تعبین زیست فراهمی چند نمونه مختلف در کلیسی فسفات تولیدی ایران و اثرات آنها بر عملکرد مرغ‌های تخم‌گذار

علی مشگلی، جواد پورپژاو و عبدالله سعیم

(تاریخ دریافت: 1392/2/6، نظر قاضی ژن: 2/3)

چکیده

ابن آزمایش به منظور مقایسه زیست فراهمی و بررسی آثار چند نمونه مختلف در کلیسی فسفات تولیدی در کارخانه‌های داخل کشور ایران فسفات پروپانالیس، گازهای (فاسی)، پوپا (خیس)، داد رازی کمیا، فسفر ایران، شیمیایی دان آور، در مرغ‌های تخم‌گذار به اجرا درآمد. 30 کلمه می‌توانند سفیدی از سوی‌های نام که در این تحقیق از فسفر و دارای تکه‌ای از لحاظ نمی‌توانند کنند فسفر مفتاوت پوستیده و در قالب یک طرح برای تخم‌گذار از دو تا 8 تخم‌گذار با دسته‌ای تخم‌گذاری مورد تحقیق و تحلیل قرار گرفتند. همچنین صفات فسفر، کلیسی و فسفر استخوان درد نهایی در دوره آخر از این تحقیق، تخم‌گذاری، ضخامت پوسته، درصد خاکرپذیری یا فسفر پوسته، کلیسی و ضخامت، وزن تخم‌مرغ، درصد تخم‌مرغ، درصد تخم‌ریزی، مصرف خوراک، ضربه تخم‌ریزی خوراک و باید تخم‌مرغ اندازه‌گیری و در نهایت با طرح کربنات‌های خردشده در زمان با طرح به‌پایه پوست در کاملاً تصادفی سورد تخم‌گذاری و تحلیل قرار گرفتند. همچنین صفات خاکرپذیری، کلیسی و فسفر استخوان در دو دوره آخر از این تحقیق گرفتند. بين تیمارها از لحاظ ضخامت پوسته، درصد خاکرپذیری پوسته، مصرف خوراک، وزن تخم‌مرغ، درصد تخم‌مرغ، درصد خاکرپذیری، مصرف خوراک، درصد خاکرپذیری پوسته، کلیسی و ضخامت پوسته درصد تخم‌مرغ، مصرف خوراک و باید تخم‌مرغ اندازه‌گیری شده در شرایط متفاوت در پژوهش F ایرانی فسفات) درصد تخم‌مرغان نمونه‌های داشت در پژوهش P < 0.05 داشت. در میان 30 درصد برای نمونه F ایرانی فسفات) درصد تخم‌مرغان Nام‌های 10 پژوهش F ایرانی فسفات) درصد تخم‌مرغANهذه نمونه‌ها بهتر و برتر محسوب شد.

واژه‌های کلیدی: زیست فراهمی، در کلیسی فسفات، مرغ تخم‌گذار، کیفیت پوسته

مقدمه

نیاز طوری را تأمین می‌کند (3). تفکر اساسی و سببیار ارزش‌ده فسفر

وکلیسیم در فراده‌های فیزیولوژیکی و سوخت و ساز ابدام و

طیور، برای بریدن امکان ساز و تهیه‌کنندرهای فیزیولوژیکی و شاخص‌های ایجاد

مقدار

Bei تحقیق آنتی‌کارشی، ارزش، استفاده و استفاده‌های در دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

Japour@cc.iut.ac.ir

* مسئول مکاتبات، پست الکترونیکی
کمبو بر آزمایش‌های انجام شده بود که در جهت آزمایش و سرانجام وجود رابطه تنهاگی و توزیع میان فسفر و کلسیم در بدن و رابطه منطقی که بین آنها برای گذش و حذف انرژی لازم است، نشان دهنده ضرورت برخورداری از تخصیص ویژه و مانند این پژوهش در فرانلند در کلسیم فسفات است. فسفر در سیستم‌های انسانی حیاتی و کمک به عملکرد ضرورت مصرف ایجاد می‌کند. آزمایش‌های کلی شرایط فرسنگی و مصرف فسفر می‌باشد.

مواد و روش‌ها

نیازمندی‌های آزمایشی شامل هستن جیره و هر چیزهای شامل چهره بلکه بود که در هر قله (هربلوک)، گین قله‌های نگه‌داری می‌شود. در این آزمایش از یک جیره به یک جیره استفاده شد و در کلسیم فسفات هم آزمایش باید آن ارزش آن‌ها را تغییر دهد. هشت نمونه تولیدی در یک کلسیم فسفات شامل نمونه‌های تولیدی کارخانه‌های ایران فسفات، پرتو بانی، فسفر ایران، دام رازی کمک، پویا خجسته، دان‌آوری، گداده (قاسی) و کلری شیمی بودن. نمونه تولیدی ایران فسفات به‌عنوان تولید محصول طبقاً استانداردها اروپا (26) و همچنین تایید استاندارد‌های بودن محصول تولیدی از طرف موسسه استاندارد و تحقیقات صنعتی ایران و با رعایت استاندارد ملی شماره ۲۳۱۹ (1) به‌عنوان استاندارد مورد استفاده قرار گرفت. بر اساس ادعا داخلی کارخانه‌های تولیدی میزان کلسیم و فسفر نمونه‌ها که بر سه‌هاه‌های تولیدی هست عرضه شده بود حداکثر ۷ درصد فسفر و حداکثر ۱۵ درصد کلسیم بود. بر اساس حداکثر کلسیم و فسفر موجود روی بسته‌ها و بر اساس ادعا (National Research Council (NRC)) میزان ۸ درصد از هر نمونه به‌جای یک فسفرگرده چنین چیزی آزمایش خود روز نمایندگی توهین از سطح ویژه هر قله بر اساس تقسیم آزمایش قرار می‌گرفت. آب به‌صورت آزاد در اخبار موفق‌تر قرار داشت. دو به ماه عادت ده یا به جیره‌ها انجام شد.
توسعه فراهمی چند نمونه مختلف دی کلیسم فسفات تولیدی ایران...

و پیکاس سازی در تولید صورت گرفت.

در این طرح از 16 عضو مرجع به کهروسان سویه‌های لایه W 36 از سن 36 هفتگی تا 38 هفتگی در 6 وابهای بلک کامل تصادفی استفاده شد. نمونه‌بندی از تخم‌مرغ‌های 15 روز یک‌پار و در 3 روز دیگر از هنگام می‌شود. نمونه‌های تخم‌مرغ به آزمایشگاه متقل و صفات مربوط به تخم‌مرغ شامل وزن تخم‌مرغ، مقاومت پوسته، ضخامت پوسته، وزن پوسته خشک، خاکستر پوسته، درصد کلسیم و فسفر پوسته اندازه‌گیری شد. برای خشک کردن پوسته از منبع دانه در ظرف ۸۰° C به مدت ۶ ساعت استفاده شد. برای تهیه خاکستر پوسته از پوسته که از جهت حرارت به صورت ۶۰° C و به مدت ۱۲ ساعت استفاده شد. برای اندازه‌گیری کلسیم و فسفر به‌عنوان دستگاه جذب (Atomic Absorption) اتمی (AA) روش پیشنهادی انجمن سنجش شیمی تجزیه (V) استفاده شد.

با استفاده از داده‌های وزن تخم‌مرغ (W) و ارتفاع سویه‌های (H) با توجه به فرمول زیر واحدها و محاسبه شد.

\[HU = 100 \log (H + 7.57 - 1.7 W^{0.37}) \]

صفات علالی زیر با استفاده از داده‌های تولید روپاره‌های تخم‌مرغ و میزان صرف ماهیان غذا محاسبه گردیدند. فرمول محاسبه این صفات در زیر آورده شده است.

\[\text{تعداد تخم مرغ در 28 روز} = \frac{100 \times 28}{\text{تعداد مرغ در 28 روز}} \]

[1] صفات تولیدی زیر با استفاده از داده‌های تولید روپاره‌های تخم‌مرغ و میزان صرف ماهیان غذا محاسبه گردیدند. فرمول محاسبه این صفات در زیر آورده شده است.

[2] صفات تولیدی زیر با استفاده از داده‌های تولید روپاره‌های تخم‌مرغ و میزان صرف ماهیان غذا محاسبه گردیدند. فرمول محاسبه این صفات در زیر آورده شده است.

[3] صفات تولیدی زیر با استفاده از داده‌های تولید روپاره‌های تخم‌مرغ و میزان صرف ماهیان غذا محاسبه گردیدند. فرمول محاسبه این صفات در زیر آورده شده است.

[4] صفات تولیدی زیر با استفاده از داده‌های تولید روپاره‌های تخم‌مرغ و میزان صرف ماهیان غذا محاسبه گردیدند. فرمول محاسبه این صفات در زیر آورده شده است.

روش محاسبه ارزش لولولیزیکی نمونه‌های مختلف دی کلیسم

رازه زیر رگرسیونی بین میزان مصرف فسفر از هر نمونه دی کلیسم صفات و درصد خاکستر استخوان مرغ‌های مصرف کننده همان نمونه بدست آمد. از تقسیم ضریب رگرسیون هر رابطه بر ضریب رگرسیون نمونه استفاده‌دارد. ارزش لولولیزیکی نسبی نمونه‌ها محاسبه گردید (12 و 33).

مدل طرح

این آزمایش با 8 تیمار و 3 بلوک با طرح پایه بلوک کاملاً تصادفی (Split plot designs) در قالب طرح کره‌ای خردشه در زمان انجمام شد. 8 تیمار نمونه‌های مختلف دی کلیسم صفات (A,B,C,D,E,F,G,H) بودند که در 6 دوره ۱۵ روز ثبت اطلاعات شده و در نهایت در 3 دوره یک ماه مورد تجزیه آماده قرار گرفتند. مدل طرح پاییز صفات که در چند دوره اندازه‌گیری شدند. به صورت زیر بود:

\[Y_{ijk} = \mu + R_i + A_i + (AR)_{ik} + B_j + (BR)_{jk} + (AB)_{ij} + e_{ijk} \]

[5]
جدول ۱. اجزای و ترکیبات جیره پایه

<table>
<thead>
<tr>
<th>ماده خوراکی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>درت</td>
<td>۶۷/۷</td>
</tr>
<tr>
<td>کنگاله سویا</td>
<td>۱۹</td>
</tr>
<tr>
<td>جو</td>
<td>۲/۵</td>
</tr>
<tr>
<td>پودنجه</td>
<td>۱</td>
</tr>
<tr>
<td>صدف</td>
<td>۸</td>
</tr>
<tr>
<td>دی-گلیسم فسفات</td>
<td>۰/۱</td>
</tr>
<tr>
<td>مکمل معادنی</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>مکمل ویتامین</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>نمک</td>
<td>۰/۱</td>
</tr>
<tr>
<td>ترکیبات محاسبه شده</td>
<td>۱۰۰/۱</td>
</tr>
</tbody>
</table>

* انرژی قابل سوخت و ساز (کیلوکالری در کیلوگرم) (Available phosphorus (درصد))

سپاس: استفاده از این مقدار مکمل معادنی از ویتامینی از افراد به پایان اضافه شدن.

می‌باشد.

\[
Y_{ik} = \text{مقدار مشاهده در کرت فرعي از کرت اصلی} \quad \text{و تکرار}
\]

\[
\begin{align*}
(a) \quad (AB)_{ij} &= \text{اثر متغییر کرت اصلی با کرت فرعي} \\
(b) \quad \text{خطای کرت فرعي (خطای} \\
&= \text{خطای کرت اصلی با کرت فرعي}
\end{align*}
\]

\[
\begin{align*}
\text{میانگین مشاهدات (کل آزمایش)} &= \mu \\
\text{اثر رولوک} &= R_i \\
\text{اثر سطح از عامل A (چربی‌های آزمایشی مختلف)} &= A_i \\
\text{اثر سطح از عامل B (دوره‌های آزمایشی مختلف)} &= B_j \\
\text{اثر سطح از عامل C (دوره‌های آزمایشی مختلف)} &= C_k \\
\end{align*}
\]

\[
Y_{ijk} = \mu + T_i + R_j + e_{ij} \\
\]

\[
\begin{align*}
\text{مقدار مشاهده} &= \mu \\
\text{میانگین مشاهدات} &= \mu \\
\text{مقدار مشاهده} &= Y_{ijk}
\end{align*}
\]
جدول 2. تأثیر تیمارهای مختلف در دو فضای میکس و انواع آزمایش بر صفات کیفی پوسته تخم‌مرغ (میانگین ± خطای استاندارد)

<table>
<thead>
<tr>
<th>مقدار پوسته</th>
<th>ضخامت پوسته</th>
<th>کلم پوسته واحدها</th>
<th>فشردگی پوسته</th>
<th>خاکستر پوسته</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(کیلوگرم بر سانتیمتر مربع)</td>
<td>(سانتیمتر)</td>
<td>(درصد)</td>
<td>(درصد)</td>
</tr>
<tr>
<td>A</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
<tr>
<td>B</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
<tr>
<td>C</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
<tr>
<td>D</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
<tr>
<td>E</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
<tr>
<td>F</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
<tr>
<td>G</td>
<td>20/28/16 ± 0.2</td>
<td>0.8/0.5 ± 0.4</td>
<td>9.2/0.5 ± 0.6</td>
<td>8.1/0.5 ± 0.6</td>
</tr>
</tbody>
</table>

ptic دهانه حاصل از آزمایش توزیع شده، تجزیه و تحلیل قرار گرفت و مقایسه میانگین‌ها با استفاده از آزمون چند دامنه (15) انجام شد.

نتایج و بحث

صفات کیفی

بین هیچ گذامی از تیمارهای مختلف دو کلم پس‌ف نفاوت و نعنای داری (p<0.05) از لحاظ ضخامت پوسته تخم‌مرغ، فسفر پوسته، کلم پوسته و انواع آزمایش تنگی. این اثرات در جدول ۲ آمده است. بیشترین میانگین مقادیر پوسته تخم‌مرغ، ضخامت پوسته، فشردگی پوسته، خاکستر پوسته، درصد فسفر پوسته و مقدار فسفر پوسته به تیمار A پایین‌تر بودند. یک چنین بیشترین میانگین ضخامت پوسته با تیمار B برابر سانتی‌متر بود. همچنین بیشترین میانگین ضخامت P<0.05

287
آزمایشی از لحاظ تبادل سطح کفیف پوسته نتایج معنی‌داری وجود نداشت (۰/۰ ۵). اثر معنی‌داری دوگانهی تابعی از افزایش چربی کمی و فاصله‌ها معنی‌داری بر پایه کمی از کفیف پوسته معنی‌دار (۰/۰ ۵) نشده. نتایج به‌دست آمده، نتایج کشزور (۲۲) را تایید می‌کند.

با توجه به اینکه بخش عمد ساختمان پوسته تخممرغ را کریستال کلسیم تشکیل می‌دهد، صفات کیفی پوسته تخممرغ به منظور کلسیم جیره بیشتر باستاند. یکی از دلایل وجود اختلاف معنی‌داری بین تیمارهای مختلف می‌تواند بیشتر به نحوه عمل آوری این نمونه‌ها در کارخانه‌های تولید کننده مرتبط باشد. به عهده‌ای کریستال کلسیم به‌کار برده جهت ساخت دیگر سفتهای بدنی این اکثریت نواحی مختلف می‌شود. می‌تواند در کریستال کلسیم تولیدی ذهنی‌شده باشد (۲۱) (۱۹۹۸). لازم به ذکر است که علیرغم این تبادل با کریستال کلسیم جیره به صدا به علت مشابه بودن صدف به‌کار برده شده تفاوت مورد نیاز توانایی بخصوص صدا باشد.

صفات کمی

جدول ۲ نشان‌دهنده‌ای درجه دو تازگری و دو دهه آزمایش خاصی مختلف را بر صفات کمی نشان می‌دهد. طبق اعداد مندرج در این جدول بین حیکم‌کدام از نمونه‌های مختلف نگهداری، دو یا گزاره معنی‌داری (P< ۰ ۰ ۵) از لحاظ وزن تخممرغ، درصد تولید تخممرغ، ضریب تبدیل خروکار و وزن تخممرغ مشاهده نشد. اما از لحاظ میزان تخم خورک، فاصله معنی‌داری (P< ۰ ۰ ۵) وجود داشت. بیشترین مقدار وزن تخممرغ مربوط به تیمار A (۵/۰ ۹ کگرم) بود. بیشترین درصد تولید تخممرغ مربوط به تیمار F (۸۷/۲ کگرم) بود. بیشترین گزارش میزان مصرف بین تیمار A (۷۷/۱ کگرم) بود. بیشترین میزان مصرف خوراک مربوط به تیمار G (۱۱۰ کگرم) بود. بیشترین گزارش هر میزان مصرف بین تیمار B (۱۰۱/۰ کگرم) بود. بیشترین گزارش مصرف بین تیمار F (۳۹/۸۰ کگرم) بود. بیشترین گزارش مصرف بین تیمار D (۵۷۲/۴ کگرم) بود.

مشابه با نتیجه آزمایش دیگر (۳۵) چنین به‌نظر می‌رسد که میزان فسفر با معنی آن حیکم‌کننده‌ای بر کیفیت داخلی از جمله عامل‌های ندارد. بنظر می‌رسد از لحاظ اثر دوگانه بر صفات کیفی پوسته روند مشابههای مشاهده شد. به‌طوری‌که به‌گل‌شدن زمان بی‌بچ در مورد یک‌تا و دوباره از کفیف صفات کیفی پوسته کاملاً مشابه می‌باشد. نتایج به‌دست آمده موافق
جدول ۳ تأثیر نمونه‌های مختلف کلیسی فسفات و دوره‌های مختلف آزمایشی بر فسفات تولیدی

<table>
<thead>
<tr>
<th>ضریب تبدیل بار (کرم امرغ/ورز)</th>
<th>ضریب تبدیل خوراک (کرم امرغ/ورز)</th>
<th>وزن تخم‌مرغ (گرم)</th>
<th>تولید تخم‌مرغ (درصد)</th>
<th>تعداد تخم‌مرغ (گرمسی)</th>
<th>معنی تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۸/۱ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>A</td>
</tr>
<tr>
<td>۳۸/۲ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>B</td>
</tr>
<tr>
<td>۳۸/۳ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>C</td>
</tr>
<tr>
<td>۳۸/۴ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>D</td>
</tr>
<tr>
<td>۳۸/۵ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>E</td>
</tr>
<tr>
<td>۳۸/۶ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>F</td>
</tr>
<tr>
<td>۳۸/۷ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>G</td>
</tr>
<tr>
<td>۳۸/۸ ± ۳/۸</td>
<td>۲/۷ ± ۲/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>۶۸/۱ ± ۳/۸</td>
<td>H</td>
</tr>
</tbody>
</table>

داخی تیمارها و دوره‌ها اعداد از جمله یک حفر مشابه از نظر آماری تفاوت معنی‌داری ندارند (P>۰/۰۵) \()

* به‌هر تین ضریب تبدیل مربوط به تیمار A بای ۲/۱۳ و بالاترین ضریب تبدیل مربوط به تیمار G با متوسط ۷۷/۲ گرم خذ آغاز هر گرم تولید تخم‌مرغ بود.

اثر دوره‌های مختلف آزمایشی بر وزن تخم‌مرغ درصد تولید تخم‌مرغ، مصرف خوراک و ضریب تبدیل در دستگاه (P<۰/۰۵) \()

شکل است. اما بر ضریب تبدیل خوراک التهیه‌داری ندارند (P>۰/۰۵). \()

بما همین نتایج، گزارش کردن که صفات تولیدی تحت تأثیر سطح کلسیم یا فسفر جهور قرار نمی‌گیرد. از اینگونه عناصر مشابه،

gرفت که نمونه‌های قارچ‌ماکسی در مورد تیمار از کنند کلسیم و فسفر جهور بودن. از این قاعدی نمی‌تواند

عاشت در میزان معنی‌داری ۳۲۷ نتایج از مصرف

خوراک منافع مختلف را داشته که به آنها از جمله ۷۰۰۰ گزارش کردن. \()

آزمایشی که با جوجه‌های سه‌ماهه گروه داده. ۴۰ در

که ضریب تبدیل خوراک تحت تأثیر معنی‌داری قارچ‌ماکسی
جدول 2. تأثیر دو کلسیم فسفات ها متفاوت بر خصوصیات استخوان درشتی

<table>
<thead>
<tr>
<th>کلیسیم استخوان</th>
<th>فسفر استخوان</th>
<th>خاکستر استخوان</th>
<th>تیمارها</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td>(درصد)</td>
<td>نسبت</td>
<td></td>
</tr>
<tr>
<td>35/6 ± 0/31³</td>
<td>8/6 ± 0/14²</td>
<td>69/6 ± 2/0³</td>
<td>A</td>
</tr>
<tr>
<td>35/8 ± 0/3³</td>
<td>9/9 ± 0/26⁵</td>
<td>49/10 ± 2/0³</td>
<td>B</td>
</tr>
<tr>
<td>37/9 ± 0/3³</td>
<td>8/2 ± 0/36</td>
<td>39/6 ± 2/0³</td>
<td>C</td>
</tr>
<tr>
<td>33/5 ± 0/3⁷</td>
<td>8/1 ± 0/58</td>
<td>55/2 ± 1/4³</td>
<td>D</td>
</tr>
<tr>
<td>36/9 ± 0/4³</td>
<td>8/6 ± 0/14</td>
<td>55/2 ± 1/4³</td>
<td>E</td>
</tr>
<tr>
<td>38/9 ± 0/3³</td>
<td>8/6 ± 0/32</td>
<td>59/9 ± 2/0³</td>
<td>F</td>
</tr>
<tr>
<td>35/8 ± 0/3³</td>
<td>9/1 ± 0/67</td>
<td>55/7 ± 0/6³</td>
<td>G</td>
</tr>
<tr>
<td>37/0 ± 0/3³⁷</td>
<td>9/0 ± 0/37</td>
<td>53/3 ± 0/7³</td>
<td>H</td>
</tr>
</tbody>
</table>

در هر ستون عددی بیان‌شده در جمله مشابهی به نظر امکان تفاوت معنی‌داری ندارند (P > 0.05).

عملکرد بهتر شده است. دلیل آن را ماندگاری بیشتر منابع فسفات در سنگدان و در تیجه بیشتر در دسترس قرار گرفتن عنصر معنی‌داری آن خاک‌ها. با توجه به اینکه میزان خاکستر، کلسیم یا فسفر استخوان درشتی نشان دهنده وضعیت مرغ از لحاظ تعداد کلسیم یا فسفر است، نا زمانی که مرغ از لحاظ تأمین کلسیم از طریقه گیاهی یا مشکلی روبه‌رو نشود، میزان کلسیم استخوان در طی دوره‌ای که مرغ در حال تغییری شوته نابود، چاپکنی می‌شود و در تیجه میزان کلسیم استخوان ثابت می‌ماند. اما اگر مرغ برای تأمین کلسیم مورد نیاز از طریق جیره با مشکلی روبه‌رو است، به ذخایر استخوانی روز می‌آورد و با آزاد سازی کلسیم از طریق استخوان سعی در جبران این کمبود می‌کند. پس از مدیت درمان دهنده کم شده و مرغ تولید خورده کاهش می‌دهد (۳۲).

توجه رگرسیون بین میزان مصرف فسفر بر حسب گرم برای هر نوع منو به کلسیم فسفات (X) و میزان خاکستر استخوان درشتی بر حسب درصد مربوط به مرگان کشتار شده از همان معنی‌دار (Y) به ترتیب زیر می‌باشد.

\[Y_A = \frac{55.285}{x} + 0.6 \] (نشانه)

\[Y_B = \frac{228}{x} \] (نشانه)

(۱) تابع رگرسیونی نمونه (A)
(۲) بیان رگرسیونی نمونه (B)

اندازه فشار ذرات منابع فسفات نسبت داده‌اند. نتیجه‌گیری از جهت‌ها نشان دهنده که با افزایش اندازه ذرات منابع فسفات به خصوص در جهت‌هایی که در لحاظ کلسیم و فسفر در حد مزیت هستند،
نتیجه‌گیری

در صفات کیفی‌پوسته تخم‌سرخ و صفات تولیدی سرخ روند خاصی که به‌طور واضح مشخص کننده یک تمرین بهتر باند وجود ندارند. به ویژه در آزمایش‌های انجام‌شده برای بررسی مشخصی از لحاظ صفات کیفی پوسته و صفات تولیدی می‌تواند بهترین راه باشد آزمایش‌های مورد شرایط فاصله از این گروه نتیجه‌گیری بهتری از دیگر گروه‌های مورد شرایط بهینه نتیجه‌گیری نمی‌شود.

با توجه به نتایج اصلی روش‌های سه‌وزنده در مورد داتس، جدی‌ترین محدودیت این روش تغییرات در گروه‌های مورد ارزیابی شامل تغییرات در نسبت به یکدیگر بیشتر از گروه‌های دیگر است. این نتایج نشان می‌دهند که این روش‌ها قادر به بهبود نتایج گروه‌های مورد ارزیابی در مورد دیگر گروه‌های مورد ارزیابی می‌باشند. در این روش‌ها محدودیت‌های اصلی شامل تغییرات در نسبت به یکدیگر بیشتر از گروه‌های دیگر است. این نتایج نشان می‌دهند که این روش‌ها قادر به بهبود نتایج گروه‌های مورد ارزیابی در مورد دیگر گروه‌های مورد ارزیابی می‌باشند.

می‌تواند یک تمرین بهتر باشد. در این روش‌ها محدودیت‌های اصلی شامل تغییرات در نسبت به یکدیگر بیشتر از گروه‌های دیگر است. این نتایج نشان می‌دهند که این روش‌ها قادر به بهبود نتایج گروه‌های مورد ارزیابی در مورد دیگر گروه‌های مورد ارزیابی می‌باشند.

سیاست‌گذاری

به‌طور کلی، این نتایج نشان می‌دهند که این روش‌ها قادر به بهبود نتایج گروه‌های مورد ارزیابی در مورد دیگر گروه‌های مورد ارزیابی می‌باشند.

میزان ارزیابی بیشتری در این روش‌ها داشته و بهترین نتایج در نتایج گروه‌های مورد ارزیابی می‌باشند. در این روش‌ها محدودیت‌های اصلی شامل تغییرات در نسبت به یکدیگر بیشتر از گروه‌های دیگر است. این نتایج نشان می‌دهند که این روش‌ها قادر به بهبود نتایج گروه‌های مورد ارزیابی در مورد دیگر گروه‌های مورد ارزیابی می‌باشند.
منابع مورد استفاده

1. استاندارد ملی ایران. 1378. شماره 1531. دی-کلسیم نفاسی، ویژگی‌ها و روش‌های آزمون.
2. استاندارد ملی ایران. 1377. مراقبه ارزش بیولوژیکی دی-کلسیم نفاسی‌های داخلی و واردهاتی اثر آنها بر کیفیت پوسته تخم‌مرغ.
3. حسینی، ه. 1375. بررسی تأثیر مصرف دی-کلسیم نفاسی (DCP) در ایران. مجله تغذیه دام و طبیعی: 24-38.
4. سخنور، س. 1376. تحقیق مفید در غذای دام و طبیعی شماره (2). مرکز تحقیقات صنعتی گذاره.
5. صفی‌آبادی شاپوری، ر. 1368. تغییر ارزش بیولوژیکی دی-کلسیم نفاسی‌های ساخت داخلی و مقایسه آن با نامه وارداتی به روش