ارزش غذایی تغله مرکبات (لیمو و پرتنل) عمل آوری شده با قارچ Neurospora sitophila

کورش ناظم، یوسف روزبهان و سید عباس شجاع الساداتی

(تاریخ دریافت: 4/35/85; تیریز بذرشیری: 4/25/85)

چکیده
در این بررسی ارزش غذایی تغله‌های لیمو و پرتنل عمل آوری شده با قارچ Neurospora sitophila از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به روش in vitro و in vivo نشان داده شد. نتایج بهبود مطالعه قرار گرفت. این نتایج از طریق تجزیه شیمیایی، ضرایب هضمی ماده شکن و همچنین ماده خشک و پرتنلین خام به R zweiho, 2020.
مقدمه
یکی از عمده‌ترین مشکلات در صنعت دام و طیور کمیاب کروماتیک (Neurospora sitophila) گردیده است. این باعث افزایش این مشکلات در صنعت دام و صنعت صنایع نیز می‌شود. این مشکلات معمولاً در طی سالهای پایانی دام، عموماً در فصل تابستان، به همراه با کاهش سلولی و کاهش کارایی دام، یکی از مشکلات عمده صنعتی است. این اثر افزایش جاری آبادانی کروماتیک، استفاده از ضایعات صنایع غذایی در تغذیه دام، تغذیه دام به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است. این ضایعات قابل افزایش متغیرهایی با افزایش شرایط محیطی دام و دیگر ضایعات را شامل می‌شود. در صورت افزایش شرایط محیطی دام، ضایعات را نیز می‌توان به صورت غذای دیگر است.
ارزش غذایی نهایی، (ییو و پرتنقل) عمل اوری شده با اکر-19

می‌باشد که به عنوان قارچ‌های عاشری شسته‌شده می‌شوند. آنها در شرایط محیطی و سویی قاد قندیک، به وسیله گل‌سرخ و برگ‌سپاران را تشکیل می‌دهند که از سلول‌های مخصوص، تهیه می‌شود و به عنوان ماده از آن‌ها تهیه می‌شود. استفاده کرده و تولید پروتئین می‌شوند. در شرایط کاملاً استریل به هر کشت پک لپ و میلیوی قارچ تلقیح شده و در دمای 3۰°C به مدت 30 ساعت گرفتگاری شده. از آن کشت‌های تهیه شده در دمای 3۰°C درون یخچال قرار داده شدند. ترکیب میوه کشت نگهداری و تهیه از دیگر یک لیتر (در کشت) شریح زیر بود (2۲):

گل‌سرخ 100 گرم، عصاره تختمر ۲ گرم، فسفات هیدروژن پتاسیم (K2HPO4) (۴۷/۵ گرم، اوره ۷/۵ گرم، سولفات آمونیوم (NH4)2SO4 ۳/۷ گرم، سولفات منگنز (MnSO4. ۷H2O) (۸/۸ گرم) کلسیم کلسیم (۱/۵ گرم)، سولفات روی (ZnSO4. ۷H2O) (۲/۱ گرم)، پلو دری (H2BO3) (۱/۷ گرم)، مولیدات مس (NH4)2MoO4. ۴H2O (۳/۸ گرم)، سولفات مس (MnCl2. 4H2O) (۶۸/۷ گرم)، کلسیم سیلسیس (FeCl3) (۳/۲ گرم)، کلسیم اهن (FeCl2) (۱/۴۴ گرم).

برای تهیه کشت نگه‌دارند، ۱۰۰ گرم اینلیتر محیط کشت با ترکیب فوق تهیه و در یک ارلن ۱۵۰ گرم اینلیتر ریخته شد. پس ۱۵ psi از اکر-۱۹، به عنوان تهیه در دمای ۱۲۱°C و فشار ۵۰ psی در pH از ۲ تا ۴.۵ تنظیم و در دمای ۱۲۱°C به مدت ۱۵ دقیقه استریل گردید. در شرایط کاملاً استریل، چند لوب از مرحله‌ی قارچ روي کشت به دو ارلن محیط کشت نگهداریده یک لیتری ریخته شد و دمای ۳۰°C به مدت ۲۴ ساعت روی همبناشیده و بعد ۲۰۰ دور در دقیقه گرفتگاری شد و کشت تلقیحی به دست آمده برای نگهداری به یخچال برای دمای ۸۰°C تقریب‌شده شد.

(ب) آماده سازی نمونه‌ها

اکتف قارچ‌های از تشکیل‌گیری خشک شده در برداشت و در آزمایشگاه‌های آسیب‌رسانه‌ای (۲۱،۲۳) فشردهسازی کردند و در نتیجه آن نمونه‌ها به دست آمد. مقدار ۵ گرم از نمونه‌های آسیب‌رسانه‌ای به دو نمونه آبریزی تهیه می‌شد.
جدول ۱ مقدار پروتئین خام نمونه‌ها

<table>
<thead>
<tr>
<th>نوع عمل‌آوری</th>
<th>مقدار تناهی در هر اثر (گرم)</th>
<th>درصد رطوبت</th>
<th>درصد پروتئین</th>
<th>بدن عمل‌آوری</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمل‌آوری</td>
<td></td>
<td>۱۰</td>
<td>۵۰</td>
<td>۸۹۹۵</td>
</tr>
<tr>
<td>عمل‌آوری</td>
<td></td>
<td>۱۰</td>
<td>۴۰</td>
<td>۸۹۹۵</td>
</tr>
<tr>
<td>عمل‌آوری</td>
<td></td>
<td>۷/۵</td>
<td>۴۰</td>
<td>۸۹۹۵</td>
</tr>
<tr>
<td>عمل‌آوری</td>
<td></td>
<td>۷/۵</td>
<td>۲۰</td>
<td>۸۹۹۵</td>
</tr>
<tr>
<td>عمل‌آوری</td>
<td></td>
<td>۷/۵</td>
<td>۱۰</td>
<td>۸۹۹۵</td>
</tr>
<tr>
<td>عمل‌آوری</td>
<td></td>
<td>۷/۵</td>
<td>۵۰</td>
<td>۸۹۹۵</td>
</tr>
</tbody>
</table>

شده، آزمایش‌های لاک روي آنها انجام شد. برای تهیه نمونه برخی از ابزار نهایی تهیه شده در آزمایشگاه در برای اکتشاف خشک شده و سپس آسپرس و یا آکل ۱۰۰ میلی لیتر از این مطالعه استفاده شد. در این مطالعه سلول‌های آزمایش‌های لاک در برابر pH سه ساعت در دمای ۳۵ درجه سانتی‌گراد اکتیو کرنده شدند. این شدیدانه ۱۲۰ ساعت از اکتیو کرنده خارج شده و شامل‌های داخل شده با خطر برای جدایی داخل سلول‌ها شد. آزمایش‌های لاک، شامل دیده و میزان پروتئین آنها تغییر کننده نمونه‌های آن‌ها در اتهام مورد این استفاده را در هر پروتئین افتاده که اکثریت آن‌ها به هر اثر مقدار ۱۸میلی لیتر آب مصرف به ۵ درصد تغییر اضافه شد. در نهایت اکثریت اکثریت در اکتشاف بر اساس آزمایش‌های لاک ۳۵ درجه سانتی‌گراد با خطر برای نتایج این‌ها انجام شد. برای تهیه نمونه برای آزمایش‌های لاک بعد از انجام عمل تحقیق و اکتشاف‌های نمونه‌ها و گذراندن ۱۲۰ ساعت، نمونه‌های آزمایش‌های لاک را تغییر کننده آزمایش‌های لاک در دمای ۳۵ درجه سانتی‌گراد اکتیو کرنده شدند. البته آزمایش‌های لاک و در آن در دمای ۳۵ درجه سانتی‌گراد اکتیو کرنده شدند. دلیل انتخاب این‌ها برای شکاف کردن نمونه‌ها، جلوگیری از کاهش کیفیت پروتئین آن‌ها در اثر دمای بالا بود (۲۱) پس از خشک شدن نمونه‌های آزمایش‌های لاک انجام شد.

۳. یکی از ضرایب هضمی

Dry Matter (DMD) / Digestibility

"تجربی قابلیت هضم ماده خشک (Detectability Organic Matter) / OMD و ماده آلی (Digestibility و میزان ماده آلی قابل هضم در ماده خشک"
جدول 2. نتایج حاصل از تجزیه شیمیایی (بر حسب درصد ماده خشک)

<table>
<thead>
<tr>
<th>تناهی</th>
<th>لیموم</th>
<th>مقدار 1</th>
<th>مقدار 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین</td>
<td>6/5</td>
<td>6/3</td>
<td></td>
</tr>
<tr>
<td>ماده آلی</td>
<td>9/6</td>
<td>9/3</td>
<td></td>
</tr>
<tr>
<td>خاکستر</td>
<td>1/0</td>
<td>1/0</td>
<td></td>
</tr>
<tr>
<td>دیواره سلولی</td>
<td>2/1</td>
<td>2/1</td>
<td></td>
</tr>
<tr>
<td>دیواره سلولی بدون</td>
<td>1/5</td>
<td>1/5</td>
<td></td>
</tr>
<tr>
<td>همی سلولی</td>
<td>6/8</td>
<td>6/8</td>
<td></td>
</tr>
<tr>
<td>متوسط مجموعه</td>
<td>17/9</td>
<td>17/9</td>
<td></td>
</tr>
</tbody>
</table>

注: تناهی میزان تجزیه پذیری ماده خشک و پروتئین می‌باشد (Degradibility Organic Matter Digestibility) DOMD استفاده از روش تئوری (23) (انجام ذبیحت). این تئوری به‌منظور تعیین حاویت تناهی بین محصولات دیگری از محصولات مذکور می‌باشد.

۵. روش آماری

اختلاف میانگین تناهی‌های (طور همی‌ر Blair) عمل آری شده و عمل آری شده در هر گروه (لیموم و پرتقال) با استفاده از آزمون t بر اساس مدل آماری زیر مقایسه شد:

\[Y_{ij} = \mu + T_i + e_{ij} \]

که آنالیزهای آماری با استفاده از نرم‌افزار SPSS انجام شد.

نتایج

نتایج به‌مدت آمده در جدول‌2 ۲ تا ۶ آورده شده است. عمل آری که در جدول ۲ مشاهده می‌شود، میزان خاکستر حام و پروتئین حام در تناهی‌های لیموم و پرتقال پس از عمل آری به‌طور معنی‌داری افزایش یافت (P<0/0). اما میزان افزایش ایجاد شده در محصولات خاکستر حام تناهی پرتقال نسبت به تناهی لیموم کمتر بود. میزان ماده آلی، ADF و NDF پس از عمل آری در هر دو نوع تناهی به‌طور معنی‌داری کاهش یافت (P<0/0).
جدول 2. قابلیت هضم ماده خشک، ماده آلی، ماده آلی در ماده خشک و انرژی قابل متابولیسم (MJ/Kg DM)

<table>
<thead>
<tr>
<th>تغالف پرترف</th>
<th>قابلیت هضم</th>
<th>مقدار</th>
<th>عمل آوری شده</th>
<th>مقدار</th>
<th>عمل آوری شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>خام</td>
<td>ماده خشک</td>
<td>0.91/2</td>
<td>0.81/5</td>
<td>37/5</td>
<td>0.79/3</td>
</tr>
<tr>
<td></td>
<td>ماده آلی</td>
<td>0.86/2</td>
<td>0.78/4</td>
<td>37/2</td>
<td>0.81/2</td>
</tr>
<tr>
<td></td>
<td>ماده آلی در ماده خشک</td>
<td>0.86/2</td>
<td>0.78/4</td>
<td>37/2</td>
<td>0.81/2</td>
</tr>
<tr>
<td></td>
<td>انرژی قابل متابولیسم</td>
<td>0.86/2</td>
<td>0.78/4</td>
<td>37/2</td>
<td>0.81/2</td>
</tr>
</tbody>
</table>

* نکته قابل توجه دارد این دریافت های تغییرات اعداد شده در میزان ماده خشک نمونه‌های عمل آوری شده نسبت به نمونه‌های خام می‌باشد که در جدول 3 نشان داده شده است.

* همان‌گونه که مشاهده می‌شود پس از عمل آوری، مقدار ماده خشک نمونه‌های آزمایش گذاشته شده از رابطه زیر محاسبه می‌شود :

\[\text{وزن ماده خشک نمونه اولیه} = \left(\frac{\text{CaH3}}{\text{CaH3}} \right) - \left(\frac{\text{وزن ماده خشک نمونه نهایی}}{\text{وزن ماده خشک نمونه اولیه}} \right) \]

[3] مطالب جدول 4 پس از عمل آوری، ضرایب قابلیت هضم ماده خشک و ماده آلی، ماده آلی قابل هضم در ماده خشک و انرژی قابل متابولیسم به ارایه هر کیلوگرم ماده خشک در هر دو نمونه افزایش یافت (P<0.01).

نتایج مربوط به تجزیه و پیچیدن ماده خشک نمونه‌ها در
جدول 2 تجزیه‌برداری و مشخصات‌های تجزیه‌برداری ماده خشک

<table>
<thead>
<tr>
<th>قلمد</th>
<th>تلفنال اول</th>
<th>عمل آوری</th>
<th>شده</th>
<th>قلمد</th>
<th>تلفنال اول</th>
<th>عمل آوری</th>
<th>شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5</td>
<td>82/5 c</td>
<td>77 b</td>
<td>5/8</td>
<td>62/5 c</td>
<td>84/1 a</td>
<td>75 b</td>
<td>5/6</td>
</tr>
<tr>
<td>7/5</td>
<td>75/5 a</td>
<td>64/7 b</td>
<td>4/3</td>
<td>75/2 a</td>
<td>66/3</td>
<td>3/2</td>
<td>0/4</td>
</tr>
<tr>
<td>5/5</td>
<td>69/9 b</td>
<td>63/6 c</td>
<td>3/9</td>
<td>66/6 a</td>
<td>64/8</td>
<td>4/5</td>
<td>0/6</td>
</tr>
<tr>
<td>3/5</td>
<td>58/5 a</td>
<td>44/8 b</td>
<td>1/3</td>
<td>46/5 a</td>
<td>35/4</td>
<td>5/4</td>
<td>4/5</td>
</tr>
<tr>
<td>0/5</td>
<td>0/149</td>
<td>0/177</td>
<td>0/11</td>
<td>0/149</td>
<td>0/177</td>
<td>0/11</td>
<td>0/11</td>
</tr>
</tbody>
</table>

میزان عبور مواد خوراکی از شکم‌های در سطح تغذیه‌گذاری (بخش/ساعت).

1. میزان عبور مواد خوراکی از شکم‌های در سطح تغذیه‌گذاری (بخش/ساعت).
2. میزان عبور مواد خوراکی از شکم‌های در سطح تغذیه‌گذاری (بخش/ساعت).
3. میزان عبور مواد خوراکی از شکم‌های در سطح تغذیه‌گذاری (بخش/ساعت).

حقوف مختلف در هر دیدن نشان‌دهنده تفاوت تلفنال‌های مورد آزمایش در صفت مذکور می‌باشد (P<0/0).

بحث

تکیه شیمیایی

بر اساس نتایج آرایش شده در جدول 1 بین درصد پروتئین‌های نمونه‌های عمل آوری شده و نمونه‌های عمل آوری شده تفاوت معنی‌داری (P<0/0) مشاهده شد. دلیل آن افزایش بیشتری نمونه‌ها بعد از عمل آوری می‌باشد. به‌طوری که پس از عمل آوری، درصد پروتئین‌های تلفنال لیمو 2/5 برابر شد در حالی که درصد پروتئین‌های تلفنال لیمو 2/5 برابر بود.

آزمایش‌های تلفنال‌های مورد استفاده است. در مقایسه با آزمایش شش صادق‌السلطان و همکاران (2) میزان آزمایش درصد پروتئین‌های جدید بیشتر کسب کرد. همچنین با توجه به نتایج درودی و ایسکولومین‌ها موجود در تلفنال نیز ارتباط‌های خارج سلولی مصرف کرده و متلود انرژی، پروتئین و دی اکسیدزنی می‌نمایند (21).

افزایش‌ها با سلول‌های موجود در تلفنال مربوط به عوامل منفی کردنی از میزان آزمایش شده به تلفنال استفاده کرده و تولید پروتئین می‌کنند. این عمل سبب افزایش درصد پروتئین‌های خام تلفنال عمل آوری شده می‌گردد (12). یکی از دلایل افزایش
جدول 5: تجربه‌پذیری و مشخصه‌های تجربه‌پذیری پروتئین

<table>
<thead>
<tr>
<th>ضریب تجربه‌پذیری</th>
<th>تغله پرتقال</th>
<th>تغله لیمو</th>
<th>ضریب تجربه‌پذیری</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>شده</td>
<td>عامل آوری</td>
<td>شده</td>
</tr>
<tr>
<td>مقدار</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/6</td>
<td>40/6</td>
<td>25/1</td>
<td>35/4</td>
</tr>
<tr>
<td>19/7</td>
<td>38/1</td>
<td>23/5</td>
<td>33/3</td>
</tr>
<tr>
<td>21/1</td>
<td>36/2</td>
<td>21/1</td>
<td>31/1</td>
</tr>
</tbody>
</table>

مشخصه‌های تجربه‌پذیری

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>ERDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضریب تجربه‌پذیری</td>
<td>1/6</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

میزان عبور مواد خوراکی از شکم به روده در سطح تغله‌داری (بخش ساعت).

1. میزان عبور مواد خوراکی از شکم به روده به روش سرشار برای سطح تغله‌داری (بخش ساعت).
2. میزان عبور مواد خوراکی از شکم به روده به روش سرشار برای سطح تغله‌داری (بخش ساعت).
3. میزان عبور مواد خوراکی از شکم به روده به روش سرشار برای سطح تغله‌داری (بخش ساعت).

ضریب تجربه‌پذیری مؤثر بر رویتی (P) همراه با تفاوت تغله‌های مورد آزمایش در صفت مذکر می‌باشد (P<0/01).

حریف مختلف در هر رنگ فانشن‌دهنده تفاوت تغله‌های استفاده شده که در هر تغله‌واره می‌باشد.

ماده خشک نمونه‌ها پس از عمل آوری با قارچ کاهش یافت (جدول 4). دلیل کاهش ماده خشک پس از عمل آوری، استفاده قارچ از عوامل‌ها یا میزان خاکستر خام می‌باشد که به‌دنبال نصف فاصله قارچ فناوری از کربن موجود در تغله به‌صورت دیگر که این تغله‌پذیری و به‌وسیله تغله‌داری می‌باشد (P<0/01).

بدین‌_scaled التشکل‌های تغله‌پذیری در این مطالعه انجام شده‌است (P<0/01).

در عمل آوری، میزان خاکستر خام در این تغله‌پذیری و مقدار میانی این کاهش یافت (αι کاهش یافت (P<0/01)). در طی عمل آوری، دلیل مشخص مواد مدتی از جمله فسفر و پاتاسیم به تغله‌های اولیه افزوده شد که احتمالاً این عامل باعث افزایش درصد خاکستر خام در
آزمایشات آنها، در این نوع از خروکاژ است (16). درصد ماده آتی قابل هضم در ماده خشک و میزان انرژی قابل متابولیسم به ازای هر کیلوگرم ماده خشک نیز از عمل آوری افزایش یافته که این افزایش از نظر آمیپ نوعی در حدود درصد 10 در مورد افزایش ضریب هضم ماده خشک و آلتی نتایج در تحقیق افزایش ضریب هضم تناجر مشابه به‌دست آمده، و افزایش 25 درصد این ضریب گزارش نموده‌است.

\(\text{in sacco) تجزیه‌ذپنری ماده خشک} \)

تجزیه ذپنری ماده خشک بر اساس تابع به‌دست آمده (جدول 2) میزان مواد محلول در آب (بحث 8) در تحقیقات عمل آوری شده نسبت به تحقیقات عمل آوری شده است. افزایش میزان مواد محلول در آب از عمل آوری افزایش یافته (به ترتیب از 145 به 123/6 و 3/7 به 11/2 درصد برای تفاوت لیمو و آب 155 به 1287 و از 19 به 19/5 درصد برای تفاوت پیکرمال). دلیل آن احتمالاً تفاوت در توانایی استفاده شده برای عمل آوری نمونه‌های استفاده شده در مطالعه آن‌ها از قارچ پنی سیلیوم (Penicillium roqueforti).

قابلیت هضم قابلیت هضم ماده خشک و ماده آتی هر دو تفاوت پس از عمل آوری با قارچ به‌طور معنی‌دار (15/60) افزایش یافت. افزایش در قابلیت هضم ماده خشک تناجر لیمو و پیکرمال به ترتیب 15/2 و 14/2 درصد و افزایش قابلیت هضم ماده آتی به ترتیب 15/2 و 14/2 درصد و 12 درصد بود. افزایش قابلیت هضم در تناجرهای عمل آوری شده به‌دلیل کاهش دی‌آوره سلولی و دی‌آوره سلولی بدون هضم نمونه‌ها (جدول 2) و افزایش مواد محلول در آب (جدول 5) بهبود (11). کاهش دی‌آوره سلولی و دی‌آوره سلولی بدون هضم نمونه‌ها موجب افزایش فعالیت میکروگالیسیمم‌های شکمک نهایی افزایش یافت. این افکاری نشان دهنده تأثیر مثبت قارچ بر فعالیت میکروگالیسیمم‌های شکمک و در تهیه قارچ قابلیت هضم خوراکی است (15). به‌طور کلی، خوراک تخمیر شده قابلیت هضم بهتری دارد. که دلیل آن وجود میکروگالیسیمم‌های مختلف و