ارزیابی زنگیکی تولید شیر در گاو‌های شیری نزاد هلهسنای استان خراسان

با استفاده از مدل تابعی تصادفی تکه‌ای

همایون فرهنگ فر*، حسین نعیمی‌پور و رضا لطفی

(تاریخ دریافت: ۱۴ خرداد ۱۳۸۵ / پذیرش: ۱۴ خرداد ۱۳۸۵)

چکیده

در این تحقیق، تصمیم‌گیری و ارزیابی زنگیکی گاو‌های هلهسنای استان خراسان برای صفت شیر بر اساس یک مدل دام روز آزمون با تابعی تصادفی تکه‌ای (Cubic spline random regression) انجام گرفت. داده‌های مورد استفاده ۳۸۵۲ روز روز آزمون شیر دو و سه بار دویش در روز بر روی ۳۸۲ رأس گاو در هلهسنای ششم اول (فرزندان ۶۴ آرس گاو گار) در ۱۲۵ گلوب که در دو بخش ۱۳۸۰ تا ۱۳۸۲ را زایش داشتند، در مدل دام روز – آزمون، اثر عوامل ثابت محتوی‌گل‌های شبکه، سال و ماه روزگردگی‌های دفعات دویش، متغیرهای مکمک خصوصی و مرحله دوم را زایش اولیه در دو بخش ۱۳۸۰ و ۱۳۸۲ را زایش دوم در دو بخش ۱۳۸۰ و ۱۳۸۲ را زایش دو
ساختار واریانس - کواریانس صفری را که در یک دوره زمانی دارای تغییرات هستند، مدل نمایش و مقایسه با مدل چند معتبر تعدد پارامترها که باید آنالوگ داده‌های تکرار دار در طول زمان نیاز دارد. با استفاده از مزیت ضرورت تداوی یک مشاهده را برای سن و یا زمان خاص تصادفی نمود. مدل تابعی تصادفی اکثراً مؤثر تر از داده‌های موجود برای هر حیوان می‌باشد. این امر به دلیل این است که مدل تابعی تصادفی اولاً برای هر حیوان بیش از یک رکورد استفاده می‌شود ثانیاً شکل منحنی شیردهی در سطح زنبوریک و محیطی در نظر گرفته می‌شود.

مدل‌های تابعی تصادفی، از توابع مختلف نظیر چندجمله‌ای لازندر (Legendre polynomials) استفاده شده است (High order polynomials).

۱۸) و ۱۹) نمایش می‌گردد که اکثراً مؤثر تر از داده‌های موجود برای هر حیوان می‌باشد. این امر به دلیل این است که مدل تابعی تصادفی اولاً برای هر حیوان بیش از یک رکورد استفاده می‌شود ثانیاً شکل منحنی شیردهی در سطح زنبوریک و محیطی در نظر گرفته می‌شود.

در دانه‌های اولیه از روش‌های تاخیر میزان رشد و یا وزن در سه متفاوت (۱۹۰) تعداد تخم مرغ در هفته‌های مختلف تخم‌گذاری (۴)، شمارش سلول‌های سوماتیک و تولید شیر در ماهه‌های شیردهی (۱۱) که در طول زمان تکرار مدل‌هاي روز - آزمون انجام داد. در مورد صفت تولید شیر روزانه مورد بررسی از داده‌های ۳۰۰ روز است که این امر ناشی از افزایش اطلاعات مورد استفاده در پیش بینی ارزش اصلی دارد، نتایج دقیق عوامل محیطی موقت (۱۳) عدم نیاز به استفاده از ضرایب تصادفی ۲۵ (۳۰) و همچنین در نظر گرفتن نتایج فاوت‌های زنبوریک در شکل منحنی شیردهی و تداوی شیردهی (۱۲) و (۱۴) می‌باشد. نتایج مدل‌های روز - آزمون در کاز شیری، کوسفند و بی‌پستان برد (۱۵) مدل‌های تابعی تصادفی اولین بار توسط هندرسون و همچنین لرد و ویر در سال ۱۹۳۸ بررسی و سپس توسط شیفر و دیکرز در سال ۱۹۹۴ برای آنالیز رکوردهای تولید آزمون ماهه‌ها گزاره شیری پیش‌بینی گردید (۱۲). برای مدل تایپ بک اثر تصادفی مزاری زیاد وجود دارد. تابعی تصادفی قادر است
جدول 1. مشخصات آماری رکورد‌های مورد استفاده

<table>
<thead>
<tr>
<th>عناصر</th>
<th>تعداد رکورد</th>
<th>خانگین</th>
<th>میانگین</th>
<th>شر (کیلوگرم)</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>ضریب تغییرات</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/40</td>
<td>1</td>
<td>0/75</td>
<td>0/75</td>
<td>0/022</td>
<td>0/75</td>
<td>0/75</td>
<td>0/022</td>
<td>0/75</td>
</tr>
<tr>
<td>0/13</td>
<td>2</td>
<td>0/68</td>
<td>0/68</td>
<td>0/020</td>
<td>0/68</td>
<td>0/68</td>
<td>0/020</td>
<td>0/68</td>
</tr>
<tr>
<td>0/08</td>
<td>3</td>
<td>0/41</td>
<td>0/41</td>
<td>0/029</td>
<td>0/41</td>
<td>0/41</td>
<td>0/029</td>
<td>0/41</td>
</tr>
<tr>
<td>0/05</td>
<td>4</td>
<td>0/55</td>
<td>0/55</td>
<td>0/029</td>
<td>0/55</td>
<td>0/55</td>
<td>0/029</td>
<td>0/55</td>
</tr>
<tr>
<td>0/04</td>
<td>5</td>
<td>0/69</td>
<td>0/69</td>
<td>0/022</td>
<td>0/69</td>
<td>0/69</td>
<td>0/022</td>
<td>0/69</td>
</tr>
<tr>
<td>0/02</td>
<td>6</td>
<td>0/48</td>
<td>0/48</td>
<td>0/022</td>
<td>0/48</td>
<td>0/48</td>
<td>0/022</td>
<td>0/48</td>
</tr>
<tr>
<td>0/01</td>
<td>7</td>
<td>0/19</td>
<td>0/19</td>
<td>0/022</td>
<td>0/19</td>
<td>0/19</td>
<td>0/022</td>
<td>0/19</td>
</tr>
<tr>
<td>0/00</td>
<td>8</td>
<td>0/18</td>
<td>0/18</td>
<td>0/022</td>
<td>0/18</td>
<td>0/18</td>
<td>0/022</td>
<td>0/18</td>
</tr>
<tr>
<td>0/00</td>
<td>9</td>
<td>0/22</td>
<td>0/22</td>
<td>0/022</td>
<td>0/22</td>
<td>0/22</td>
<td>0/022</td>
<td>0/22</td>
</tr>
<tr>
<td>0/00</td>
<td>10</td>
<td>0/28</td>
<td>0/28</td>
<td>0/022</td>
<td>0/28</td>
<td>0/28</td>
<td>0/022</td>
<td>0/28</td>
</tr>
</tbody>
</table>

تغییرات و تحلیل زنیکی رکورد‌های روز - آزمون شیر را می‌توان با مدل روز آزمون انجام داد. در مدل‌های روز آزمون، مدل‌رژه آزمون با تابع تصادفی اخیراً پیش‌بینی مورد نظر قرار گرفته است. (Random regression)

مواد و روش‌ها
داده‌های مورد استفاده در این تحقیق، تعداد 32850 رکورد - آزمون ماهانه (Monthly test day) شر (دوره) و سه بار دوشش روز منطبق به 3842 رأس گاز شیری نزدیک همستان در استان خراسان رضوی، رکورد‌های مربوط به دوره اول روزهای گاوها بودند که در طی سال‌های 1380-1382 میلادی جمع‌آوری شده بودند.

تعداد کل گله‌ها در مورد افرام 125 بود. داده‌های مربوط به این گله‌ها در طی دوره‌های مختلف از ماه مهر تا بهار 94 و 1387 میلادی بررسی شد. نتایج نشان داد که میانگین وزن گاوها در گروه اصلی و همچنین میانگین عضوی در هر گروه بین گروه‌های مختلف نبود.

از این نتایج، تاکید دارد که برای شناسایی تغییرات تصادفی در هر گروه، تحلیل تغییرات تصادفی الزامی است. (Cubic spline random regression)

در فرمول ماتریس مدل مورد استفاده به شکل زیر است (16):

$$ y = Xb + \Phi_A \alpha + \Phi_P \gamma + \epsilon $$
سیر

چند نمونه از فرمول‌ها و نتایج استفاده شده در بررسی جریان انتقال تیتانیوم نیترات در صورت افزایش شدت فشار و درحال انتقال خاصی از منطقه A است. HRA در الگوهای است و درال‌ریز آرامی برای ثابت سیالیت افزایشیدن با از بروز مشکلات مرتبط با نیز باید یک نتیجه پیشینی می‌باشد.

\[
\alpha = \varphi + \alpha \gamma \\
\gamma = \frac{\alpha}{\varphi}
\]

\[
\beta(y) = V(\alpha \otimes K_A)D_A
\]

\[
\phi_\beta(y) = \phi_\alpha(y) \otimes K_B
\]

\[
\varphi_\gamma(y) = \varphi_\delta(y) \otimes K_C
\]

\[
\varphi_\alpha(y) = \varphi_\beta(y) \otimes K_A
\]

\[
\varphi_\gamma(y) = \varphi_\delta(y) \otimes K_B
\]

\[
\varphi_\alpha(y) = \varphi_\beta(y) \otimes K_A
\]

\[
\varphi_\gamma(y) = \varphi_\delta(y) \otimes K_B
\]
نتایج و بحث

میانگین پسین ماتریس‌های کووایانس سطحی افرادی (K_{A}) که در ضرایب تابعی سطحی و ماتریس کوواپیانس محیط موقعیت (\Sigma_{x}) برای میانگین اجرا و واریانس

\[
K_{A} = \begin{bmatrix}
1.46x10^{-6} & -1.59x10^{-6} \\
-1.59x10^{-6} & 1.46x10^{-6}
\end{bmatrix}
\]

ماتریس ضرایب C، C_{S}، C_{S,S} و C_{S,S} اフリー (Partitioning) به مجموعه (C_{S}) و C_{S,S} تابع به اسپلاریز از عناصری است که به تعداد اجرا و واریانس و کوواپیانس زنئتیکی محیطی محاسبه شده‌است. در مطالعه حاضر تعداد گره 9 بود که بر اساس آن و همچنین نتایج سوم بودن تابع به اسپلاریز برای شده در مدل 1 تعداد اجرا و کوواپیانس زنئتیکی محیطی محاسبه شده نشان داده شده در جدول 1 بود.

<table>
<thead>
<tr>
<th>پارامتر زنئتیکی</th>
<th>واریانس</th>
<th>محیط دامی</th>
<th>مهندس</th>
<th>ماه شیردهی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/355</td>
<td>0/198</td>
<td>0/327</td>
<td>0/901</td>
<td>1</td>
</tr>
<tr>
<td>0/375</td>
<td>0/187</td>
<td>0/327</td>
<td>0/901</td>
<td>2</td>
</tr>
<tr>
<td>0/396</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>3</td>
</tr>
<tr>
<td>0/415</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>4</td>
</tr>
<tr>
<td>0/457</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>5</td>
</tr>
<tr>
<td>0/498</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>6</td>
</tr>
<tr>
<td>0/557</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>7</td>
</tr>
<tr>
<td>0/625</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>8</td>
</tr>
<tr>
<td>0/699</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>9</td>
</tr>
<tr>
<td>0/786</td>
<td>0/177</td>
<td>0/327</td>
<td>0/901</td>
<td>10</td>
</tr>
</tbody>
</table>

میانگین نیمه اول شیردهی
منونه گیری که با 100،000 زنیتیکه محاسبه شد. همینگی زنیتیکه از سطحی و روند زنیتیکه (بر اساس روش نتایج، در مدل SPSS نتایج حاصل) با استفاده از نرم افزار آماری محاسبه کرد.
برای ماتریس اجزای کواریانس زنگی‌گذاری افرازیوین، ضرایب

\[K_R = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix} \]

مشخصات این سیگماف واقعی (Eigenvector) به ترتیب تقریباً 25/0/68/17/48/168/76/46/86/33/76/30/49/161/6/49/161/6

\[
\lambda = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix}
\]

برای ماتریس اجزای کواریانس زنگی‌گذاری افرازیوین، ضرایب

\[K_R = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix} \]

مشخصات این سیگماف واقعی (Eigenvector) به ترتیب تقریباً 25/0/68/17/48/168/76/46/86/33/76/30/49/161/6/49/161/6

\[
\lambda = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix}
\]

برای ماتریس اجزای کواریانس زنگی‌گذاری افرازیوین، ضرایب

\[K_R = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix} \]

مشخصات این سیگماف واقعی (Eigenvector) به ترتیب تقریباً 25/0/68/17/48/168/76/46/86/33/76/30/49/161/6/49/161/6

\[
\lambda = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix}
\]

برای ماتریس اجزای کواریانس زنگی‌گذاری افرازیوین، ضرایب

\[K_R = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix} \]

مشخصات این سیگماف واقعی (Eigenvector) به ترتیب تقریباً 25/0/68/17/48/168/76/46/86/33/76/30/49/161/6/49/161/6

\[
\lambda = \begin{bmatrix} \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{4} & \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \\ 1 \end{bmatrix}
\]
جدول 3: مشخصات آماری ارزش احتمالی پیشینی شده (کیلوگرم) شیر ۳۰۰ روز

<table>
<thead>
<tr>
<th>انحراف معیار</th>
<th>مланگین</th>
<th>حداقل</th>
<th>حداقل</th>
<th>تعداد رکورد</th>
<th>متغیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>444/33</td>
<td>52/90</td>
<td>159/17</td>
<td>188/3/85</td>
<td>384/2</td>
<td>ارزش احتمالی دختران</td>
</tr>
<tr>
<td>250/22</td>
<td>2/61</td>
<td>121/0/05</td>
<td>118/8/09</td>
<td>351/1</td>
<td>ارزش احتمالی مادربان</td>
</tr>
<tr>
<td>284/35</td>
<td>10/23</td>
<td>171/5/44</td>
<td>103/1/92</td>
<td>347/5</td>
<td>ارزش احتمالی پدردان</td>
</tr>
<tr>
<td>284/75</td>
<td>52/42</td>
<td>107/0/58</td>
<td>379/3/78</td>
<td>398/7</td>
<td>میانگین ارزش احتمالی والدین</td>
</tr>
</tbody>
</table>

افراد صحت ارژیایی همراه باشند. میانگین وراثت پذیری شیر در کل دوره شیردهی از مقدار گزارش شده توسط موسورت و همکاران (28) که از مدل روز آزمون تکرار پذیری در گاوهای هسلمین استفاده گردیده بود. بود که بر اساس آن تکرار پذیری شیر در ماههای مربوط به ترتیب کمترین و پیشینی مقدار را داشت. واریانس معیاری موفق و فنونی در ماول شیردهی پیشینی مقدار بود که مشابه با نتایج تحقیقات پیشین (4) است. با لایه بودن مقدار

واریانس معیاری موفق در ماول شیردهی می‌تواند بهدلیل عدم در نظر گرفتن برخی اثرات محیطی باشد که بر روی تولید شیر در ابتدا شیردهی گا موثر می‌باشد. در ماه آخر دوره شیردهی کمترین و پیشینی مقدار واریانس معیاری موفق و زنیکی مشابه‌شد. ریکابا و همکاران (24) کمترین و پیشینی واریانس زنیکی را به ترتیب در ماههای ۱۰ و ۱۰ و برای واریانس معیاری موفق در ماههای ۷ و ۱۰ گزارش نمود.

نتایج به استاد آماده نشان داد که نیمه اول دوره شیردهی ۳۰۵ روز وراثت پذیری کمتر نسبت به نیمه دوم آن داشت که مشابه نتیجه به استاد آماده توسط فرهنگ فر و رضایی (32) در گاوهای هسلمن ایران و دروت و همکاران (8) در گاوهای هسلمن فرانسه می‌باشد. به طور کلی، نتایج تغییرات وراثت پذیری روزهای روز – آزمون شیر می‌تواند تحت تأثیر عوامل مختلفی تأثیر عرفی گردهای رهومن، ساختار داده‌ها و تابع مورد استفاده برای در نظر گرفتن شکل مختل شیردهی قرار گیرد.

تغییراتی شیر در نیمه اول پیش نمود. بنابراین انتخاب زنیکی گاوهای برای تولید شیر در نیمه دوم شیردهی می‌تواند با

[

(1)

E(a_{spring}) = \frac{1}{r} E(a_{sire} + a_{dam})

]
آنالیز تابعیت میانگین ارزش اصلاحی پیش بینی شده حیوانات دارای رکورد که دارای اطلاعات کامل در فایل ارقام بودند بر حسب سال تولید آنها نشان داد که متوسط تغییرات سالانهِ زنگیکی صفت شیر ۳۰۵ روز ۷۷۷ کیلوگرم بود. ولی به لحاظ امادهٔ ان، صورت فاوت وضعیت به بالا همکاران (۲) کمتری که در عدهٔ متوسط به‌دست آمده به‌دست داده‌شدند طارم‌سازی و همکاران (۱) پیش‌تر بود. نمودار تابعیت خطی (Linear regression) روند زنگیکی پی‌آورد شده در شکل ۱ نشان داده شده است.

روند زنگیکی به دست آمده در تحقیق حاضر گرچه مشت و تعبیر مناسب بود ولی معنی‌دار نیست. از لحاظ اماده به‌دلیل اینکه نمودار می‌دهد میانگین ارزش اصلاحی نتایج متوالی شده در بین سال‌های ۱۳۷۸-۱۳۸۲ تغییرات زیاد داشته است. از آنجایی که یکی از عوامل مؤثر بر پیش‌بینی زنگیکی در یک جمعیت صحت پیش‌بینی زنگیکی تغییرات در اندازه‌گیری این ناحه برای اینکه نسل فرزندان می‌باشد. لذا می‌توان گفت در پژوهشی کاربردی اصلاح نژاد گاو شیری نژاد هستانی استخوان‌های صحت حیوانات

شکل ۱. خط بازی میانگین ارزش اصلاحی پیش بینی شده ۳۰۵ روز بر حسب سال تولید گاوها

با ارزش اصلاحی بالا در گل‌ها شناسایی و با دقت زیاد نیز انتخاب شوند و روند زنگیکی مناسب را می‌توان در نسل‌های آینده انتخاب داشت. افزون بر این، اگر از افرادی با کیفیت زیاد نیز در تلقیح ماده‌ای استفاده شود می‌توان روند زنگیکی مناسب را در طول سالها انتخاب داشت.

از عوامل مؤثر بر صحت پیش بینی ارزش اصلاحی حیوان می‌توان تعادل رکورد‌های موجود برای هر حیوان، تعادل هم‌گیا‌ها آن و وراثت پذیری را بر شمرد. (۳۲) تحقیقات همچنین وجود ناهماهنگی واریانس بین گله‌ها را در سال‌های مختلف را نشان داده است (۲۴) بطوری که نتیجه گرفت‌ند آن موجب ارتباط پیش‌بینی ارزش اصلاحی شده در دقت ارزیابی زنگیکی را کم می‌نماید (۳۲).

پراکنش ارزش اصلاحی پیش بینی شده میانگین شیرده بالای ۱۰ کگرمتر در شکل ۲ نشان داده شده است. بر اساس نمونه‌گیری (که دارای ۱۰ ستون و ۱۰ رشته برای کل ۱۰۰‌ها شیرده است) مشاهده می‌گردد که هم‌پسی بین ماههای تابستان به‌کلیکر به‌بیشتر از هم‌پسی بین ماههای دور از هم‌پسی به مشابه با روند دیده است. در سایر تحقیقات (۳۲) ۷۶.۸ و ۷۶.۷ است. پایین بودن میزان هم‌پسی بین ارزش اصلاحی حیوان در دو طرف ابتدا و انتهای منحنی شیردهی

۵۴۰
شکل ۲. ماتریس پراکنش ارزش اصلاحی پیش بینی شده شری نوازه بین آزمونهای ماهانه (به تناسب از سمت چپ به راست مستقیل‌ها مربوط به ماههای شیرده ۱ تا ۱۰ می‌باشد).}

نیاز به اندازه‌گیری است که درس زبانی مقدار زیاد در این بخش‌ها تقسیم‌بندی کهکشانی‌های هنری، به‌طور کلی، هنگامی که همبستگی بین دو متغیر بالاست، می‌توان ارزش اصلاحی را مناسب‌تری به‌دست آورد. این امر می‌تواند در برخی از اهمیت زیادی در برنامه‌های اصلاح نوازه که شکم‌ باشد. این زمینه از طریق آن می‌توان انتخاب حیوانات را زودتر انجام داد و در نتیجه هزینه‌های برپورش کاهش می‌یابد. انتخاب زود هنگام

سیستم‌های

دایره‌های مورد استفاده در این تحقیق توسط سازمان جهاد کشاورزی استان خراسان و نوازه‌بین‌ها بررسی شد. به‌کمک بهبودیه، مولفان مرکز نوآوران و سیستم‌های خود را از مسئولان محترم این سازمان اعلام می‌نمایند.

متابع‌مرداد استفاده

۱. داده‌های طارم‌سیری، م. م. مرادی شیر بابک، س. ر. میرانی آنتی‌پاسی. و م. م. مرادی نوازه. ۱۳۸۸ مطالعه ویژگی‌های قلم‌زینی. صفحات ۱۸-۱۸۸.
۲. سالی، د. م. مرادی شیر بابک، س. ر. میرانی آنتی‌پاسی. و. ا. نیکی‌نیا. جامعی. ۱۳۸۰. سازگاری گاهاهی ویژی‌های خرسان در یک‌درباره

۵۴۱