مدیریت بهینه در مصرف آب و الگوی کشت در شرایط استفاده تلفیقی
از منابع سطحی و زیرزمینی

محمد کاظم شعبانی، تورج هرز و منصور زهیایی

(تاریخ دریافت: 18/11/1242، تاریخ پذیرش: 18/7/1387)

چکیده
کمی بارندگی و محدودیت منابع آب سطحی باعث شده کشاورزان برای تأمین آب لازم جهت کشت گیاهان مختلف از منابع آب سطحی و زیرزمینی به صورت تلفیقی استفاده کنند. تحقیق حاضر مدیریت بهینه در مصرف آب و الگوی کشت در شرایط استفاده تلفیقی از منابع سطحی و زیرزمینی در شرایط متغیر مورد تحقیق قرار داده می‌شود. برای محاسبه کاهش درصدی آب مصرفی در شرایط مصرف تلفیقی، بر اساس اینکه در این شرایط مصرف تلفیقی چه کاهشی درصدی برای رسیدن به سود بیشتر با توجه به شرایط کشاورزان برای رسیدن به سود بیشتر با توجه به

وازه‌های کلیدی: راهکارهای آبیاری، منابع آب سطحی و زیرزمینی، الگوی بهینه کشت، کم‌آبیاری

مقدمه
ایران در جنوب منطقه معتدل شمایی واقع شده و به علت موقعیت خاص جغرافیایی و ناحیه‌های بسیار پراکنده و تأثیر دیگر عوامل (مانند تواده‌های هاوی) از مناطق خشک جهان به شمار می‌رود. میزان متوسط بارندگی سالانه ایران (250 میلی‌متر) کمتر از سوم حدا متوسط باران سالانه کره زمین (480 میلی‌متر) می‌باشد (5). لذا کمی بارندگی باعث شده در میزان آب‌های سطحی نوسانات شدید مشاهده شود که طوری که

1. به ترتیب دانشجوی سالیان کارشناسی ارشد و استاد و مهندس آب، دانشکده کشاورزی، دانشگاه شیراز
2. استاد اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
3. مسئول مکاتبات، پست الکترونیکی: toorajhonar@yahoo.com

53
داههای آب و هوا، ترک آبی روزانه گیاه را شیب‌سازی کردن. همچنین عملکرد نسبی یک برابر هفت گیاه در مکانه‌های بادمان باشد. سپس با استفاده از عملکرد نسبی و ترک آبی در الگویی زنده، تابع هفته‌ها برای پاسخ‌های درآمده طرح بهینه و در نهایت آبگیری بهینه می‌گیرد.

در این تحقیق، ضمن اینکه هفته بهینه کردن الگویی کشت در شرایط استفاده از مصالح سطحی و زیرزمینی می‌باشد، راهکارهایی برای جهت جلوگیری از معیشت بر روی آب ارایه گردیده‌است.

مواد و روش‌ها

مکانه‌های مورد مطالعه در این تحقیق اراضی زیر دست کانال اردهبشت از جمله کانال‌های دارچین یک شبکه آبی‌مانند درون‌دست استان فارس می‌باشد. شکل 1 موفقیت مکانه‌های مورد مطالعه را نشان دهد. همچنین، در این تحقیق جهت بهینه کردن الگویی کشت از برنامه‌های زمینه‌ی خطی (LP) و نرم‌افزار استفاده گردید.

آمار و اطلاعات مورد بررسی نظیر سطح زیر کشت، عملکرد محصولات، هزینه تولید، هزینه نهاده‌های، تاریخ کشت گیاهان، مختلف هزینه استفاده از باره جهت آبی‌مانند گیاهان مختلف در طول فصول کشت و حدود امتکانات آبی بهبود دادن معتقدات مصرفی در حالت استفاده تلفاتی آب سطحی و زیرزمینی به طرح مختلف به جهت زاری‌نمایی و همچنین از دراده‌های مربوط به استان فارس هرگز گردید. همچنین اطلاعات مربوط به پرروست‌نامه از یک نمونه مشتمل بر ۵۰ واحد زراعی به‌دست آمده است. شایان ذکر است سطح مصرفی هر باردار مختلط در زیر شیب‌های آبی اعضا بین ۲ تا ۱۰ هکتار می‌باشد. در این تحقیق جهت بررسی تأثیر سطح مختلف کم‌آبی‌زایی در سطح مصرفی (زاویه‌های آبی‌زایی) از یک بهبود دادن نامه‌بندی ۷ هکتاری که در میانه واحدهای مورد بررسی بود، به همراه دادن بهبود دادن نامه‌بندی جهت بررسی سطح مختلط کم‌آبی‌زایی (زایه‌های آبی‌زایی) منابع آب زیرزمینی باعث وارد آمدن صدمات چربان‌شکل در پتانسیل آبی در منطقه می‌شود. اما و اطلاعات سطح زیر کشت در استان فارس نشان می‌دهد که الگویی کشت در فصل دوم در دهه‌های اخیر به سمت مصرفی‌ها با نیاز آبی بالا نگیرد بيدا کرده و همچنین سطح زیر کشت این ملاحظات تازه افرایش پیدا کرده ایست بر اثر که سطح زیر کشت بر جرگ این استان از ۲۰۱۰ میلنیم در سال ۱۳۷۱ به مقدار ۵۵۳۸ هکتار در سال ۱۳۸۲ رسیده است. همچنین سطح زیر کشت گیاهی در سال ۱۳۸۴ به ۵۱۳ هکتار در سال ۱۳۸۶ رسیده است. قابل ذکر که این ملاحظات جایگاهی کشف گیاهان به نیاز آبی کمتر از قبل ارزش نگذشته شده‌اند. به‌پایان مدت‌بردار بهینه در مصرف آب و زیرزمینی امری لازم و ضروری نظیر می‌رسد.

روش‌های مختلف جهت بهینه‌کردن برنامه‌ریزی ایبی‌زایی بارای الگویی کشت مختلف وجود دارد. برخی از این روش‌ها به Linear model زیست‌پاتی و تکنیک‌های برنامه‌تویس خطی (NLP) و پروری، (Nonlinear programing) و این تحقیقات (Dynamic Programing) مکات است. تاکنون تحقیقات زیادی در زمینه بهبودی‌سازی برنامه‌ریزی برای الگویی کشت مختلف انجام شده و میانه‌بداشتند. ۱۴ (۳) نمای و دبیران (۲۰) نشان (NLP-DP) دادند که استفاده از بررسی‌زیر خیرندا و پروری می‌تواند راهحلی برای تخصیص منابع آب، برای الگویی کشت‌های مختلف به‌شکل، فهمان و سیاست‌های (۱۱) یک الگویی متغیر از برنامه‌ریزی خطی (یا غیر خطی) و (N)LP بررسی‌زیر استاتیسکی (SDP) جهت تخصیص بهینه آب از یک منبع سد یک منظوره برای یک الگویی کشت (نگار، جواب، قدرت و درت در ناحیه اردا واقع در استان خراسان ارداکند. کرب و هماکاران (۱۴) در تحقیقی از الگویی زنده برای برنامه‌ریزی آبی‌زایی در سطح مصرفیهای استفاده کردند. طرح آنها در دو منطقه دلتا و پتزا به‌سمت ۱۳۹۴: ۶ هکتار انجام شد به این ترتیب که آنها با استفاده از
مدیریت بیشتر در مصرف آب و الگوی کشت در شرایط استفاده تلفیقی...

شکل 1. موقعیت منطقه مورد مطالعه (کانال اردبیشت و سطح زیر کشت کانال‌های فرعی ان)
نام تولید مورد استفاده در این تحقیق برای تعیین عملکرد واقع محسوب در هکتار (Y_i) براساس تحقیقات محققین مختلف (15، 17) به صورت زیر در نظر گرفت شد:

\[
\frac{\sum_i\text{A}_j - \text{A}_{Total}}{\text{A}_{Total}} \leq \text{A}_{Total}
\]

در مدل عملکرد محدودیت زمین برای گیاهان مختلف به صورت زیر

\[
Z = \sum_{j=1}^{n}(P_j Y_i - C_j)A_j - P^R_w \sum_{j=1}^{n} IR^R_j - P^R_w \sum_{j=1}^{n} IR^R_j
\]

که در آن:
- \(Z\) نام هدف
- \(P^R_w\) قیمت آب سطحی (Rial/m3)
- \(P^R_w\) مقدار آب زیرزمینی (Rial/m3)
- IR^R_i مصرفی گیاه (m3)
- \((m^3)\) قیمت آب زیرزمینی مصرفی گیاه
- \(Y_i\) قیمت محصول برای گیاهی (Rial/kg)
- \(C_j\) هزینه کشت گیاهی (m3)
- (Rial/ha)
- (kg/ha)
- (ha)

به صورت زیر گیاهی (Rial/kg)

\[
A_{Total} = \text{کل} (\text{ha})\]

\[
A_{Total} = \text{کل} (\text{ha})\]

به صورت زیر گیاهی (Rial/kg)

\[
A_{Total} = \text{کل} (\text{ha})\]
جدول 1. درصد بفرداران زیر کاتال ازبیست یک ازمانی آب سطحی و زیرزمینی استفاده می‌کنند.

<table>
<thead>
<tr>
<th>کاتال‌های درجه ۲ (کاتال ازبیست)</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱۵</td>
<td>۴۶</td>
</tr>
<tr>
<td>۱۱۶</td>
<td>۲۹</td>
</tr>
<tr>
<td>۱۱۷</td>
<td>۷۰</td>
</tr>
<tr>
<td>۱۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>۱۱۹</td>
<td>۳۰</td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۲۱</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۲۲</td>
<td>۶</td>
</tr>
<tr>
<td>۱۲۳</td>
<td>۴۰</td>
</tr>
<tr>
<td>۱۲۴</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

نتایج پرسشنامه

جدول 2. تاریخ کشت گیاهان مختلف در منطقه براساس تاریخ‌های آب‌یاری

<table>
<thead>
<tr>
<th>نام گیاه</th>
<th>آب‌یاری</th>
<th>نفر</th>
<th>نفر</th>
<th>نفر</th>
<th>نفر</th>
<th>نفر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمونه‌های

محدودیت امکانات آب برای کشت گیاهان مختلف در دوره‌های زمانی مختلف نیز به‌صورت زیر در مدل اعمال گردید:

\[\text{q}_{j} = \frac{W_{a}}{E_{a}} \times A_{j} \times 10^{5} \]

\[\sum_{j} q_{j} \geq q_{\text{Total}}^{S} + q_{\text{Total}}^{G} \]

که در آن، \(W_{a} \)، مقدار آب خالص مورد نیاز گیاه \(E_{a} \) راندمان کاربرد آب در مزرعه (اعشار)، عدد \(A_{j} \) برای تبدیل میلی‌متر \((\text{mm}) \) به مترمکعب در هکتار \((\text{m}^{3}/\text{ha}) \) باید نهایتاً به رابطه ۷ بدهست. می‌آید.

\[q_{\text{Total}}^{S}, q_{\text{Total}}^{G} \] مقدار آب آب‌یاری مورد نیاز گیاه می‌باشد.
جدول 3. ضریب واکنش عملکرد به آب

<table>
<thead>
<tr>
<th>مرحله ردش</th>
<th>بالایی ردش</th>
<th>کلیه عملکرد محصول</th>
<th>از بین رفته</th>
<th>استقرار</th>
<th>کیاها</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیاسخوار</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>طبیعی</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>فیروزهای</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>هنر و سیاسخوار</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>امین و همکاران</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

جدول 4. حداکثر مقادیر کاهش آب مصرفی نسبت به آبیاری کامل

<table>
<thead>
<tr>
<th>درصد کاهش آب مصرفی</th>
<th>منبع مورد استفاده</th>
<th>کیاها</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>حسینی (3)</td>
<td>گندم</td>
</tr>
<tr>
<td>40</td>
<td>حسینی (3)</td>
<td>گندم</td>
</tr>
<tr>
<td>35</td>
<td>پیرمادیان (2)</td>
<td>پرند</td>
</tr>
<tr>
<td>30</td>
<td>سیاسخوار و پرند (19)</td>
<td>ژنر و دانهای</td>
</tr>
<tr>
<td>30</td>
<td>سیاسخوار و پرند (19)</td>
<td>ژنر و دانهای</td>
</tr>
<tr>
<td>20</td>
<td>سیاسخوار و کامگار (18)</td>
<td>ژنر و دانهای</td>
</tr>
</tbody>
</table>

که در آن، \(ET_0 \): تبخیر - تعرق بالقوه سطوح گیاهی مرجع

\[W_{aj} = ET_{cropj} - P_e \]

\(P_e \): بارندگی مؤثر در ماه قام، مقدار آن با استفاده از نرم افزار CROPWAT و برای ماههایی که در USDA انتقال می‌شود، تعیین گردیده است.

آن بارندگی اتفاق می‌افتد. تعرق کاهش گیاهی (mm/10day) از درصد شدت‌های تعرق گیاهی خود ارائه شده توسط آن و همکاران (7) \(ET_{cropj} \) محسوب می‌گردد:

\[ET_{cropj} = k_c \cdot ET_0 \]
نتایج و بحث

متعارف‌های تصمیم در مدل به‌صورت جدول ۵ می‌باشد. همان‌طور که مشاهده می‌شود طبقه این جدول برای درصدی مختلف کاهش آب محاسبه و راهکارهای آب‌یابی (متغیرهای تصمیم) مختلفی برای هر گیاه تعیین گردیده است (به‌طور مثال ۲۳ راهکار آب‌یابی برای گیاه کندم). پس از تغییر این راهکارها برای گیاهان مختلف، سود خالص برای هر کدام از آنها محاسبه و در تابع هدف وارد گردید.

جدول ۶ گیاه بهینه کشت حاصل از اجرای مدل را نشان می‌ده. مشاهده می‌شود که تغییرات X1 به سطح ۷ هکتار (گندم با راهکار آب‌یابی کامپل) X58 به سطح ۴ هکتار (دژت با راهکار آب‌یابی کامپل) و X131 به سطح ۴ هکتار (برش برای راهکار آب‌یابی کامپل) وارد گیاه کشت شده‌اند و در نهایت بارندگی برنامدی که به‌دست آمده از این تغییرات می‌تواند به بهره‌برداری از ۲۰۰۰۰۰۰ ریال می‌باشد. هم‌چنین تغییرات این شکل نشان می‌دهد که این کمک‌های بهینه به شرایط سطحی و زیستی کامپل در بررسی زمین مشاهده راهکارهای آب‌یابی کامپل برای گیاهان مختلف انتخاب کردی است.

جدول ۷ گیاه فلورا به‌هوریزونت نماینده را نشان می‌ده. مشاهده می‌شود که به‌هوریزونت نماینده به‌صورت گروهی در شرایط استفاده تلفیقی از منابع آب سطحی و زیرزمینی قسمت ۷ آبی و خود را در فصل اول به کننده و در فصل دوم به رنگ و ذرت دانه‌ای اختصاص می‌دهد. هم‌چنین در این حالت بهره‌بردار به دلیل در اختیار داشتن امکانات آب، بیشترین مکعبه‌های مانند F و G استفاده می‌کند.

اولین سیاست که برای تعلیق تفاوت‌های آب در این تحقیق بیشتر تمام سطح زمین خود را در فصل دوم زیر کشت گیاهان مختلف می‌برد. این اتیپ از زمین زیر کشت بیشتر به گیاه برنج به دلیل داشتن در آن استخوان اختصاصی می‌پذیرد.

شکل ۳ مقدمات آب گیاهان از چهار را در همه‌ها مختف نشان می‌دهد. در واقع این مقدمات نیاز حساسی از اجرای مدل می‌باشد زیرا مدل به‌طور طراحی شده است که این مقدمات را نیاز می‌داند. همان‌طور که به‌طور مثال ۳۲ راهکار آب‌یابی برای گیاه کندم. پس از تغییر این راهکارها برای گیاهان مختلف، سود خالص برای هر کدام از آنها محاسبه و در تابع هدف وارد گردید.

شکل ۴ گزینش مدل را نشان می‌ده. همان‌طور که مشاهده می‌شود مدل می‌تواند پارامترهایی مثل عملکرد حداکثر گیاهان مختلف، کیفیت محصولات، فیت اب، مصرفی، هزینه کشت گیاهان مختلف در هکتار و حداکثر امکانات ایس سطحی و زیرزمینی را در دوره زمانی مختلف را به‌عنوان ورودی بیگانه و گیاه بهینه را برای کتلانهای مختلف به‌عنوان یک بنده.
جدول ۵: تعریف متغیرهای تصمیم و درصد کاهش آب مصرفی در دوره‌های مختلف

فعالیت	۱	۲	۳	۴	۵	۶	۷	۸	۹	۱۰	۱۱	۱۲	۱۳	۱۴	۱۵	۱۶	۱۷	۱۸	۱۹	۲۰	۲۱	۲۲
جمله	درصد																					
فعالیت	۱	۲	۳	۴	۵	۶	۷	۸	۹	۱۰	۱۱	۱۲	۱۳	۱۴	۱۵	۱۶	۱۷	۱۸	۱۹	۲۰	۲۱	۲۲
فعالیت	۱	۲	۳	۴	۵	۶	۷	۸	۹	۱۰	۱۱	۱۲	۱۳	۱۴	۱۵	۱۶	۱۷	۱۸	۱۹	۲۰	۲۱	۲۲
فعالیت	۱	۲	۳	۴	۵	۶	۷	۸	۹	۱۰	۱۱	۱۲	۱۳	۱۴	۱۵	۱۶	۱۷	۱۸	۱۹	۲۰	۲۱	۲۲
فعالیت	۱	۲	۳	۴	۵	۶	۷	۸	۹	۱۰	۱۱	۱۲	۱۳	۱۴	۱۵	۱۶	۱۷	۱۸	۱۹	۲۰	۲۱	۲۲
مدیریت بهینه در مصرف آب و الگوی کشت در شرایط استفاده تلفیقی...
جدول 6. الگوی بهره‌مندی کشت حاصل از مدل

<table>
<thead>
<tr>
<th>کیاه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گندم (X1)</td>
<td>7</td>
</tr>
<tr>
<td>جو</td>
<td></td>
</tr>
<tr>
<td>ذرت دانه‌ای (X58)</td>
<td>3</td>
</tr>
<tr>
<td>ذرت علف‌های</td>
<td></td>
</tr>
<tr>
<td>چغندرتند</td>
<td></td>
</tr>
<tr>
<td>برنج (X131)</td>
<td>2</td>
</tr>
</tbody>
</table>

مقدار آب مصری (m³)

<table>
<thead>
<tr>
<th>ریال</th>
<th>بازده برنامه</th>
<th>بازده برنامه (ریال)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>19624655</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000</td>
</tr>
</tbody>
</table>

جدول 7. الگوی فعلی بهره‌بردار نماینده

<table>
<thead>
<tr>
<th>کیاه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>گندم</td>
<td>6</td>
</tr>
<tr>
<td>ذرت دانه‌ای</td>
<td>2</td>
</tr>
<tr>
<td>چغندرتند</td>
<td>1</td>
</tr>
<tr>
<td>برنج</td>
<td>4</td>
</tr>
</tbody>
</table>

* نتایج پرستش‌نامه

شکل 3. مقدار آب مصری از چاه در دهه‌های مختلف
جدول ۸. تأثیر تغییر قیمت بر اثر گرمی بهینه

<table>
<thead>
<tr>
<th>فعالیت (مکان)</th>
<th>قیمت (تونوم)</th>
<th>X1</th>
<th>X58</th>
<th>X131</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_W^0 05-07</td>
<td>X1</td>
<td>196225/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X11</td>
<td>X58</td>
<td>120836/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X131</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مورد بررسی قرار گرفت تغییر قیمت آب، و اثر آن بر اثر گرمی کشت و میزان آب مصرفی بود که نتایج آن به صورت جدول ۸ خلاصه شده است. نتایج این جدول نشان می‌دهد که با افزایش قیمت آب از سطح زیر کشت فعالیت‌های بهینه کاسته شده و

همچنین اگر به بهینه بستگی گیاهان با میزان آب مصرفی کمتر پایش می‌رود (راه‌کارهای آب‌یابی)، به عنوان مثال مطالعه جدول ۸ گنبد با ۵ و ۲۵ درصد کاهش آب مصرفی در دوره ۳۳۳ می‌باشد. با توجه به اینکه گیاه بید جای دارای نیاز K_2=۰، X17 و X21 می‌باشد.
جدول 9. گیاه به‌همه کشت حاصل از حذف گیاه برجن

<table>
<thead>
<tr>
<th>گیاه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(گندم آبیاری کامل)</td>
</tr>
<tr>
<td>0</td>
<td>جو</td>
</tr>
<tr>
<td>7</td>
<td>(ذرت دانه‌ای آبیاری کامل) X58</td>
</tr>
<tr>
<td>0</td>
<td>ذرت علف‌های</td>
</tr>
<tr>
<td>0</td>
<td>چغندرقدن</td>
</tr>
<tr>
<td>154309/50</td>
<td>مقدار آب مصرفی (م³)</td>
</tr>
<tr>
<td>164828000</td>
<td>پاره برنامه‌ای (ریال)</td>
</tr>
</tbody>
</table>

جدول 10. گیاه به‌همه کشت حاصل از کاهش بجهت‌داری از چاه

<table>
<thead>
<tr>
<th>گیاه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(گندم آبیاری کامل)</td>
</tr>
<tr>
<td>0</td>
<td>جو</td>
</tr>
<tr>
<td>7</td>
<td>(ذرت دانه‌ای 5 درصد در دوره 1) Ky=0/1</td>
</tr>
<tr>
<td>0</td>
<td>ذرت علف‌های</td>
</tr>
<tr>
<td>0</td>
<td>چغندرقدن</td>
</tr>
<tr>
<td>3/2334</td>
<td>(برنج آبیاری کامل)</td>
</tr>
<tr>
<td>180500/62</td>
<td>مقدار آب مصرفی (م³)</td>
</tr>
<tr>
<td>189498800</td>
<td>پاره برنامه‌ای (ریال)</td>
</tr>
</tbody>
</table>

جدول 11. گیاه به‌همه کشت حاصل از حذف نقاشی‌های به‌هنه

<table>
<thead>
<tr>
<th>گیاه</th>
<th>سطح زیر کشت (هکتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(گندم آبیاری کامل 5 درصد در دوره 1) Ky=0/15</td>
</tr>
<tr>
<td>0</td>
<td>جو</td>
</tr>
<tr>
<td>7</td>
<td>(ذرت دانه‌ای 5 درصد در دوره 1) Ky=0/1</td>
</tr>
<tr>
<td>0</td>
<td>ذرت علف‌های</td>
</tr>
<tr>
<td>0</td>
<td>چغندرقدن</td>
</tr>
<tr>
<td>1536309/50</td>
<td>مقدار آب مصرفی (م³)</td>
</tr>
<tr>
<td>163768000</td>
<td>پاره برنامه‌ای (ریال)</td>
</tr>
</tbody>
</table>

در عرض مقدار آب مصرفی به میزان 21/34 درصد کاهش یافته است. با بازاین حذف برجن از گیاه کشت زراعی و به‌صورت کلی محدود کردن کشت جابجایی در فصل دوم در تعیین نقاشی‌های آب مؤثر می‌باشد.

آی پالا می‌باشد یک سیاست دیگر جهت تعدیل نقاشی‌های آب حذف گیاه برجن از گیاه کشت می‌باشد که نتایج آن در جدول 9 ارده می‌شود است. همانطور که مشاهده می‌شود پاره برنامه‌ای نسبت به جدول 6 به میزان 17/62 درصد کاهش یافته است ولی
در این تحقیق ساعت‌های مصرف‌درداری از چهار ساعت در شبانه‌روز نظر گرفته شد که گاهی ساعت‌های مصرف‌درداری نیز می‌تواند باعث یک سیاست دیگر در تعیین تغذیه نشان داد که الگوی بهینه کشور در لحظه که ساعت مصرف‌درداری از آب چاه از 20 ساعت به 10 ساعت تغییر یابد را نشان می‌دهد. مشاهده می‌شود که سطح زیر کشت در فصل دوم کاهش یافته و مدل راهکارهای دیگری غیر از آب‌کاری کامل را انتخاب می‌کند. همچنین آب مصرفی نیز به میزان 870 درصد کاهش یافته است. این به دلیل این‌که بهترین‌تر از آب مصرفی (کالا) نیز اسفاده می‌کند این میزان کاهش در مقابل کاهش ساعت مصرف‌درداری از چهار ناحیه می‌باشد. این سیاست به دلیل اینکه اکثر جهانی‌های منطقه دبیل می‌باشد و کاهش رهگشا نمی‌باشد.

سیاست دیگری که می‌تواند در تعیین تغذیه آب مؤثر باشد این است که راه‌کارهای آب‌کاری کامل از برنامه بهینه حذف شود. جدول 11 تایپ‌ای نیز تغییر را نشان می‌دهد. مشاهده می‌شود میزان آب مصرفی به میزان 50 درصد کاهش می‌یابد و مدل می‌تواند راهکارهای دیگر غیر از آب‌کاری کامل را انتخاب کند.

نتیجه‌گیری
در محدوده پرورش‌های بزرگ آبیاری (نظیر شبکه آبیاری و

منابع مورد استفاده
1. آرین، ا. ا. و.، ر. سیاسخوانه.1375. مصرف و برداشت مدل شیبی‌سازی محصولات زراعی و مدیریت آب و خاک (CRPSM)."چهارمین سمینار آبیاری و کاهش تبخیر، دانشگاه کرمان، ایران.
2. پیرمرادیان، ن. 1382. خریدکیمی کم آبیاری و مصرف کود نیتروژن در محصول برنج منطقه کوچکت (استان فارس)."پایان‌نامه دکترای آبیاری و زهکشی، دانشگاه شیراز.
3. حسینی، ن. 1384. اثر ایست‌های جویچه‌ای یک در میان با سطوح مختلف نیتروژن بر عملکرد گندم در شرق منطقه با چگونگی و کوششک."پایان‌نامه کارشناسی ارشد آبیاری و زهکشی، دانشگاه شیراز.
5. چنگال، ب. 1381. منابع و منادیت آب در ایران. جلد اول، چاپ ششم، انتشارات دانشگاه تهران.
6. هنر، ت. و. ر. سیاسخوانه.1375. اصلاح مدل CRPSM برای تخمین محصول و مدیریت آبیاری گندم. هشت‌مین سمینار کمیته