بررسی تنوع زنگیکی عملکرد دانه و دیگر ویژگی‌های زراعی در زنگی‌های با کیفیت روغن خوراکی و صنعتی در اصفهان

قدرت الله سعیمی‌اکبری

چکیده

(گیاهی است دانه روانه‌ی با سازگاری گسترده‌ی که روغن زنگی‌های معمولی آن به لحاظ ترکیب خاص است. این گیاه مصرف صنعتی دارد. روغن زنگی‌های خردسال و بالغ، از نظر ترکیب اسیدهای چربی مانند روغن آفتی‌های بوده و می‌تواند به صورت خوراکی برسد. این روغن به منظور بررسی تنوع زنگی‌های ویژگی‌های زراعی و صنعتی، برای زیکی روغن خوراکی و صنعتی پژوهش به منظور ارزیابی زنگی‌های از طرح آماری ارزیابی مقدماتی انجام شد.

نتایج نشان داد که مناسب‌ترین شمارگان‌هایه در مترا بیشتر، در زنگی‌های با کیفیت روغن خوراکی و صنعتی به ترتیب 188 و 367 و دارای ضریب تغییرات 50 و 10 درصد بود. طول دوره رشد زنگی‌های با کیفیت روغن خوراکی و صنعتی به ترتیب بین 75 تا 79 و 77 تا 84 کیلوگرم مربوط است. در این بخش، عملکرد دانه نیز تغییراتی نداشت و دارای طوری که زنگی‌های با کیفیت روغن خوراکی دارای عملکرد دانه 979-774 کیلوگرم و ضریب تغییرات 75 درصد بودند. در این بخش، عملکرد دانه درگاه‌های بالاتر و میانگین از دو شمارگان جایگاه در رنگ سبز (0/87-0/94) و شمارگان درگاه‌های زیر در گروه، شمار دیگر کیفیت‌ها و وزن دانه به ترتیب مهم‌ترین اجزای عملکرد دانه در گروه شناخته شدند.

واژه‌کلیدی: بزرگ، روغن خوراکی، تنوع زنگی‌های، صفات زراعی، ضرایب همبستگی

مقدمه

(گیاهی است دانه روانه‌ی با سازگاری گسترده‌ی که روغن زنگی‌های معمولی آن به لحاظ ترکیب خاص است. این گیاه مصرف صنعتی دارد. روغن زنگی‌های خردسال و بالغ، از نظر ترکیب اسیدهای چربی مانند روغن آفتی‌های بوده و می‌تواند به صورت خوراکی برسد. این روغن به منظور بررسی تنوع زنگی‌های ویژگی‌های زراعی و صنعتی، برای زیکی روغن خوراکی و صنعتی پژوهش به منظور ارزیابی زنگی‌های از طرح آماری ارزیابی مقدماتی انجام شد.

1. استاندارد زنگی‌های اصلاح نیانات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
غیاهی است یکباسله و با منابع محصولات دارای رشد حضور ۱۸۸ روغن به علت شفافیت محصولات دارای رشد حضور در نهایت کشت می‌شود. (۸) در ایران کشت این محصولات به صورت فرعی و پراکنده در نقاط مختلف کشور انگور می‌گردد. (۱) دانه این گیاه دارای ۳۰-۵۵% روغن و ۲۳-۳۴% رنگتی به دو انواع آرین بر تولید و ۴۵-۷۸% رنگتی به دو انواع بر تولید روغن. کنجاله‌اند آن با درصد بالایی از پروتئین (۶۴-۷۴%) به عنوان یک منبع کم‌کم‌کننده پروتئین در جیره‌گذایی دامها مورد استفاده قرار می‌گیرد. (۵) همچنین به خاطر ارزش غذایی داشته به عنوان یک منبع غذایی اصلی چرب غیر استفاده و مصرف آن در اکثریت کشورهای جهان به عنوان دمکرات‌کننده غذایی استفاده می‌گردد. (۴) رنگتی می‌تواند به صورت آرد یا تالمان خرد شده در نهایت تان کیک و هنگر فلورچک غذایی کاربرد دارد. (۷) که آن نیز به عنوان یک منبع نیتریک‌گذاری، در صنایع کافه‌سازی و به ویژه در مواردی که تولید کافه‌گذاری محکم و با دوم ماندن کافه‌گذاری استفاده می‌شود. (۵) روغن زنوتیپ یک محصول عمومی برک به خاطر رنگتی خاص اسیدهای چرب و میزان قابل توجه اسید چرب غیر اسید چرب محلول می‌باشد. (۵) به عنوان روغن خشک شده و در صنایع رنگ سازی، نقاشی، تولید جوره‌پیچ و ساخت کف‌پوش استفاده می‌شود. (۴) و لی روغن آن به خاطر میزان بالای اسید چرب لینولئین که در روغن خوک نمک‌منجمد نقش نیز می‌باید. به عنوان روغن خشک ممتازی که در روغن خوک زیادی به اکسید شدن رنگ‌برناردهای روغن و نهایتاً کاهش کیفیت روغن می‌گردد. (۴) روغن و روش‌ها آزمایش در سال ۱۳۶۸ در مزرعه پژوهشی دانشکده کشاورزی

1. Linota 2. Solin
بررسی نوع زننده‌ی عملکرد دانه و دیگر رویکرد بهزیستی زراعی در

دانشگاه صنعتی اصفهان واقع در زیرک‌نوجف‌آباد (۴۰ کیلومتری جنوب غربی اصفهان) انجام گردید. طبق طبقه‌بندی کوئین، منطقه آزمایشی دارای اقلیم خشک، بسیار گرم با تابستان‌های گرم و خشک است (۲). محل آزمایشی دارای خاکی با بانف
لومریتی، جرم مخلوطی ظاهری ۱/۴ گرم بر سانتی‌متر
مکعب، pH حدود ۶/۷ با ظرفیت مزره ۳۲٪ و زنی معادل
۳۵٪ آزمایشی در سال قبل به صورت آبیاری و پیش از کاشت اعملیات تهیه زمین به نحو مطلوب انجام گرفت، به طوری که
یکی هر صد سانتی‌متر مربع یک سیب زمین با تدابیر
به صورت کرک فراهم شد. به منظور تأمین از بلوک و نیتروژن مورد نیاز گیاه، مقدار ۲۰
کیلوگرم نیتروژن در هکتار (به صورت
فسفات آمونیوم پیوست) از کاشت انجام شد (۱).
در این آزمایش زننده‌ی غیر مختص پزشک شال ۳۹
زننده بخشی با کیفیت روغن خوارکی، ۱۱ زننده بخشی
با کیفیت روغن صنعتی مشکل از هشت لای حاصل از تلالی
و ارزیابی سام، فلاته‌زد و باربارا (جدول ۱)، و دو توده بومی
موردها از ارزیابی قرار گرفت. زننده‌های بخشی را لای‌های نسل
پنجم (۲۰۱۵) حاصل از تلالی‌های گوناگون شامل می‌شد.
(جدول ۱).
زننده‌ها در چارچوب طرح آماری ارزیابی مقدامات
آمخت ۱۵ دل‌ثبت ناصل و با یک تکرار کشت گردیدند. در
 ضمن، به منظور بررسی یکسان‌داشتی زمین آزمایشی، ب‌هغیر
زننده‌های فقیر، سه لای اصلی با کیفیت روغن خوارکی
به تعداد ۹۳۹ با نام‌های CDC۱۷۸۷، SP۱۷۰۱ و SP۱۷۰۳ به عنوان
شاد بودند در آزمایش استفاده گردید. در هر بلک یک زننده‌ی همراه با سه
زننده‌ی شاهد مورد کشت قرار گرفت. در این آزمایش هر کرت
زننده‌ی شاهد در خط و در بخش موارد علت کمبود بندر
یک خط (۶)، به طول چهار متر و با فاصله خلوت
۳۰ سانتی‌متر بود. بعد به طور مستقیم در عنصر حیدور
سانتی‌متر به صورت خشک کاری، خطی و شماالی-جنوبی
کشت شدند. میزان بذر مورد کشت برای هر زننده، با توجه به

1. Augment design

109
جدول 1. شمار لاین ارزیابی شده از هر تلاش در مرگ‌های روان صنعتی و خوراکی

<table>
<thead>
<tr>
<th>شمار لاین با کشفیت روان صنعتی</th>
<th>تلاشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمار لاین با کشفیت روان صنعتی</td>
<td>شمار لاین با کشفیت روان صنعتی</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>خوراکی</th>
<th>تلاشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>خوراکی</td>
<td>خوراکی</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

معنی دارد، ولی از لحاظ شمار روز تا 50% سیبزدن و عملکرد
مانیگنی است. با این حال، شمار روز تا 50% سیبزدن داده ممکن است نبود.

برای ارسال یک نظریاتی زمین، داده‌های مربوط به صفات و
ویژگی‌های زراعی زنوتیپ‌های شاهد در چارچوب طرح آماری
پلبه‌ها کامل تصدیقی با استفاده از ترم‌های تأیید و اس.اس.اس.
تجزیه واریانس گردید. برای مقایسه میانگین‌ها از آزمون
اندازه‌گیری (LSD) استفاده شد. در ضمن، در مورد صفات
که تجزیه واریانس تفاوت معنی‌دار بین داده‌ها نشان داد،
مقادیر صفات زنوتیپ‌ها برای افراد هر بلوک تصحیح گردید.

معمایه‌پرداز مشابهی نمونه‌گیری میان صفات و انجام
تجزیه واریانس کام چه گام ۱، با بهره‌گیری از ترم‌های آماری
معنی‌دار انجام گردید.

نتایج و بحث
با توجه به اینکه دانلرد بر صفات شمار گیاهچه در مهر
مریض، شمار روز تا 50% گل‌دهی و ارتقاء گیاهی در تجزیه
ویژگی‌های زنوتیپ‌های شاهد، مقدار مختلف این صفات برای
زنوتیپ‌های دیگر به معنی محسوسی بلوک‌ها تصحیح
گردید. به این معنی، بر اساس تجزیه واریانس، اثر زنوتیپ بر
صفات شمار گیاهچه در مهر می‌باشد. شمار روز تا 50% گل‌دهی
شمار روز تا رسیدنی و ارتقاء گیاه در سطح احتمال یک درصد

بررسی تاثیر زننیپه در میزان شمار و وزن گیاه‌های گوناگون

جدول ۷. میزان‌گیاههای گوناگون در زننیپه‌های شاهد

<table>
<thead>
<tr>
<th>وزن/ زننیپه</th>
<th>وزن/ زننیپه</th>
<th>وزن/ زننیپه</th>
<th>وزن/ زننیپه</th>
<th>وزن/ زننیپه</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
</tr>
<tr>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
<td>وزن/ زننیپه</td>
</tr>
</tbody>
</table>

ورود یافتن زننیپه‌هایی به گیاه‌های گوناگون در میزان شمار و وزن گیاههای گوناگون

و جدول توزیع زننیپه‌های گیاه‌های گوناگون در میزان شمار و وزن گیاههای گوناگون

در سطح دارای کاهش زننیپه‌های گیاه‌های گوناگون در میزان شمار و وزن گیاههای گوناگون

1. High vigour
جدول ۳. دامنه تغییرات، میانگین و ضریب تغییرات صفات زراعی

<table>
<thead>
<tr>
<th>صفت</th>
<th>دامنه گروه‌ زنوتیپ</th>
<th>حداکثر</th>
<th>حدااقل</th>
<th>میانگین</th>
<th>ضریب تغییرات (CV)</th>
<th>میانگین</th>
<th>دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شمار گیاه‌های روغن خوک‌کشی</td>
<td>۱۷</td>
<td>۴۷۱</td>
<td>۱</td>
<td>۱۷۸</td>
<td>۴۱</td>
<td>۱۷۸</td>
<td></td>
</tr>
<tr>
<td>روغن خوک‌کشی</td>
<td>۲۱</td>
<td>۳۴۷</td>
<td>۱۵</td>
<td>۳۶۷</td>
<td>۳۱</td>
<td>۲۶۷</td>
<td></td>
</tr>
<tr>
<td>در مرطوب</td>
<td>۲۱</td>
<td>۳۴۷</td>
<td>۱۵</td>
<td>۳۶۷</td>
<td>۳۱</td>
<td>۲۶۷</td>
<td></td>
</tr>
<tr>
<td>ضریب رشد</td>
<td>۸۴</td>
<td>۸۱</td>
<td>۶۹</td>
<td>۸۹</td>
<td>۷۱</td>
<td>۷۱</td>
<td></td>
</tr>
<tr>
<td>رشد در زمین</td>
<td>۸۹</td>
<td>۸۱</td>
<td>۶۹</td>
<td>۸۹</td>
<td>۷۱</td>
<td>۷۱</td>
<td></td>
</tr>
<tr>
<td>اثر تولید</td>
<td>۵۷</td>
<td>۶۵</td>
<td>۴۹</td>
<td>۷۵</td>
<td>۶۱</td>
<td>۶۱</td>
<td></td>
</tr>
<tr>
<td>عامل زراعی</td>
<td>۹۹</td>
<td>۸۹</td>
<td>۶۹</td>
<td>۱۰۰</td>
<td>۹۱</td>
<td>۹۱</td>
<td></td>
</tr>
<tr>
<td>(متوسط)</td>
<td>۹۴</td>
<td>۷۵</td>
<td>۵۷</td>
<td>۱۰۰</td>
<td>۸۵</td>
<td>۸۵</td>
<td></td>
</tr>
<tr>
<td>(کیلوگرمدرکت)</td>
<td>۲۴۹</td>
<td>۲۴۹</td>
<td>۲۴۹</td>
<td>۲۴۹</td>
<td>۲۴۹</td>
<td>۲۴۹</td>
<td></td>
</tr>
<tr>
<td>عملاک زراعی</td>
<td>۱۶۶۲</td>
<td>۱۶۶۲</td>
<td>۱۵۰۱</td>
<td>۱۶۶۲</td>
<td>۱۵۰۱</td>
<td>۱۵۰۱</td>
<td></td>
</tr>
</tbody>
</table>

رشد زنوتیپ‌های مختلف، گویای وجود تفاوت معنی‌دار میان زنوتیپ‌ها از لحاظ طول دوره رشد است. در زنوتیپ‌های با کیفیت روغن خوک‌کشی، ۲۱ زنوتیپ دوره رشد کمتر از ۱۵۰ روز داشتند. در زنوتیپ‌های با کیفیت روغن صنعتی، دوره رشد بین ۲۱۸ روز طولانی‌ترین دوره رشد را دارا بودند و بیشتر این زنوتیپ‌ها دارای طول دوره رشد کمتر از ۱۰۰ روز بودند. غیر از دو توده بومی که مورد نبزدی فشار نگرفته‌اند، زنوتیپ‌های دیگر از اصلاح شده، و یا لایه‌های محلی از ارتفاع کاسه‌ای می‌باشند. قابل توجه است که در این پژوهش سه اصل اصلاح شده از این زنوتیپ‌ها به نام‌های سام، ناستورز و فرآیندهای اصلاحی برگ این زنوتیپ‌های خارجی فرآیندهای آن جا در دوره رشد سپسی‌های نسبت به دوره بومی ایرانی داشتند. وجود ضریب تغییرات باید طور دو بار از اکنون استفاده از زنوتیپ‌های با طول دوره رشد مناسب را فراهم نماید. به ویژه در موارد با میانگین حاصلکننده که زودرس می‌باشد، هم روشن چند بار بودن و هم آینده زنوتیپ‌های با دوره رشد کوتاه و زودرس امکان‌پذیر می‌باشد.
دانشکده شمار کیسول در گیاه، شمار دانه در کیسول و وزن حزار دانه آثار مناسب و مستقیم بر عملکرد دانه در پوزک دارند ولی شمار کیسول در گیاه مهم‌ترین نقش را در تعیین عملکرد دانه در
گیاه داشته است. پنجم و سی‌ام (۸۸) درصد خود خود نیز در یکدیگر خود خود
تغییرات گیاهی مورد تفاوت‌های عملکرد دانه در آزمایش‌های آنها
به‌ویژه ناکافی از تفاوت تولید کیسول در گیاه بوده و شمار دانه در
کیسول و وزن دانه به ترکب چشمه‌گیر اثر کمتر بر عملکرد دانه
داشته‌اند.
در این آزمایش برای همبستگی زیاد و معنادار میان
شمار اشتعال‌های پایایی و شمار کیسول در گیاه (۱/۱۸۸) و میان
شمار اشتعال‌های پایایی و عملکرد دانه در گیاه
(۱/۱۸۸) یک گرایی این نکته است که افزایش شمار اشتعال
در یک گرای افزایش شمار کیسول و تجربه‌های عملکرد
دانه در یک گرای گردیده است، تراکم گیاهی در میزان اشتعال در گیاه
پرک تاثیر گذار، به طوری که در تراکم گیاهی کمر،
فضای کافی در انتخاب قرار خواهد گرفت و این منجر به
رشد بهتر گیاه و افزایش شمار اشتعال‌ها و نهایتاً شمار کیسول
در گیاه خواهد شد (۱/۱۸۸).
در این پژوهش عملکرد دانه در گیاه به طور معنادار
همبستگی منفی با شمار کیسول در واحد سطح (۱/۱۸۸) داشت. این همبستگی نشان می‌دهد که با افزایش تراکم گیاهی
عملکرد دانه در گیاه کاهش یافته است. ضریب همبستگی زیاد و
منفی میان تراکم گیاهی و شمار اشتعال‌های پایایی
(۱/۱۸۸) و نیز میان تراکم گیاهی و شمار کیسول در گیاه
(۱/۱۸۸) نشان می‌دهد که در تراکم گیاهی قدرت
اشتعال‌های و تولید کیسول کمتر داشته و این منجر به کاهش
عملکرد دانه در گیاه خواهد شد (۱/۱۸۸). همچنین، نتیجه‌های
معنادار میان تراکم گیاهی و وزن صد دانه و میان‌های در
کیسول گیاهی این نتایج که این همبستگی با تراکم گیاهی
زیاد این دو جزء عملکرد دانه قادر به جبران اثر کاهش شمار
کیسول در گیاه نگرفته و تراکم گیاهی به‌طور تأثیر بر
عملکرد دانه تأثیر داشته است.
جدول 5. تأثیر تغییرات ریسیسیون گیاهی بر گام عملکرد دانه در گیاه رژیم اجرای عملکرد

<table>
<thead>
<tr>
<th>شرایط تغییر</th>
<th>ضریب تشخیص</th>
<th>Mdl</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ = 0.87</td>
<td>$R^2 = 0.94$</td>
<td>1</td>
</tr>
<tr>
<td>γ = 0.94</td>
<td>$R^2 = 0.94$</td>
<td>2</td>
</tr>
<tr>
<td>γ = 0.96</td>
<td>$R^2 = 0.96$</td>
<td>3</td>
</tr>
</tbody>
</table>

حاله 100 دانه | γ | شمار دانه در کپسول = x_1 | شمار کپسول در گیاه = x_2 | عملکرد دانه در کپسول (گرم) = y

جدول 6. ضرایب همبستگی میان صفات زراعی و اجرای عملکرد دانه

<table>
<thead>
<tr>
<th>صف</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r_{12}</td>
<td>r_{13}</td>
<td>r_{14}</td>
<td>r_{15}</td>
<td>r_{16}</td>
<td>r_{17}</td>
<td>r_{18}</td>
<td>r_{19}</td>
</tr>
<tr>
<td>2</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
</tr>
<tr>
<td>3</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
</tr>
<tr>
<td>4</td>
<td>r_{41}</td>
<td>r_{42}</td>
<td>r_{43}</td>
<td>r_{44}</td>
<td>r_{45}</td>
<td>r_{46}</td>
<td>r_{47}</td>
<td>r_{48}</td>
</tr>
<tr>
<td>5</td>
<td>r_{51}</td>
<td>r_{52}</td>
<td>r_{53}</td>
<td>r_{54}</td>
<td>r_{55}</td>
<td>r_{56}</td>
<td>r_{57}</td>
<td>r_{58}</td>
</tr>
<tr>
<td>6</td>
<td>r_{61}</td>
<td>r_{62}</td>
<td>r_{63}</td>
<td>r_{64}</td>
<td>r_{65}</td>
<td>r_{66}</td>
<td>r_{67}</td>
<td>r_{68}</td>
</tr>
<tr>
<td>7</td>
<td>r_{71}</td>
<td>r_{72}</td>
<td>r_{73}</td>
<td>r_{74}</td>
<td>r_{75}</td>
<td>r_{76}</td>
<td>r_{77}</td>
<td>r_{78}</td>
</tr>
<tr>
<td>8</td>
<td>r_{81}</td>
<td>r_{82}</td>
<td>r_{83}</td>
<td>r_{84}</td>
<td>r_{85}</td>
<td>r_{86}</td>
<td>r_{87}</td>
<td>r_{88}</td>
</tr>
</tbody>
</table>

اساس فضای موجود اطراف آن می‌باشد (۹ و ۱۱). توان تولید انتشار در گیاه بزنگ موجب می‌شود که این گیاه در تراکم‌های متداول عملکرد نسبتاً بیشتری از یکدیگر داشته باشد (۲۳). نتیجه‌ای این بررسی با نتایج پژوهش‌های دیگر نوستند، ممکن است این که تنوعات ناشی از تراکم بتوان بپذیرد، نتایج این امر نشان‌دهنده است. نژاد هم‌اکنون (۲۳) توان تولید عملکرد دانه در این گیاه نشان‌دهنده، نیز هم‌اکنون دارد (۲۳). مفاوت‌های در گیاهی در نسبت‌های کپسول در گیاه‌های تراکم‌های بتوان ممنوعیت در بافتکاری و تراکم‌های اینهای (۲۳) مشاهده نگردیده، و میزان تنوع در میزان زننده‌ها برای کپسول دانه به مراتب از میزان تنوع شمار گیاهی در واحد سطح کشت بود. بنابراین، می‌توان تنبیه گرفت که تفاوت‌های تراکم‌های بیشتری در این میزان تفاوت‌های تراکم‌های نشان‌دهنده ناشی از دلیل تولید انتشار در گیاه بزنگ.
کپسول در گیاه (٢١) در افزایش رشد عفونی نهایی تأثیر کامل‌تر است. در بررسی‌های گزارش‌های بیشتری، در گیاه‌هایی که هسته‌ای‌اند میزان عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی می‌باشد. برای مثال، در گیاه‌هایی که به بیماری‌های مبتنی بر عامل در زمان و در افزایش تعداد طول کم‌تر برای افزایش رشد عفونی و در افزایش تعداد طول کم‌ت
بررسی تنویع زنتیکی عملکرد دانه و دیگر ویژگی‌های زراعی در
گریزش به منظور افزایش عملکرد دانه و تولید ارقام با عملکرد
پژوهشی دانشگاه صنعتی اصفهان تأمین گردیده، که بعنوان سیستم مصرف
سمی‌نامه تشویقی و قدرت‌پذیری می‌گردد. همچنین از دکتر کریستن
روند در دانشگاه ساسکاوا کانادا تایید شده با نشان دادن بنیزی از
مواد زنتیکی مورد استفاده در این پژوهش پیش‌بینی و تحقیقات
سیستم‌گذاری
کلیه مزیت‌ها و امکانات اجرایی این طرح توسط حوزه معاونت
منابع مورد استفاده
1. خواجه پور، م. و. ۱۳۷۶. تولید نیازهای صنعتی انتشارات جهاد دانشگاهی اصفهان.
۱.2. کرمی، م. ۱۳۶۶. آب و هوای منطقه مرکزی ایران. انتشارات دانشگاه صنعتی اصفهان.
Association.
Cunnane and L. U. Thompson (Eds.), Flax Seed in Human Nutrition. AOCS Press, Champaign,
Illinois.
12. Green, A. G. 1986. A mutant genotype of flax (Linus usitatissimum L.) containing very low levels of
FAO-proc. 3rd Inter. Flax Breeding Research Group, France.

117