به‌معنی‌دار نگردید.
الگوی نوع ۴ کمترین درصد فسفر دارا بود. با توجه به این که
الگوی نوع ۴ دارای کمترین میزان پروتئین در بین الگوها
می‌باشد، در مورد ساختمان برخی از پروتئین‌ها و آنزیم‌ها، مانند
سبوتکروم، فسفر وجود دارد، کم بودن درصد فسفر
زنوتیپ‌های دارای این الگوی پروتئینی قابل توجه است.

شماره نوار

<table>
<thead>
<tr>
<th>حکت نسبی</th>
<th>شماره نوار</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/5</td>
<td>۱</td>
</tr>
<tr>
<td>۷/۵</td>
<td>۲</td>
</tr>
<tr>
<td>۷</td>
<td>۳</td>
</tr>
<tr>
<td>۱۰</td>
<td>۴</td>
</tr>
<tr>
<td>۱۳</td>
<td>۵</td>
</tr>
<tr>
<td>۱۸/۱۵</td>
<td>۶</td>
</tr>
<tr>
<td>۱۸/۱۵</td>
<td>۷</td>
</tr>
<tr>
<td>۲۰/۱۵</td>
<td>۸</td>
</tr>
<tr>
<td>۲۲/۵</td>
<td>۹</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲۸</td>
<td>۱۲</td>
</tr>
<tr>
<td>۳۰/۲۵</td>
<td>۱۳</td>
</tr>
<tr>
<td>۳۲/۵</td>
<td>۱۴</td>
</tr>
<tr>
<td>۳۲/۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۳۵/۵</td>
<td>۱۶</td>
</tr>
<tr>
<td>۳۵/۵</td>
<td>۱۷</td>
</tr>
<tr>
<td>۴۰/۵</td>
<td>۱۸</td>
</tr>
<tr>
<td>۴۰/۵</td>
<td>۱۹</td>
</tr>
<tr>
<td>۴۵/۵</td>
<td>۲۰</td>
</tr>
<tr>
<td>۴۵/۵</td>
<td>۲۱</td>
</tr>
<tr>
<td>۵۰/۵</td>
<td>۲۲</td>
</tr>
<tr>
<td>۵۰/۵</td>
<td>۲۳</td>
</tr>
<tr>
<td>۵۵/۵</td>
<td>۲۴</td>
</tr>
<tr>
<td>۵۵/۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>۶۰/۵</td>
<td>۲۶</td>
</tr>
<tr>
<td>۶۰/۵</td>
<td>۲۷</td>
</tr>
<tr>
<td>۶۵/۵</td>
<td>۲۸</td>
</tr>
<tr>
<td>۶۵/۵</td>
<td>۲۹</td>
</tr>
<tr>
<td>۶۵/۵</td>
<td>۳۰</td>
</tr>
</tbody>
</table>

شماره ۲: شماره کلی نوارهای پروتئینی
جدول ۲. میانگین مربوطات گازهای الکترونورتیک برای صفات گروه‌گون و مقایسه میانگین‌های گروه‌ها

<table>
<thead>
<tr>
<th>صفت میانگین مربوطات</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن صد دانه</td>
<td>۸/۱۲ ۴</td>
<td>۷/۸۲ ۴</td>
<td>۷/۸۹ ۴</td>
<td>۷/۸۲ ۴</td>
<td>۷/۸۹ ۴</td>
<td>۷/۸۲ ۴</td>
<td>۷/۸۹ ۴</td>
</tr>
<tr>
<td>درصد ماده خشک</td>
<td>۰/۵۶ ۵</td>
</tr>
<tr>
<td>درصد پروتئین دانه</td>
<td>۹/۰۷ ۷</td>
</tr>
<tr>
<td>درصد غذای دانه</td>
<td>۰/۵۱ ۱</td>
</tr>
<tr>
<td>درصد رغوی دانه</td>
<td>۰/۵۴ ۴</td>
</tr>
<tr>
<td>درصد کلسیم دانه</td>
<td>۰/۹۸ ۸</td>
</tr>
</tbody>
</table>

1- برای هر صفت میانگین‌های که حداکثر دارای یک حرف مشترک هستند، بر مبنای میانگین‌های حداکثر مربوطات در سطح اختلاف پنج درصد قطعیت

میان داریم. می‌باشد.

** و ***: به ترتیب میان دار در سطح اختلاف ۵ و ۱ درصد.

شکل ۲: نمودار درختی نوارهای پروتئینی متغیر در زنوتیپ‌ها

اثالبحال الگوهای الکترونورتیک برای نوارهای پروتئینی دانه در گروه‌های مختلف می‌باشد.

اثالبحال الگوها از نظر درصد رغوی به میان دار شده به

gونه‌های که زنوتیپ‌های دارای الگوی پروتئینی نوع ۱ بیشترین
مزایا رغوی را داشتند. از سویی، الگوی نوع ۲ تنها الگوی
است که فاقد نوارهای پروتئینی با حکمت نسبی ۳/۷۲ و

۲۴/۵ درصد است. بنابراین، عدم وجود یک نوار پروتئینی
در ارتباط با درصد بالای رغوی نیز می‌باشد. پس، انتخاب بر
اماس الگوی نوع ۲ برای افزایش میزان رغوی در مراحل اویه
بهترین می‌باشد. تنها شایان توجه این است که

زنوتیپ‌های دارای الگوی نوع ۸ پس از الگوی نوع ۲
جدول 3. ضرایب همبستگی میان ویژگی‌های دانه

<table>
<thead>
<tr>
<th>سکر</th>
<th>فسفر</th>
<th>گروگرد</th>
<th>پروتئین</th>
<th>ماده خشک</th>
<th>وزن صد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

dبررسی تنوع زنتیکی لینه‌های سویا با استفاده از روش الکتروفورز پروتئین دانه

جدول 4. همبستگی نوارهای پروتئینی منفی در رایسپیتا و ویژگی‌های دانه

<table>
<thead>
<tr>
<th>RF</th>
<th>صفات</th>
<th>وزن صد دانه</th>
<th>درصد خشک</th>
<th>درصد پروتئین دانه</th>
<th>فسفر</th>
<th>گروگرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>0/48</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
</tr>
<tr>
<td>52</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
<td>0/50</td>
</tr>
<tr>
<td>52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
<td>0/52</td>
</tr>
<tr>
<td>52</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
<td>0/54</td>
</tr>
<tr>
<td>52</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
<td>0/56</td>
</tr>
<tr>
<td>52</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
<td>0/58</td>
</tr>
</tbody>
</table>

ارتباط میان الگوهای پروتئینی و برخی صفات دانه

همبستگی میان صفات (جدول 3) نشان داد که با افزایش درصد ماده خشک دانه درصد پروتئین کاهش می‌یابد. چنان‌که بالاترین از آن جای می‌شود که افزایش درصد ماده خشک، سطح پروتئین را در واقع وزن کم کرده و نهایتاً درصد پروتئین کاهش می‌یابد. همچنین وزن صد دانه و درصد فسفر دانه (8) در سطح احتمال 0.05 درصد معنی‌دار بود. این که فسفر نسبت به دیگر عنصر معدنی (کلسیم، گروگرد) به میزان زیادی توسط گیاه جلد می‌شود و از عنصر ضروری برای رشد گیاه می‌باشد، بنابراین معنی‌دار بودن این همبستگی
تمامی این گوگه‌های دارای پروتئینی با حیرت نسبی ۲/۳۴ درصد، پیش‌ترین درصد فسفر دانه را دارا پیدا کرده‌اند (جدول ۴). در تحقیق ارتباط صفات مورفولوژیک و نوارهای پروتئینی، نوار پروتئینی با حیرت نسبی ۵۲ درصد با رنگ‌نام‌های در مرتبه‌بندی صورت داده شد. به طوری که در بیشتر نوارهای پروتئینی رنگ‌نام‌های سیاه و سفید داشتند، بنابراین، می‌توان گفت زندگی کندلویی پیچیده مربوط به این نوار پروتئینی کنترل کندلویی رنگ‌نام بندر می‌باشد.

۱. ولی زاده، م. و. ت. کامی. ۱۳۷۲. فاصله زمانی کیفی گونه‌های بروجات با استفاده از بررسی چند شکل‌های پروتئین و DNA اولین دان. ۱.

