بررسی اثر باکتسول و پودر آب پنیر بر عملکرد و خصوصیات

لشج جوجه‌های گوششی

عبدالهادی رستاد ۱، عبدالحسین سعیم ۲ و فرزاد دانشور

(تاریخ دریافت: ۸۵/۰۷/۰۲، تاریخ پذیرش: ۸۶/۰۷/۰۴)

چکیده

به منظور بررسی اثر پودر آب پنیر و پروپتیک لاکوتوباسیلوس- باکتسول بر عملکرد جوجه‌های گوششی آزمایشی با ۳۰۰ نقطه جوجه گوششی نژاد راس در قالب یک طرح کاملاً تصادفی با پیچ تیم‌آر و تعداد ۱۵ نقطه جوجه در هر تکرار انجام شد. در روز ۱۳۰ جهت یکسان نمونه تعداد مرغ و خروسها در هر فقس تعداد جوجه‌ها به ۱۰ نقطه در هر تکرار تقلیل یافت. جیره‌ها شامل جیره شاهد (فاده پروپتیک و پودر آب پنیر) و مطلح ۵۰ و ۷۵ گرم در تن پروپتیک و هر سطح از سطح ذکر شده با گونه ۲ دصرد پودر آب پنیر، آفتاب و مصرف مستقیم در اندازه متفاوت پورش و خصوصیات لاشه شامل وزن، گردیدن، چگر، بال، قلب و چربی محوطه شکمی در سن ۹۹ روزگیر اندازه‌گیری و سپس درصد هر چهار نوزدهمین هفته لازم به وزن زنده محاسبه شد. استفاده از جیره‌های غذایی حاوی ۷۵ و ۵۰ گرم در تن پروپتیک به همراه ۲ دصرد پودر آب پنیر در فاصله زمانی ۲۱-۲۰ روزگیر به شکل متعددی باعث ایجاد انباشت وزن بدنی جوجه‌ها نسبت به سایر جیره‌های شاهد (P<0/0۵) و (P<0/0۵) استفاده از جیره‌های حاوی پودر آب پنیر سبب کاهش میانگین وزن بدنی پلاستیک‌های خون در ۳۵ روزگیر (P<0/0۵) و (P<0/0۵) نسبت به سایر تیم‌های گردید.

هجیزی از جیره‌های غذایی با ضرب تبدیل غذایی و خصوصیات لاشه تأثیر معناداره‌ای نداشتند (P<0/0۵).

واژه‌های کلیدی: پروپتیک، پودر آب پنیر، جوجه‌های گوششی

نمایه‌نامه

پروپتیک یکی از دستاوردهای مثبت محققین هستند که ضمن کاهش احتمال ابتلا به بیماری‌های به‌دور ضرب تبدیل غذایی و بکارگیری آن به عنوان محورک رشد، در دام و طیور هیچ گونه باقیمانده بانی نداشته و بر خلاف نظری‌ها.

مقدمه

پودر رژه‌های روز افزون نیاز غذایی بشر (۱ و ۲) و نیز یا توجه به این‌که باعث نمادهای برخی میکروب‌های دستگاه گوارشی دام و طیور در مقابل مصرف داروهای مختلف (۱، ۷ و ۱۶) به‌کارگیری موادی به عنوان محورک رشد و حفاظ سلامت.

۱) برخی دانشجویان سابقاً کارشناسی ارشد و عضو هیئت علمی علوم دامی، دانشگاه کشاورزی، دانشگاه آزاد اسلامی، واحد داراب

۲) استاد علوم دامی، دانشگاه کشاورزی، دانشگاه آزاد اسلامی، واحد داراب

h_rastad@yahoo.com

*مطالعه مکانیات، پست الکترونیکی:
Compatibii میکروبی ایجاد نمی کند.
پروپیونیک از باکتری‌های فیت‌دسترگا کوارشی
هستند که به‌صورت مکانی‌های غذایی به جیره اضافه می‌گردد.
و می‌توانند با ایجاد گلدن و رشد و تکثیر بیشتر، غلی به جرمیت
میکروبی‌های مفر و ایجاد تفاوت‌های میکروبی در دستگاه گوارش
ارت تهیه کننده ایجاد نمی کنند (0.1 , 10 و 12). رفتار بسیار
مواد غذایی و مکانی‌های کشنده و همچنین ایجاد محیطی
کشنده برای میکروبی‌های مضر عمده‌ترین فاکتور ایجاد
که پروپیونیکا در فاصله‌های خود استفاده می‌کند و در
نتایج باعث تحقیق شدید بند، بهبود ضرورت بی‌بیشتر غلیط
کاهش کلسولوپلاسمای خون، ثبت نیتروژن و کاهش اثرات
سمی آمونیاک می‌گردد (0.1, 2, 11, 12). در ساخت
پروپیونیکا ممکن است عملکرد ایجاد نمی‌کند ولی
استروتکوس‌ها، زنگ‌ها و فرم‌ها نیز مورد استفاده قرار
گرفته‌اند که با توجه به تحقیق کارگری پروپیونیکا این است
که برای رشد مناسب، تکثیر و ایجاد کلیه میکروگانیزم‌ها
باید شرایط مناسب در ساختگی گوارش به علت محیطی کشت
ایجاد گردید (14, 19, 20).

آزمایش‌هایی که در مورد استفاده از پروپیونیکا در جیره
طوبرگوشی انجام گرفته‌اند نشان داده است که این محیط کشت را
که تحت عنوان پروپیونیکا معرفی می‌کنند می‌تواند بی‌بیشتر
کارگری‌بیکس‌های مواد که اکثر می‌کتی می‌کند به خوبی
ایجاد نمود از دیگر مواد که در این راستا در آزمایش‌های
تغذیه‌ای بی‌بیشتر، می‌تواند به شکل کارکرده از (19, 8, 7
و 25) سبب‌سازد (6) و آب پپر (2) اشاره کرد.

تحقیق حاضر جزئی بررسی اثرات مختلف پروپیونیکا
باکتری‌ای باکسول، با بودن یک کارگری بود‌انداز پپر به عنوان
یک پروپیونیک در جیره طوبرگوشی انجام گرفته‌است.

مواد و روش‌ها
این آزمایش در قالب یک طرح کاملاً تصادفی با تعداد
300 جوجه یک‌رژه نژاد راس با 5 تیمار و 6 تکرار و تعداد
15 تضعیف
جدول 1. اجزای جیره در طول دوره پورورش (بر حسب درصد)

<table>
<thead>
<tr>
<th>دوره بایانتی</th>
<th>دوره رشد</th>
<th>دوره آغازین</th>
</tr>
</thead>
<tbody>
<tr>
<td>با 2 پدر آب پنیر بدون پدر آب پنیر</td>
<td>با 2 پدر آب پنیر بدون پدر آب پنیر</td>
<td>با 2 پدر آب پنیر بدون پدر آب پنیر</td>
</tr>
<tr>
<td>درت</td>
<td>55/4</td>
<td>35/0</td>
</tr>
<tr>
<td>سویا</td>
<td>25/0</td>
<td>25/0</td>
</tr>
<tr>
<td>نمک</td>
<td>8/0</td>
<td>8/0</td>
</tr>
<tr>
<td>مکمل</td>
<td>5/0</td>
<td>5/0</td>
</tr>
<tr>
<td>میتیونین</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>مسکن</td>
<td>0/1</td>
<td>0/1</td>
</tr>
<tr>
<td>کلسیم</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>سوخت و ساز (کیلوکاری بر کیلوگرم)</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>پروتئین</td>
<td>20/96</td>
<td>20/95</td>
</tr>
<tr>
<td>انرژی (kcal/kg)</td>
<td>27/76</td>
<td>27/76</td>
</tr>
<tr>
<td>فسفر قابل استفاده</td>
<td>0/120</td>
<td>0/120</td>
</tr>
<tr>
<td>انرژی (kcal/kg)</td>
<td>27/76</td>
<td>27/76</td>
</tr>
<tr>
<td>0/45</td>
<td>0/45</td>
<td>0/45</td>
</tr>
<tr>
<td>میتیونین + سیستین</td>
<td>0/64</td>
<td>0/64</td>
</tr>
<tr>
<td>لزیتن</td>
<td>0/120</td>
<td>0/120</td>
</tr>
</tbody>
</table>

توجه: شیمیایی پودر آب پنیر

وزن بایانتی سه‌ماهه خوراک هر دوره، وزن خوراک داده شده در هر دوره

روز مربع

= خوراک مصرفی روزانه هر جوجه در هر دوره

وزن بایانتی سه‌ماهه خوراک هر دوره، وزن خوراک داده شده در هر دوره

روز مربع

= خوراک مصرفی هر جوجه در طول هر دوره

تعداد روزهای هر دوره × خوراک مصرفی روزانه هر جوجه

پروپیونیک مورد استفاده

در این آزمایش از پروپیونیک باکتریایی لکتوپیلوس- باکتنول fallemand استفاده گردید. این گونه پروپیونیک توسط شرکت تولید و توزیع پیش‌بینی که با کشور فرادر و توزیع می‌شود. باکتری زندگی مولکول اکتیک در هر گرم باکتنول ده میلیارد

475
جدول 2 مقایسه میانگین‌های افزایش وزن جوجه‌ها در سنین مختلف دوره پورش (بر حسب گرم)

<table>
<thead>
<tr>
<th>جیره‌های آزمایشی (سن)</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>جیره‌های آزمایشی (سن)</td>
<td>۱</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
<td>۵</td>
</tr>
</tbody>
</table>
| همچنین از جدول فوق چنین بر می‌آید که در فواصل زمانی ۲۱-۳۰ روزگیر و ۳۱-۴۰ روزگیر میانگین افزایش وزن بدنی جوجه‌های آزمایش در فاصله زمانی ۵ تا ۱۲ ماه به ترتیب ۴۸۰گرم و ۴۲۰ گرم نسبت قرار داده شده‌اند

به شیوه‌های مختص صنایع گیری که به هیچ‌یک از شرکت‌های ایرانی مربوطه است (۰/۰۵<پ)

نتایج و بحث

میزان افزایش وزن جوجه‌ها در جدول ۲ درج شده‌است. براساس این جدول جیره‌های حاصل پروپیوتیک و پودر اب پنیر به صورت معنی‌دار (پ<۰/۰۵) و جیره‌های حاصل پودر ۵۰۰ گرم در ترکیب پروپیوتیک به شکل غیر معنی‌دار (پ<۰/۰۵) نسبت به دو گروه ریزی از افزایش وزن پیش‌بینی بوده.
جدول ۲ مقایسه میانگین‌های ضربی تبدیل جوگه‌ها در سه مختل دوره پورش

<table>
<thead>
<tr>
<th>کره‌های آزمایشی</th>
<th>سن (روز)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۴</td>
</tr>
<tr>
<td>۱/۵</td>
<td>۱/۵۸</td>
</tr>
<tr>
<td>±/۲/۱</td>
<td>±/۲/۱۰</td>
</tr>
<tr>
<td>۲/۰۸</td>
<td>۲/۱۵</td>
</tr>
<tr>
<td>۲/۱</td>
<td>۲/۱۸</td>
</tr>
</tbody>
</table>

کردن اسیدهای صفرآوی اولیه به ثانویه و نیز تجزیه‌گری از تأثیر بازخورده منفی اسیدهای صفرآوی بر فعالیت آنزیم ۷ آلفا هیدروکسیلاز و افزایش تبدیل شدن کلسیترول به اسیدهای صفرآوی باعث کاهش کلسیترول خون گردیده (۱۴). با متابولیسم جدول ۵ افزایش میزان در تعداد گلوبتهای تبدیلی خون جوجه‌های استفاده کننده از جوجه‌های حاوی گرم پروبیوکس با همراه که در نتیجه مصرف مصرف می‌باشد که کلسیترول می‌باشد که از حد باکتری پاکسول باعث ایجاد اختلال در ترکیب میکروبی و روده‌ای و در نتیجه باعث افزایش میزان مصرف خوراک و نامناسبی شدن ضربی تبدیل غذایی شده است (جدول ۴). نامناسبی مصرف مصرف کندنی تیمارهای مختلف در جدول ۵ شناخت داده شده است. جنین‌ها از این جدول مشاهده می‌گردد گرچه‌هایی که از جوجه‌های غذایی حاوی پودر‌آب پنیر به همراه پروبیوکس در غذاهای مصرفی خود استفاده کردها دارای کاهش پیش‌تری در میزان کلسیترول پلاسمای خون جوجه‌های مصرف کننده گرم در تن پروبیوکس بیشتر بود.

ممنوع‌کردن این جدول یک کاهش معنی‌دار هوش هنگام استفاده از جوجه‌های حاوی ۷۵ گرم در تن پروبیوکس نسبت به این که شاهد مشاهده می‌گردد پروبیوکس‌ها می‌توانند از طریق تبادل

۲۷۸
<table>
<thead>
<tr>
<th>شماره</th>
<th>قيمت یکسان</th>
<th>قيمت نهایی</th>
<th>هزینه نهایی</th>
<th>نتیجه‌ی نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>-100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>400</td>
<td>500</td>
<td>-200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>600</td>
<td>700</td>
<td>-300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>800</td>
<td>900</td>
<td>-400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>1000</td>
<td>1100</td>
<td>-500</td>
</tr>
</tbody>
</table>