بررسی توزیع زنتیکی لاین های سویا با استفاده از روش الکتروفوروز پروتئین دانه

حمید علی پور، همایون رضایی، سیدعلی محمد میرمحسن میبدی و مسعود طاهری

چکیده
این پژوهش به منظور بررسی توزیع زنتیکی ۲۷۰ زنتیپ سویا، از نظر الگوهای الکتروفوروز پروتئین دانه، و ارتباط آنها با پریشی از ویژگی های دانه مانند درصد روزنگی، درصد پروتئین، برخی از ترکیبات شیمیایی و وزن صد دانه انجام شد. از منابع رویش الکتروفوروز، خلفیت ۹۰ و ۷۰ درصد در کلیدری به ترتیب برای زنتیپ‌های اصلی و پایه، خلفیت ۴۲/۵ و ۱۳/۵ میلی‌گرم در میلی‌لیتر بافت استخراج عصاره پروتئین، ۱۰ میکروآمتر تریکن تمونه در داخل چاهک‌های زل/۵ میلی‌گرم، و در دو صفت گاز، صرفه‌جویی و مناسب‌ترین تریکن برای به دست آوردن نوارهای واضح و جدالگاه پروتئین تیختی جامد ته داده شد. نتایج الکتروفوروز پروتئین ها، ۳۰ نوار را بر مبنای حركت نسبی روز لگ آشکار ساخت که تنها پنج نوار از آنها در میان زنتیپ‌ها چند شکل نشان داد. به طور کلی، هشت گروه متغیر اکثر الکتروفوروز در میان زنتیپ ها تیختی جامد دیده شد. تجزیه خوشه‌های زنتیپ‌ها بر اساس آرزیابی کاریکی نوارهای ها که نقش گروه اصلی داشته یا دانه آنها را در توزیع همگونی را، و تجزیه خوشه‌های نوارهای متغیر از نظر زنتیپ‌ها چند نوار از آنها را در میان دانه پیش‌گاه دانه‌های فیسکیکی کرد. ضریب تسلط ساده میان نوارهای ب حکمت /۰ و /۰ درصد برای صفر به میلی‌گرم، که با اگر خود از نوارهای توسط یک زن منطق می‌گردد که در زنتیپ‌های هموگرایی بالغ و مقیاس‌بندی می‌باشد. در صفت معکوس این دانه آنها را در زل پیمای، خود تجزیه خوشه‌های نوارهای متغیر از نظر دانه پروتئین و درصد روزنگی دانش دانه‌ها داشتند. در صفت دیگر می‌باشد. زنتیپ‌های الگوهای پروتئینی دارای نوار ب حکمت /۰ و /۰ درصد به دست نوارهای دانه را داشتند. نوار طبق دانه زنتیپ‌های حاوی نوار پروتئین ب حکمت /۰ و /۰ دانه سیاه بود.

واژه‌های کلیدی: تجزیه خوشه‌های، ترکیب شیمیایی دانه، زرمیلیس، همبستگی صفات

مقدمه
اندیشته استفاده از فعالیت‌های کاتالیزوری آنزیم‌ها با روش‌های بیوشیمیایی منجر به رفع مشکل نشان‌گیری زنتیکی از طریق روشنکاروزه گروهی است (۹ و ۱۵). امروزه یا بیگرش

روش الکتروفوروز گروهی است (۹ و ۱۵). امروزه یا بیگرش

روش‌های بیگرش تجزیه و تحلیل زنتیکی، که در آنها مستقیماً از

یک ب حکمت دانشگاه‌های کارشناسی ارشد، استاد و استادان اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

۱. در مورد اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

۲. در مورد اصلاح نباتات، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
روش‌های مختلف در یک رقیم گردیده است. پولیگانو و هم‌مان (18) نیز به‌طور گروهی کربوناتی و تکامل ۵۰۰۰۰۰۰ می‌باشد، و دست کم از شش زیرواحده با ماده دنکلیک (DNA) استفاده می‌شود. پروتئینهای بسیار از هم یا در سری‌های گوناگونی، از جمله ارتباطات چیزی همانند گیاهان باین پروتئینات (۳۷) و ۱۳۱۹، تعیین نقش‌ها و یا پیش‌سنجی این ماده‌ها به‌طور مناسبی در موجودات موجود است. این این وجود استفاده از الکترورون بی‌پروتئینهای دانه به‌منظور نوین و گروه‌بندی بلی به‌پیشنهاد تحقیق‌دهندگان کلول‌های پروتئینهای دانه با پژوهشگر جدی و شناسایی بعدی، نشان‌که چنین نشان‌هایی از تاثیر کلول‌های پروتئینهای دانه به‌روش‌های جدید و به‌دردست از الکترورون باز پلی اکریلاید در حضور سدیم دودسیل سولفات در تشخیص اطراف‌ها و طیف‌برداری درون گونه‌ها و میان گونه‌ها محصولات گوناگون مهم‌ترین پیش‌بینی استفاده شده است. سالمانیچ و پرژیلیسکا (۱۸۸) آلپا و پیوندی کلی دانه را در جنس دانه‌های پنجه مانند گونه‌های مجاور که می‌تواند به سه‌را ۱۳۱۹ یک طایفه جدید ناپیک نشان دهد. از جهت و کمک با نقل از (۷) سه بخش همووژن و قابل تثبیت از پروتئینهای دانه نشان دهنده‌ای از جنس‌هایی نموده‌اند. این این به‌روش دانه‌های با نام‌های ویسکلن و گلوله‌های تامل‌دار، و دیگری از آلپا و پیوندی که مانند کلول‌های تامل‌دار بوده‌اند، نمودار کلول‌های (۲) کلاسیک (۱۲) که نیز جزء گلوله‌ها را از لحیه بااقل جداسازی کرده، به‌عنی یک پروتئینهای جز گونه‌ای است و سویا بکار می‌رود. در جداسازی میان گونه‌ها و منشا سیستولوی‌دار، دارد. در این میان گونه‌ای می‌باشد، و دست کم از شش زیرواحده ۵/۵ و گلوکزامین (۱۸) و پس از این تنها رشد که وجود داشته‌اند در بیان‌بندی نمایان تفاوت در الکترورون بی‌پروتئینهای دانه‌های یک خلاف، و غلایچب و

1. Polymorphism
2. Vicieae
3. Cicer
4. Cicereae
5. Osborne & Campbell
6. β Conglincue
بررسی توزیع آنتیکیتی به‌ناتیه های سیبا با استفاده از روش الکتروفورز پروتئین‌های داشته ارتباط می‌گذارد که مهم‌ترین اهداف آن به شرح زیر می‌باشد: دقت به دست آوردن روش عملی مناسب برای مشاهده نواحی واضح و مجزای پروتئینی، تیز کردن نوارهای پروتئینی، ارتباط احتمالی میان برخی از ترکیب‌های دانه و نواحی پروتئینی و موارد و روشهای سوزن‌دهی مورد بررسی شامل ۲۷۰ لای دخالت و خارجی سیبا، بهبود شده از الکتریکی مؤسسه اصلی تهیه نهال و تدریک زنده در این پروتئس از روش الکتروفورز در حضور ترکیبی دوسمبل سیل‌خون (SDS-PAGE) به منظور بررسی پروتئینی کل و پروتئین‌های خاص از استفاده شد. آنچه در زیر شرح داده می‌شود، روشهای بهینه است که با بررسی علائم مخاط مسلم که در بررسی کل پروتئین‌ها محلول رنگ‌آمیزی با اختلال کوماسی یک لیتر می‌باشد، ترکیب آیسی‌آت و آب می‌باشد به مقدار 0/۲۸۸ میلی‌گرم، ۱۲۰ و ۱۵۰ میلی‌لیتر و محلول رنگ‌آمیزی با اختلال ۱۲۰ میلی‌لیتر است، ۳۰ میلی‌لیتر است، ۲۴ میلی‌لیتر آب می‌باشد. طریق آمپیوژی و اکسیداسیون یک لیتر آب می‌باشد. طریق آمپیوژی و ۱۲۰ میلی‌گرم، ۱۲۰ و ۱۵۰ میلی‌لیتر و محلول رنگ‌آمیزی با اختلال ۱۲۰ میلی‌لیتر است، ۳۰ میلی‌لیتر است، ۲۴ میلی‌لیتر آب می‌باشد. طریق آمپیوژی و اکسیداسیون یک لیتر آب می‌باشد. طریق آمپیوژی و ۱۲۰ میلی‌گرم، ۱۲۰ و ۱۵۰ میلی‌لیتر و محلول رنگ‌آمیزی با اختلال ۱۲۰ میلی‌لیتر است، ۳۰ میلی‌لیتر است، ۲۴ میلی‌لیتر آب می‌باشد.

1. Sodium Dodecyl Sulphate (SDS)
2. Acrylamid
3. Bis-Acrylamid
4. Tris
5. TEMED
بررسی پروتئین‌های خاص برای تهیه محلول رنگ‌آزمایی، میلی‌گرم کوماسی بنجم، میلی‌گرم لیتر آنتانه و میلی‌گرم TCA (رنگ اکاروستیک اسید) در 150 میلی‌لیتر آب مفرغ و میلی‌گرم TCA 87/5 در یک لیتر آب مفرغ با کار رفت. این پلیمرز به دلیل TCA 50 میلی‌گرم، از هر میکروبلت با میکروبلت به داخل جاها تریپولی گردید.

صفحه مورد بررسی و محاسبات آماری افزون بر الگو نوارهای پروتئین، چنین دانه روش استخراج از عصاره پروتئین با روش کلید آل فسفر و گوگرد با روش اسیتروفونمتر، کلسیم با روش زیب داده با نیز اندازه‌گیری شد. پس از رنگ‌آزمایی، در ترکیبها نور پروتئین بر اساس حکایت 0/6 اندازه‌گیری شد. پس از 0/5 یا فاکتور وضعیت (RF) 2 تابعی بر حسب میکروبلت به شرح زیر، به 200000 rpm در دمای 20 درجه سانتی‌گراد تورمی گردید.

پی‌آمین‌های در نیز 30 میلی‌گرم آرد در یک میلی‌لیتر محلول استخراج 3 میلی‌لیتر آب مفرغ 4/5 میلی‌لیتر با روش مفرغ شده و میلی‌لیتر 2-مکراتونتول، به دست یک خاکی گردید. در فشار میکروبلت به دست 2 میلی‌گرم کوماسی بنجم، و میکروبلت به تریپولی به 100000 rpm در دمای 20 درجه سانتی‌گراد تورمی گردید. درجه سانتی‌گراد میکروبلت، برای تعیین استخراج بار تغییر شده 10/5 میلی‌لیتر با بررسی تریپولی به pH=6/8 میکروبلت با 2 میلی‌گرم کوماسی بنجم و MDS 25 میلی‌گرم کوماسی بنجم، و میکروبلت به 30 میلی‌لیتر سلولزول به آن اضافه شد.

برای این که حکایت پروتئین‌ها در داخل ژل مشخص باشد، یک مسیر ارتوپریک های استخراج شده نگستن و رنگ‌آزمایی شد. دیدن منظور از دو 50 میلی‌گرم کالری و مول با pH=6/8 در مول با 10 میلی‌لیتر گلیسرول و 2 میلی‌لیتر دو مول سلولزول گلیسرول و سلولزول را دو 50 میلی‌لیتر تریپولی تریپولی تریپولی تریپولی نسیم‌کننده گردید. هر یک میکروبلت 2-مکراتونتول 75/50 میکروبلت از میکروبلت رنگ‌آزمایی یک میکروبلت استفاده شد.

6. Simple matching coefficient 7. Unweighted pair group method
نتایج و بحث

روش عملی مناسب الکتروروز

نتایج نشان داد از میان شرایط مختلط بروز شد، غلظت‌های 0.1، 0.5 و 0.01 درصد آزمایشی به ترتیب باعث ۱۰۰ درصد نمونه در داخل چاکه‌های لز ۲۵ پیل، میلی‌یکسیم، و در ساده رگ‌آزمایی، منشاین تغییر به یاد به دم آوردن نوار‌های واضح و چاکه‌های پروتوئین‌ها را یافت. گلایسپین استریکر و گلاسپین‌ها، که از پروتوئین‌های اصلی تکیه دسته‌بندی در لز نمی‌باشد، در نیمه‌ترین روزی نرمال شدند. بنابراین، با توجه به شکل پلاستیکی کننده و جداسازی آنها، تعداد سبب‌و‌فرقه‌هایی ثابت می‌شود، از آن تعداد دارای احتمال مناسبی نسبت به زیر بزرگ‌تر و اینکه در داخل زل لز، حاصل از نماهای نسبتا بزرگ‌تر دارد. انتخاب زل پایه با غلظت‌های 0.1، 0.5 و 0.01 درصد، باعث شد که ابعاد پروتوئین‌ها با قطر مناسب‌تر را اندازه‌گیری و به خوبی در دامنه حساب‌های سری‌پیش‌می‌گردد. برای کنترل این عوامل، نیاز به تغییر در نیمه‌ترین روزی نمی‌باشد. در نیمه‌ترین روزی نمی‌ба
جدول ۱. انگورهای منتفی ژنتیکی از نظر اندازه نوار پروتئینی و قرارگیری آنها

<table>
<thead>
<tr>
<th>نوع انگوره</th>
<th>حکمت نسبی نوار (RF۱۰۰)</th>
<th>نوارها</th>
<th>۴/۴۹</th>
<th>۳/۲۵</th>
<th>۲/۲۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۵۹</td>
<td>۱</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۷۲</td>
<td>۲</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۷۱</td>
<td>۲</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۷۱</td>
<td>۲</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۹۱</td>
<td>۴</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۹۱</td>
<td>۶</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۷۱</td>
<td>۷</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
<tr>
<td>۸/۷۱</td>
<td>۸</td>
<td>۰</td>
<td>۰</td>
<td>۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

ضریب تطابق ساده ۵/۷ در میان نوارهای ۸۲ و ۸۰

پیوند بین رانگ این نکته باشد که این سه نوار تقریباً در درصد ژنتیکی‌ها به هم مولفه‌اند. ضریب تطابق ساده میان نوارهای ۱ و ۲۰ برای گروه شاهد که نشان دهنده عدم ظهور هم‌زمان اندازه نوار با هم است. بیانیان، انتساب می‌شود که ظهور ژن‌های مربوط به این دو نوار از هم مستقل هستند و در صورتی که پیوسته بودن میزان ژن‌کنترل میان آنها ۵ درصد است، البته در صورتی این موضوع صادق است و ضریب تطابق ساده میان این دو نوار را توجه می‌کند که سیلول تخم از انتخاب گام‌های ژن‌کنترل به وجوه آید، این گام‌ها هم‌زمان حامل هر دو درن و مربوط به این نوارها می‌باشند. از سویی، می‌توان گفت که این دو نوار محصول پروتئین‌یک ژن مستقلی است که در حالت همبستگی محصول و مغزب به صورت یک نوار متغیر ظاهر می‌شود. بنابراین، دم و در انتخاب میان این دو نوار منطقی است به نظر می‌رسد.

به طور کلی، نتایج نشان داد که تغییر در میزان تقریباً باعث تغییر در نوارهای داخل هر گروه می‌شود و فاصله قابل توجه آنها در میان گروه‌ها، می‌توان گفت که زنده رابطه به نوارهای داخل هر گروه پیوستگی چشمگیر دارد. چنین یکی از نوارهای داخل هر گروه پیوستگی چشمگیری دارد که بجز در

شکل ۱. موقعیت نوارهای پروتئینی و حکمت نسبی آنها

سپر جهت متفاوت را از فاصله ۴۲/۰۵ میانی ساخت. گروه‌یک

متصل به نوار ۱، گروه ۲ و ۳ متعلق به نوارهای ۱۸ و ۲۰ و گروه۴ متعلق به نوار ۲۱ است، با توجه به این که نوارهای ۲ و ۱۸ در بیشتر ژن‌کنترل به وجوه آید، و ضریب تطابق ساده میان آنها ۵/۷ است. می‌توان گفت که آنها دارای شیب‌های زیادی به وجود جدید. این ژن‌های مربوط به آنها دارای پیوستگی متوسط و احتمالاً ژن‌های مربوط به آنها دارای پیوستگی متوسطی باشد. به طوری که در بیشتر ژن‌کنترل ژن‌های مربوط به آنها دارای همراه با ظهور دیگری و عدم ظهور یکی با عدم ظهور دیگری همراه است.
بررسی نوع‌تکنیک‌های درمانی با استفاده از روش الکتروفورز پروتئین دانه

موارد اندازه‌گیری شکسته‌نمای شومون، از سوی دیگر، گروه‌های مختلف
قابلیت زیادی را نشان دادند و زنده‌بودن مربوط به نوارهای
پروتئین آنها در فاصله دورتری از یکدیگر قرار گرفته‌اند. به
طروری که نوترکیبی به راحتی در میان آنها اتفاق افتاده و
ترکیب‌های مختلفی را ایجاد می‌نماید.

مقایسه گروه‌های پروتئینی از نظر برخی ویژگی‌های دانه
تجزیه واریانس گروه‌های پروتئینی از نظر صفات مورد بررسی
در جدول ۲ نشان داده شده است. نتایج مشخص نمایند که
اختلاف میان گروه‌های پروتئینی از نظر وزن صد دانه معنی‌دار
است. مقایسه میانگین‌های وزن صد دانه در گروه‌های مختلف
نشان داد که گروه‌های ۴ و ۸ دارای اختلاف معنی‌دار می‌باشند.
و لی تفاوت آنها با یکدیگر گروه‌ها معنی‌دار نیست. اختلاف
میانگین‌های وزن صد دانه گروه‌های ۱ و ۲ از آن جا ناشی
می‌شود که گروه نوع ۴ نیتنگ‌هایی است که فقط دارای دو نوار
پروتئینی با حمرکت نسبی ۲/۵ و ۴۶ درصد از میان پنج نوار
متغیر در زنوتیپ‌ها می‌باشد، و در این حالت بهترین وزن صد
دانه را دارد. با توجه به ارتباط قوی گروه نوع ۴ وزن صد دانه،
و از آن جایی که وزن صد دانه معیاری می‌باشد در عملکرد دانه
است، انتخاب براساس گروه پروتئینی نوع ۴ در مراحل اولیه
بهترین موقعیت در رشد گیاهان معیاری مؤثر واقع شود.

اختلاف میان گروه‌های پروتئینی از نظر درصد کلسمپ
درصد گروگرد و درصد ماده خشک دانه معنی‌دار نیستند، ولی
الگری نوع ۴ که بالاترین درصد ماده خشک را داشت، کمترین
درصد پروتئین دانه را دارا بود. این موضوع از طرف می‌تواند
عملکرد و درصد پروتئین دانه را تأثیر می‌گذارد.

اختلاف الگری از نظر درصد فسفر به‌ویژه معنی‌دار گردید.
الگری نوع ۴ کمترین درصد فسفر را دارا بود. با توجه به این که
الگری نوع ۴ دارای کمترین میزان پروتئین در بین الگوها
می‌باشد و در ساختار بیشتری از پروتئین‌ها و آنزیم‌ها، مانند
سبوتکروم F، فسفر وجود دارد، کم بودن درصد فسفر
زنوتیپ‌های دارای این الگری پروتئین قابل انگشته افتاده است.

شماره نوارها

<table>
<thead>
<tr>
<th>حرکت نسبی نوارها</th>
<th>شماره نوار</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷</td>
<td>۱</td>
</tr>
<tr>
<td>۶</td>
<td>۲</td>
</tr>
<tr>
<td>۵</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>۳</td>
<td>۵</td>
</tr>
<tr>
<td>۲</td>
<td>۶</td>
</tr>
<tr>
<td>۱</td>
<td>۷</td>
</tr>
<tr>
<td>۶۰</td>
<td>۸</td>
</tr>
<tr>
<td>۵۰</td>
<td>۹</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۳۰</td>
<td>۱۱</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۲</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۳</td>
</tr>
<tr>
<td>۱۰ مناسب</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱۵ مناسب</td>
<td>۱۵</td>
</tr>
<tr>
<td>۲۰ مناسب</td>
<td>۱۶</td>
</tr>
<tr>
<td>۲۵ مناسب</td>
<td>۱۷</td>
</tr>
<tr>
<td>۳۰ مناسب</td>
<td>۱۸</td>
</tr>
<tr>
<td>۳۵ مناسب</td>
<td>۱۹</td>
</tr>
<tr>
<td>۴۰ مناسب</td>
<td>۲۰</td>
</tr>
<tr>
<td>۴۵ مناسب</td>
<td>۲۱</td>
</tr>
<tr>
<td>۵۰ مناسب</td>
<td>۲۲</td>
</tr>
<tr>
<td>۵۵ مناسب</td>
<td>۲۳</td>
</tr>
<tr>
<td>۶۰ مناسب</td>
<td>۲۴</td>
</tr>
<tr>
<td>۶۵ مناسب</td>
<td>۲۵</td>
</tr>
<tr>
<td>۷۰ مناسب</td>
<td>۲۶</td>
</tr>
<tr>
<td>۷۵ مناسب</td>
<td>۲۷</td>
</tr>
<tr>
<td>۸۰ مناسب</td>
<td>۲۸</td>
</tr>
<tr>
<td>۸۵ مناسب</td>
<td>۲۹</td>
</tr>
<tr>
<td>۹۰ مناسب</td>
<td>۳۰</td>
</tr>
</tbody>
</table>

شکل ۲. شماتیک نوارهای پروتئینی
جدول 2. میانگین ممتعات الگوها الکتروفونیک برای صفات گروه‌گون و مقایسه میانگین‌های الگوها

<table>
<thead>
<tr>
<th>صفت میانگین ممتعات الگوها</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن صد دانه</td>
<td>8/12*</td>
<td>8/12*</td>
<td>8/12*</td>
<td>8/12*</td>
<td>8/12*</td>
<td>8/12*</td>
<td>8/12*</td>
<td>8/12*</td>
</tr>
<tr>
<td>درصد ماده خشک</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
<td>0/53</td>
</tr>
<tr>
<td>درصد پروتئین دانه</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
<td>9/0/0*</td>
</tr>
<tr>
<td>درصد گوگرد دانه</td>
<td>5/5/5</td>
<td>5/5/5</td>
<td>5/5/5</td>
<td>5/5/5</td>
<td>5/5/5</td>
<td>5/5/5</td>
<td>5/5/5</td>
<td>5/5/5</td>
</tr>
<tr>
<td>درصد فسفر دانه</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>درصد روغن دانه</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>درصد کلسیم دانه</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
<td>0/000</td>
</tr>
</tbody>
</table>

1. برای هر صفت میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند، بر مبنای میانگین‌های حداکثر ممتعات در سطح احتمال بالا درصد تفاوت معنی‌دار می‌باشد.

* و **: به ترتیب معنی‌دار در سطوح احتمال 5 و 1 درصد.

شکل 3. نمودار درختی نوارهای پروتئینی متغیر در انتظار

اختلاف الگوهایی که در سطح رونق بذر معنی‌دار نیست، به گونه‌ای که نوارهای الگویی پروتئینی نوع 2 پیش‌ترین میزان رونق دانه داشته‌اند، از سویی، الگویی نوع 2 بین پایه‌های پروتئینی است که فاقد نوارهای پروتئینی با حیرت نسبی 3/5 و 24 درصد است. بنابراین، عدم وجود این سه نوار پروتئینی در ارتباط با درصد بالای رونق بذر می‌باشد. پس، انتخاب بر اساس الگویی نوع 2 برای افزایش میزان رونق در مراحل اولیه به‌عنوان می‌تواند مؤثر باشد. البته شاید توجه این است که نوارهای الگویی نوع 2 و 8 پس از الگویی نوع 2

beishtrin misan roonge ra dara heshtane, va macayes navorhaa perootiniy ane do gow nooshan dahe ke gowgye noox 8 Fagad do Navor perootiniy ba haraka nesbi 3/5 va 46 navor ande misan navorhaa mrobo mivashad.

axetallal gowgye ane ezer navor perootiniy danae mivashad ba hagayeye misan roonge ra dara heshtane, va macayes navorhaa perootiniy ane do gow nooshan dahe ke gowgye noox 8 Fagad do Navor perootiniy ba haraka nesbi 3/5 va 46 navor ande misan navorhaa mrobo mivashad.

axetallal gowgye ane ezer navor perootiniy danae mivashad ba hagayeye misan roonge ra dara heshtane, va macayes navorhaa perootiniy ane do gow nooshan dahe ke gowgye noox 8 Fagad do Navor perootiniy ba haraka nesbi 3/5 va 46 navor ande misan navorhaa mrobo mivashad.

Downloaded from icpp.iut.ac.ir at 22:33 IRDT on Thursday May 7th 2020
جدول ۲. ضرایب همیستکی میان ویژگی‌های دانه

<table>
<thead>
<tr>
<th>وزن صدق دانه</th>
<th>ماده خشک</th>
<th>فسفر</th>
<th>گروگرد</th>
<th>پروپتین</th>
<th>روغن</th>
<th>کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۵۲</td>
<td>۰/۷۸ •</td>
<td>۰/۱۷ •</td>
<td>۰/۲۶ •</td>
<td>۰/۲۸ •</td>
<td>۰/۱۵ •</td>
<td>۰/۱۹ •</td>
</tr>
<tr>
<td>۰/۰۱۱</td>
<td>۰/۰۷ •</td>
<td>۰/۰۱ •</td>
<td>۰/۲۸ •</td>
<td>۰/۳۳ •</td>
<td>۰/۲۸ •</td>
<td>۰/۲۳ •</td>
</tr>
<tr>
<td>۰/۰۵۰</td>
<td>۰/۰۸ •</td>
<td>۰/۰۶ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td>۰/۳۶ •</td>
</tr>
<tr>
<td>۰/۰۴۰</td>
<td>۰/۰۷ •</td>
<td>۰/۰۶ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td>۰/۳۶ •</td>
</tr>
<tr>
<td>۰/۰۲۰</td>
<td>۰/۰۳ •</td>
<td>۰/۰۲ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td>۰/۳۶ •</td>
</tr>
<tr>
<td>۰/۰۱۰</td>
<td>۰/۰۱ •</td>
<td>۰/۰۱ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td>۰/۳۶ •</td>
</tr>
</tbody>
</table>

جدول ۴. همبستگی نوارهای پروپتینی متفاوت در زنویپ‌ها و ویژگی‌های دانه

<table>
<thead>
<tr>
<th>صفات</th>
<th>وزن صدق دانه</th>
<th>ماده خشک</th>
<th>فسفر</th>
<th>گروگرد</th>
<th>پروپتین</th>
<th>روغن</th>
<th>کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۵۲</td>
<td>۰/۷۸ •</td>
<td>۰/۱۷ •</td>
<td>۰/۲۶ •</td>
<td>۰/۲۸ •</td>
<td>۰/۲۸ •</td>
<td>۰/۱۹ •</td>
<td></td>
</tr>
<tr>
<td>۰/۰۱۱</td>
<td>۰/۰۷ •</td>
<td>۰/۰۱ •</td>
<td>۰/۲۸ •</td>
<td>۰/۳۳ •</td>
<td>۰/۳۳ •</td>
<td>۰/۲۸ •</td>
<td></td>
</tr>
<tr>
<td>۰/۰۵۰</td>
<td>۰/۰۸ •</td>
<td>۰/۰۶ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td></td>
</tr>
<tr>
<td>۰/۰۴۰</td>
<td>۰/۰۷ •</td>
<td>۰/۰۶ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td></td>
</tr>
<tr>
<td>۰/۰۲۰</td>
<td>۰/۰۳ •</td>
<td>۰/۰۲ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td></td>
</tr>
<tr>
<td>۰/۰۱۰</td>
<td>۰/۰۱ •</td>
<td>۰/۰۱ •</td>
<td>۰/۳۵ •</td>
<td>۰/۳۷ •</td>
<td>۰/۳۷ •</td>
<td>۰/۲۵ •</td>
<td></td>
</tr>
</tbody>
</table>

ارتباط میان میان صفات (جدول ۴) نشان داد که با افزایش وزن صدق دانه، همبستگی میان فسفر و وزن صدق دانه، فسفر و ماده خشک، فسفر و پروپتین، پروپتین و پروپتین، و پروپتین و روغن کاهش می‌یابد. افزایش وزن صدق دانه باعث کاهش همبستگی میان فسفر و وزن صدق دانه می‌شود. این نتایج نشان می‌دهد که با افزایش وزن صدق دانه، همبستگی میان صفات کاهش می‌یابد.
علوم و فناون کشاورزی و منابع طبیعی/جلد پنجم/شماره چهارم/زمستان ۱۳۸۰

تمامی این اگوهای دارای نوار پروتئینی با حرفک تنبیهی ۳/۵ درصد نسبی دارد. می‌باشند، بنابراین ارتباط قوی میان درصد پروتئین دانه و نوار ۷/۵ درصد مورد تایید قرار می‌گیرد. انتخاب بر اساس اگوهای پروتئینی حاوی این نوار می‌تواند در زیرشیوه‌گاهان با درصد بالای پروتئین باز موجب واقع شود.

هیپستگی درصد فسفر دانه و نوارهای پروتئینی با حرفک نسبی ۲/۵ و ۷۵ درصد (۴/۴) در سطح احتمال ۰/۰۵ با دانه و متناهی بودن اگوهای پروتئینی ۵/۸ و ۸ با دانه نوار با مبتنی بر دانه در مورد استفاده

1. ولی زاده، م. و. ت. کامیا. ۱۳۷۲. فصلنامه زنبوری ایران، انتشارات فردوسی مشهد.
Ellis Harwood, New York.
bean from Afganistan and Ethiopia. Fabis Newsletter 28: 8-11.
Polonica 33: 27-34.
polyacrylamide gel electrophoresis of soybean (Glycine max L.) seed proteins. Cereal Chem. 64:
380-384.
USA.