اثر مقادیر مختلف سولفات و کربنات کلسیم تحت جریان اشباع ماندگار بر جذب

و نگهدارش باکتری سودوموناس فلورسنس در سطوح شین

کامیاری است. محمد رضا مصداقی، علی اکبر محبوبی و علی اکبر صفری سنجانی

(تاریخ دریافت: 85/11/12، پذیرش: 86/12/20)

چکیده

انتقال و پالایش باکتری‌های بیماری‌زا در محیط‌های متغیر از اهمیت ویژه‌ای برخوردار است. در سال‌های اخیر بررسی عوامل مؤثر بر پالایش و انتقال باکتری‌های مورد نظر قرار گرفته است. با توجه به مقادیر مختلف سولفات کلسیم و کربنات کلسیم به جذب و پالایش باکتری‌های بیماری‌زا سودوموناس فلورسنس در سطوح شین تحت شرایط رطوبت اشباع مورد بررسی قرار گرفته است. چهار سطح صفر، ۵، 10 و 20 درصد کلسیم و سه مخلوط صفر، 5 و 10 درصد سولفات کلسیم در مخلوط با شن (25/50-15/50 میلی‌متر) به‌عنوان تیمارهای اصلی (بی‌سیره فیلوپیوری) و در قالب طرح کاملاً تصادفی در سه تکرار برای شن‌های مخلوط‌شده مانکور استفاده گردید. مخلوط‌های مختلف به سبب تراکم‌های پیرکسی به طول ۲۰ و قطر ۷ سانتی‌متر برشته و شرایط جریان اشباع ماندگار با شدت جریان یکسان در آنها اجرا شد. سومین‌های ویژه با سیرت توزیع پیله‌های روزی سودوموناس شین که به‌صورت توزیع پیله‌های روزی سودوموناس فلورسنس در سایت مکعب (C3) به‌صورت دو بار پیله‌های روزی سودوموناس فلورسنس در سایت مکعب (C3) در زمان یک واحد آماده‌گیری شد. نتایج نشان داد که اثر مقادیر کربنات کلسیم بر گنه‌داده و پالایش باکتری در لایه‌های 0-10 و 10-15 سانتی‌متری از سطح شین به ترتیب ۰-۲۰ و ۱-۲۰ درصد آماری ۵ درصد معنادار است. همچنین اثر مقادیر سولفات کلسیم در لایه‌های 10-15 و 15-۲۰ سانتی‌متری در سطح آماری ۵ درصد معنادار شد. اثر افزایش سولفات کلسیم کربنات کلسیم به پالایش باکتری در لایه‌های 0-10 و 10-15 سانتی‌متری در سطح آماری ۵ درصد معنادار بود. نتایج مغز آب‌پاشان و ضریب پالایش به‌عرض نشان دهنده کاهش میزان پالایش باکتری افزایش عمق در تایم‌بودن بود. بنابراین نتایج می‌تواند بر اثر تیمارهای به‌کار رفته در لایه‌های سطحی نشان دهنده پالایش بیشتری بیشتری در این لایه‌ها می‌باشد. بنابراین طرفین پالایش باکتری کلاسیفیکای‌های کلسیم و سولفات‌های می‌تواند از انتقال باکتری در محیط‌های متغیر اشباع و به‌دنبال آن آلودگی آب‌های زیرزمینی کاهش یابد.

واژه‌های کلیدی: سولفات کلسیم، کربنات کلسیم، سودوموناس فلورسنس، جریان اشباع، ضریب پالایش

مقدمه

از دیرباز جایگاهی نمک‌ها و عناصر مورد نیاز گیاه در خاک به‌طور گسترده‌ای مورد توجه بوده است. علاوه بر حرکت ۱. به ترتیب دانشجوی سابق کارشناسی ارشد، استادیار، استادیار به سمت محقق، پست اکتیوی‌کی: mosaddeghi@Basu.ac.ir

97
در پژوهش‌های انجام شده در مورد حرشف باکتری‌ها در حالی است که به تأثیر واژگی‌های از خان ماند میزان رطوبت خاک توجه زیادی (2) در مورد حرشف باکتری‌ها با درستی‌های شن Escherichia coli) تحت شرایط رطوبت مختلف انجام داده شد، به یک تریم رطوبت انشعاب و نرخ درون به انشعاب میزان باکتری‌های در طول سوختن‌های شن نسبت به شرایط رطوبت غیر انشعاب کاهش می‌یابد. مقدار بیشتر باکتری استرخی شده در بخش‌های باکتری در سوختن‌های بیانگر غلبه سودومونس فلوسنس سویری را مورد بررسی قرار داده‌اند. تابع نشاء داد که در شرایط که میزان حرشف خاک کمتر از انشعاب می‌باشد باعث افزایش شده باکتری‌ها می‌شود. میزان به گسترش کلونی‌های باکتری کلیسیلا اپیزودی در این دسته شانه را میزان رطوبت Klebsiella aerogenes آن‌ها است. نتایج.

هر چه از انتقال گزشته‌های بیماری در خان از راه کاربرد دراز مدت کوده‌های دامی و فاضلاب‌ها روند سطح زمین، باعث انتشار بیماری علوم بر اثر استفاده از آب‌هایی است که توسط این کوده‌ها و فاضلاب‌ها آلوده شده‌اند (17).

مصرف کوده‌های باکتری‌های ژن‌ژولوگی و الکتروشیمایی خاکها و جمعیت میکرو‌آند آنها را به‌طور عمده‌ای تحت تأثیر قرار داده. چنین اثراتی می‌تواند برهمکنش‌های بین سولون باکتری‌ها و خان ماند باکتری‌ها (Physical filtering) اثرات متفاوت فیزیکی و شیمیایی بین سطح باردار و نیز رقابت برای جذب در مكان‌های جذبی را تحت تأثیر قرار دهد (15).

حرکت کلونی‌ها (شامل ذرات با قطر ۱/۰ میکرون)، ویروس‌ها و باکتری‌ها به سمت آب‌های زیست‌محیطی مسطح است پیش‌تر توانایی بکر سالانه رسیده می‌شود. است (18). زه‌های کوده‌های ژن‌ژولوگی از آن است که باکتری‌ها و ویروس‌ها می‌تواند تا بیش از سه‌متر به سمت دیگر آب‌های زیست‌محیطی انتقال یابد (11). چنین توانایی برای انتقال ویروس‌ها و باکتری‌های بیماری‌زا از راه سفیده‌های آب زیست‌محیطی کم عمق برای سالانه در کنار هر کاوش را به همراه دارد. به ویژه این سالانه برای منابع آب قابل شرب از همیشگی بهره‌برداری است (7).

پژوهش‌های اخیر برای رابطه باکتری‌های حلال‌ها ۹۱ کانی شناسی آبخیزدان (13)، اثر غیر بكروتخی خاک‌ها شمار و باکتری‌ها و انر سبای‌های سطحی (2) بر انتقال ویروس‌ها و باکتری‌ها به سمت ویروس‌ها با کاکتوسوریه که تحت تأثیر مختلف بر حرکت باکتری‌ها در خان مورد بررسی قرار گرفت است. تأثیر متفاوت‌های میداره حدای‌ها از حرشف باکتری‌ها با استفاده در مورد حرشف باکتری‌ها در خان می‌باشد. تأثیر متفاوت‌های میداره حدای‌ها از حرشف باکتری‌ها در خان می‌باشد. تأثیر متفاوت‌های میداره حدای‌ها از حرشف باکتری‌ها در خان می‌باشد.
مواد و روش‌ها
مواد مورد استفاده

این پژوهش در شرایط آزمایشگاهی روی استون‌های شنی‌شنه شده (با آب آتشامیده و آب مفطر) در شرایط سطح انجام گرفت. شن مورد استفاده از نوع شن ساختمان بود که مقادر کریت‌دانات (تعیین شده به روش تیتراسان برگشتی) موجود در آن 7/5 درصد و مقدار ماده آلی آن تاجیز بود. در ترکیب شن مورد استفاده شکل‌های مختلف اکسیدهای آهن و آلومینوم وجود داشت (جدول ۱).

تیمارهای آزمایشی شامل داروهای مختلف کلیسیم (صرف ۵، ۱۰ و ترکیب دو سالنی) بود و به صورت وزنی با شن مخلوط مقدی در اندام زراعی شن، سولفات کلیسیم و کرینات کلیسیم در دامنه ۰/۰۵-۰/۱۵ mm کلسیم در دامنه ۰/۰۵-۰/۱۵ mm انتخاب شد. برخی از ویژگی‌های فیزیکی و شیمیایی تیمارهای مختلف در جدول ۲ آورده شده است.

اندازه‌گیری ویژگی‌های تیمارهای آزمایشی

مخلوط‌های از استفاده از دستگاه pH

آبها و رسائی‌های سنگ در نسبت‌های ۰/۵ مخلوط به آب اداسازگیری شده به خاطر خاصیت ثابت‌گذار کرینات کلیسیم pH ترکیبات pH مخلوط با هم احتمال جدا شدن داشته. دامنه تغییرات در pH

مورد سطح خشک شده در یک‌سناریو مطابعه (سودوموناس فلورسنس) قابل تحمیل می‌باشد. رسائی‌های کلیسیم‌های دارای سولفات کلیسیم به دلیل حلالیت بالا در ترکیب، نسبت به تیمارهای دارای کلیسیم بیشتر بود. نمک‌های محلول با تأثیر بر قدرت بینی محلول، می‌توانند در فراورد جذب تاکید کنند سولفات کلیسیم و کرینات کلیسیم از جمله نمک‌های بالا

۱/۰۵ و ۰/۸×۱/۰ می‌باشد. در تیمارهای آزمایشی چگالی حیاتی به روش پین‌کیم اندازه‌گیری کریت‌دان و چگالی ظاهری با در نظر گرفتن

99
جدول 1. مقدار و شکل اکسیدهای آهن و آلومینیوم در سن مورد استفاده

<table>
<thead>
<tr>
<th>شکل ترکیب</th>
<th>بر حسب (g kg⁻¹)</th>
<th>آلومینیوم نوری</th>
<th>آهن بلوری</th>
<th>آلومینیوم نیکل</th>
<th>آهن ای دیگر</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1000</td>
<td>21</td>
<td>834</td>
<td>321</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>1/1000</td>
<td>1/1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. برخی از ویژگی‌های فیزیکی و شیمیایی مخلوط‌های شن، کریت و سولفات کلسیم

<table>
<thead>
<tr>
<th>حجم نفوذ</th>
<th>درصد درصد غلظت کلسیم در مخلوط</th>
<th>حجم نفوذ</th>
<th>درصد غلظت کلسیم</th>
<th>pH</th>
<th>CaSO₄</th>
<th>CaCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصرفی (cm³)</td>
<td>(Mg m⁻³)</td>
<td>مصرفی (cm³)</td>
<td>(Mg m⁻³)</td>
<td>(dS m⁻¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1714.35</td>
<td>4/37</td>
<td>1709.38</td>
<td>4/38</td>
<td>5/21</td>
<td>7/2</td>
<td>0</td>
</tr>
<tr>
<td>1783.25</td>
<td>4/27</td>
<td>1783.25</td>
<td>4/27</td>
<td>5/19</td>
<td>7/1</td>
<td>0</td>
</tr>
<tr>
<td>1781.27</td>
<td>4/8</td>
<td>1781.27</td>
<td>4/8</td>
<td>5/15</td>
<td>7/3</td>
<td>0</td>
</tr>
<tr>
<td>1770.45</td>
<td>4/5</td>
<td>1770.45</td>
<td>4/5</td>
<td>5/12</td>
<td>7/3</td>
<td>0</td>
</tr>
<tr>
<td>1950.15</td>
<td>4/6</td>
<td>1950.15</td>
<td>4/6</td>
<td>5/10</td>
<td>7/1</td>
<td>0</td>
</tr>
<tr>
<td>1955.54</td>
<td>4/1</td>
<td>1955.54</td>
<td>4/1</td>
<td>5/8</td>
<td>7/3</td>
<td>0</td>
</tr>
<tr>
<td>2100.63</td>
<td>4/7</td>
<td>2100.63</td>
<td>4/7</td>
<td>5/25</td>
<td>7/2</td>
<td>0</td>
</tr>
<tr>
<td>2150/250</td>
<td>4/3</td>
<td>2150/250</td>
<td>4/3</td>
<td>5/15</td>
<td>7/1</td>
<td>0</td>
</tr>
</tbody>
</table>

ورود آنها به آب‌های زیرزمینی از جهت آنلودی می‌تواند به وجود آماده‌سازی است. هم‌چنین سوخت‌های دیگر این باکتری در کشاورزی و رفع آلودگی‌های پایه در زیرین خاک به‌وجود‌آوردن (1). باکتری سودوموناس فلورنس در محیط کشت اکسنتی

سابل خالص CaSO₄

 jal. IRDT on Saturday September 12th 2020
مختصر اصلی (Decanter) یا بیشتر یا پایین تابستان روی تمامی آزمایشگاهی به‌کار می‌رود. (Boundary conditions)
در این سری، سوسپنسران باکتری از مختصر کی به خوبی محلول شده و دارای غلظت ثابت است به‌صورت پیوسته به سطح سونون خاک رسید. شرایط مرزی اعمال شده به سیستم نیز برابر غلظت باکتری از نوع شرایط مرزی محدود بود. این شرایط عضوی از سیستم‌های که (Finite boundary) طول مسیر انتقال محدود و مشخص دادند (Mandle سوت‌های آزمایشگاهی) می‌باشد.
سیستم برای غلظت باکتری به‌عنوان میود (Initial conditions)
شدن شن برای صفر بود. آبی‌سیاه سوت‌ها پس از تریک سوسپنسر باکتری سوت‌ها تا خروج PV = 5 حجم آب منفی ادامه داشته. در جهان آبی‌سیاه، غلظت باکتری (C) (با PV = 0 در آب خروجی سوت‌ها ادامه دارد. شد.)
ضریب پالایش (Filtration coefficient) با (β) جایگزین به‌ویژه پیامدهای کمی پرتاب سیستم باکتری در مسیر انتقال به‌صورت زیر محاسبه شد (4 و 15):

\[\lambda_i = \ln\left(\frac{C_i}{C_w} \right) \times \frac{1}{X} \]

(CFU) (cm) = C0 غلظت باکتری در سوسپنسران تریک شده، (cm) = Cw غلظت متوسط باکتری در زاویه خروجی در طول آزمایش، (cm) = X طول سوت‌های آزمایشی که با PV منفی ایجاد شد. (سیستم‌های آزمایشی پیوست به به‌صورت یافته‌گرد) گذاشته شده و زیر هر در شرایط ستون به (4 لايه 5-0.5، 15-0) یا 15-20 سانتی‌متری تفسیر شده، برای هر کار با استفاده از یک به‌ویژه به‌عنوان نیروی اخر نموده تا محلول داخل سیستم خارج گردد. با استفاده از خطا کاهش شده را به‌هی نموده تفسیر کرده و از هر قسمت به از محلول کردن کل آن که، نمونه‌های گرمی برداشتند و در لوله آزمایش دارای 960 هکتاری نفسه سدانی ستونون ریخته شد.

نتایج و بحث
تجزیه‌و-یاری‌س اثر تیمار‌های کریات کلسمی و سولفات کلسمی
و اثر مقایسه آنها بر پالایش باکتری در لايه‌های مختلف در جدول 3 نشان داده شده است. اثر تیمار‌های آزمایشی در اکثر لايه‌ها معنی‌دار نشد. اثر سولفات کلسمی به بروز پالایش باکتری به لايه‌های 15-0 و 15-20 سانتی‌متری محدود بود. این نتایج به لو می‌تواند اثر تیمار‌های کلسمی و اثر مقایسه آنها در لايه‌های مختلف معنی دار نشد.

پالایش باکتری در لايه‌های 0-5 و 5-10 سانتی‌متری
اثر تیمار‌های کلسمی سولفات کلسمی و اثر مقایسه آنها بر غلظت باکتری جذب شده در لايه‌های 0-5 و 5-10 سانتی‌متری ستونون‌های

101
آزمایشی در سطح 5 درصد معنی‌دار بود (جدول ۳). عدم اختلاف معنی‌دار تیمارهای سولفات کلسیم با تیمار شاهد نشان دهنده قدرت بالای‌گی نسبت آنها در این لایه است. حین شدن سولفات کلسیم در افزایش قدرت پویی مخلوط و در نتیجه پالایش باکتری موزوز می‌باشد (۸). در حین حال شستشوی آن به سمت لایه‌های پایینی بیشتر مقدار پالایش‌های باکتری در لایه‌های بالایی و انتقال آن به لایه‌های زیرین می‌شود.

اثر تیمار کربنات کلسیم و اثر سولفات کلسیم × کربنات کلسیم بر غلظت باکتری پالایش شده در لایه ۱–۵ سانتی‌متری

در لایه ۱–۵ سانتی‌متری، اثر تیمار کربنات کلسیم و اثر متقابل تیمارها (سولفات کلسیم × کربنات کلسیم) بر مقدار غلظت باکتری پالایش شده در سطح ۱ درصد معنی‌دار بود (جدول ۳). این نتایج تیمار سولفات کلسیم معنی‌دار نشان داد که تیمار سولفات کلسیم سبب نگه‌داشتن سبب کاهش در افزایش مقدار غلظت باکتری را در این لایه پالایش کرد (جدول ۴). بنابراین افزایش مقدار سولفات کلسیم سبب پالایش بیشتر باکتری شده و کاهش غلظت باکتری در زاویه خروجی را توجیه می‌کند.

توزیع کربنات کلسیم در تیمار ۱/۵ کربنات کلسیم در مقایسه با تیمارها میزان پالایش باکتری بیشتر را نشان داد (جدول ۴). در این تیمار افزایش قدرت پویی مخلوط و تعداد بیشتر سولفات کلسیم در جذب بیشتر باکتری مهم بود. این نتایج به تعمیرات دیگر تیمارهای میزان پالایش باکتری کربنات کلسیم، دلیل مجزا نسبت به تیمارهای دیگر معنی‌دار بود. علاوه بر سوی سولفات کلسیم و اعوجاج منافذ، کاهش سرعت آب منفی بیشتر شست‌شده جریان حملات و رطوبت حجمی تیمار سولفات کلسیم و کربنات کلسیم با جذب بیشتر باکتری در این لایه مهم بود. میزان پالایش در تیمار کربنات کلسیم با جذب بیشتر باکتری در این لایه مهم بود. میزان پالایش در تیمار سولفات کلسیم با جذب بیشتر باکتری در این لایه مهم بود.
جدول 3 تجزیه واریانس اثر تیمارهای آزمایشی بر تران پلاشی از سوختن سه نوع مختلف سنتون شن بر غلظت نسبی باکتری بافی مانده (C_{\text{س}}/C_{\text{گ}})

<table>
<thead>
<tr>
<th>نسبت</th>
<th>درجه‌رای</th>
<th>منبع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20 cm</td>
<td>0/89</td>
<td>5/45</td>
</tr>
<tr>
<td>15-15 cm</td>
<td>3/02</td>
<td>3/12</td>
</tr>
<tr>
<td>10-15 cm</td>
<td>2/60</td>
<td>16/84</td>
</tr>
<tr>
<td>5-10 cm</td>
<td>0/80</td>
<td>8/01</td>
</tr>
<tr>
<td>0-5 cm</td>
<td>8/54</td>
<td>0/80</td>
</tr>
</tbody>
</table>

* و ** به ترتیب نشان دهنده تأثیر معنی‌دار در سطح آماری 1 و 5 درصد می‌باشد.

جدول 4 مقایسه میانگین اثر تیمارهای سولفات و کربنات کلسیم و تران پلاشی با غلظت نسبی باکتری نگه‌داری شده (C_{\text{س}}/C_{\text{گ}}) در درایو 1-5 سانتی‌متری ستوه‌های شن

<table>
<thead>
<tr>
<th>منبع تغییر</th>
<th>سولفات کلسیم</th>
<th>کربنات کلسیم</th>
<th>کربنات کلسیم x سولفات کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>0/14</td>
<td>0/5</td>
<td>0/46</td>
</tr>
<tr>
<td>5%</td>
<td>0/73</td>
<td>0/11</td>
<td>0/39</td>
</tr>
<tr>
<td>0%</td>
<td>0/011</td>
<td>0/5</td>
<td>0/99</td>
</tr>
<tr>
<td>20%</td>
<td>0/71</td>
<td>0/71</td>
<td>0/1</td>
</tr>
<tr>
<td>30%</td>
<td>0/024</td>
<td>0/18</td>
<td>0/16</td>
</tr>
</tbody>
</table>

* و ** به ترتیب نشان دهنده تأثیر معنی‌دار در سطح آماری 1 و 5 درصد می‌باشد.

در پژوهش انجام گزیده غذه توسط لاس و جریا (16)، میزان انتقال باکتری در جهت عمومی محور به عمق حزیم پایه ویروس در اثر کاربرد فاصله‌بندی روي ستوه‌های دست‌خورده یک خاک بانی لومی در شرایط اشباع 5 سانتی‌متری بود.

بنابراین، باکتری در حال تفوک‌سازی، شرایط رطوبتی و گونه ریزی‌پاتنر نیز بر میزان انتقال عمودی آنها مؤثرند. در نهایت 15 سانتی‌متری میانگین غلظت باکتری پلاشی پایین می‌تواند به دلیل انتقال کمتر باکتری به این نهایت باشد.
جدول ۵: مقایسه میانگین‌های اثر تیمارهای سولفات و کریمات کلسیم بر ناوان پلاشی با غلظت نسبی باکتری نگهداری شده (C₄/C₀) در لاپ اکس‌های باردار، نسبت منبع تغییر میانگین

<table>
<thead>
<tr>
<th>سولفات گلیسیم</th>
<th>کریمات کلسیم</th>
<th>سولفات کلسیم</th>
<th>کریمات کلسیم</th>
<th>کمتر</th>
<th>بیشتر</th>
<th>میانگین</th>
<th>لد (۴/۰۵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۱۴</td>
<td>۰/۰۹۹</td>
<td>۰/۰۹۷</td>
<td>۰/۰۹۸</td>
<td>۰/۱۵</td>
<td>۰/۱۴</td>
<td>۰/۰۹۹</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۰۹۷</td>
<td>۰/۰۹۷</td>
<td>۰/۰۹۸</td>
<td>۰/۱۵</td>
<td>۰/۱۴</td>
<td>۰/۰۹۷</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۰۹۸</td>
<td>۰/۰۹۸</td>
<td>۰/۰۹۸</td>
<td>۰/۱۵</td>
<td>۰/۱۴</td>
<td>۰/۰۹۸</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۰۹۶</td>
<td>۰/۰۹۷</td>
<td>۰/۰۹۸</td>
<td>۰/۱۵</td>
<td>۰/۱۴</td>
<td>۰/۰۹۶</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۰۹۸</td>
<td>۰/۰۹۸</td>
<td>۰/۰۹۸</td>
<td>۰/۱۵</td>
<td>۰/۱۴</td>
<td>۰/۰۹۸</td>
<td>۰/۱۴</td>
</tr>
</tbody>
</table>

شده حاصل از تیمارهای شاهد (شن خالص) > ۵% کریمات کلسیم > ۲۰% کریمات کلسیم (میانگین همه تیمارهای سولفات کلسیم بود) (جدول ۴). پالایش بیشتر
باکتری در لاپ اکس‌های بالایی. کاهش بیشتر استخراج شده در تیمارهای کریمات کلسیم نسبت به شاهد را توجیه می‌نماید.

همچنین عدم استخراج کل باکتری‌های بالایی پالایش شده برای
تیمارهای کریمات کلسیم می‌تواند اختلاف بالایی بین مقادیر آنها را بیان کند. در این لاپ اثر مقادیر سولفات کلسیم بر غلظت
باکتری بالایی شده متعادل بود (جدول ۳). تیمار شاهد
کمترین و تیمار ۱۰% سولفات پالایش بیشترین میزان بالایی
باکتری را سبد شده (جدول ۴). مقادیر بالای سولفات کلسیم
این بیشتر بر بالایی باکتری نداشت. بیشتر بودن بالایی
باکتری در تیمار سولفات کلسیم نسبت به تیمار شاهد در
لامه‌ها می‌تواند به دلیل حلالت بیشتر آن و در نتیجه اعوجاج
بیشتر منفعل که سرعت آپ منفی و اثر قدرت یون در
جدب بیشتر باکتری در تیمار لامه‌ها باشد، اثر مقابل تیمارهای
سولفات کلسیم (کریمات کلسیم) بر بالایی باکتری در این لاپ
در سطح آماری ۱ درصد معنی‌دار شد. میزان بالایی باکتری در
جدول 6. مقایسه میانگین اثر تیمارهای سولفات و کربنات کلسیم بر پتان بالایی با غلتظ نسبی باکتری نگه‌داری شده (\(\frac{C_r}{C_0}\)) (در 15-20 ساعت می‌ستونهای شیء) میانگین

<table>
<thead>
<tr>
<th>سولفات کلسیم</th>
<th>میانگین</th>
<th>کربنات کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/17</td>
<td>0/5</td>
<td>0/14</td>
</tr>
<tr>
<td>0/13</td>
<td>0/2</td>
<td>0/17</td>
</tr>
<tr>
<td>0/08</td>
<td>0/32</td>
<td>0/09</td>
</tr>
<tr>
<td>0/04</td>
<td>0/94</td>
<td>0/04</td>
</tr>
<tr>
<td>0/12</td>
<td>0/6</td>
<td>0/02</td>
</tr>
</tbody>
</table>

میانگین

<table>
<thead>
<tr>
<th>سولفات کلسیم</th>
<th>کربنات کلسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/24</td>
<td>0/138</td>
</tr>
</tbody>
</table>

LSD (\(\frac{0/05}{\text{C}}\))

شکل 1. نمودار جذب باکتری در ستونهای شیء (الف) با مقایسه میانگین مختلف سولفات کلسیم (بدون کربنات کلسیم).
ب) با مقایسه مختلف کربنات کلسیم (بدون سولفات کلسیم).
ج) با مائدهای مختلف سولفات کلسیم و با مقایسه مختلف کربنات کلسیم.
د) با مائدهای مختلف سولفات کلسیم و با مقایسه مختلف کربنات کلسیم.
نتیجه

برای مقادیر ۲۰٪ و ۲۵٪ کربنات کلسیم در مقایسه با مقادیر ۵٪ کربنات کلسیم مشاهده شد که می‌تواند به دلیل عدم استخراج کل باکتری در این لایه و یا وجود شرایط نامناسب برای زندگی مانوندی باکتری‌ها و در نتیجه مکر و میوه آنها باشد.

در تیمارهای سولفات کلسیم سولفات کلسیم تا هیدروژون مشترک اتفاق می‌افتد و با توجه به تشکیل پسیف و پسیفی زرگ پونی، CaSO₄، انحلال‌پذیری کربنات کلسیم در حضور سولفات کاهش می‌یابد.

تیمار ۲۰٪ سولفات کلسیم نسبت به تیمار ۱۵٪ سولفات کلسیم در ترکیب با مخلوط مختلف کربنات کلسیم، بالای‌پایی باکتری کمتری را نشان داد (شکل‌های ۱-ج و ۱-د).

نتیجه گیری

وجود ۷/۱ درصد کربنات کلسیم مقادیری آهن و آلومینیوم به ریخت‌های بالری و به ویژه برای بالاش لیفیکی می‌تواند با عوامل مهم بالاش باکتری در شن مورد استفاده شود. نتایج به دست آمده نشان داد که کربنات کلسیم به‌طور معنی‌دار و قابل توجهی توان بالاش خاک را افزایش می‌دهد. علاوه بر اثر بالاش سطحی و قدرت بیولوژی تیمارهای سولفات کلسیم و کربنات کلسیم، افزایش اعوجاج منافذ در اثر افزودن آنها و در نتیجه کاهش سرعت آب منفی‌دی می‌تواند در

ضریب بالای‌پایی باکتری (۲/۱)

همان‌طور که در شکل ۲ نشان داده شده، ضریب بالای‌پایی باکتری (۲/۱) برای تیمارهای بدون سولفات کلسیم، با افزایش میزان کربنات کلسیم و نهایتاً روند افزایشی را نشان می‌دهد. تیمارهای ۵ و ۱۰ درصد سولفات کلسیم در ۱/۶ تری‌بی‌پکسی‌پونی و بودن با افزایش مقادیر کربنات کلسیم در ترکیب با مقادیر ۵ و ۱۰ درصد سولفات کلسیم، ۲/۱ با روند یک‌موانعی افزایش می‌یابد. اگر چه انحلال سولفات کلسیم در افزایش ۳۰ درصدی نابود

۱۰۵
كلسيم و به ویژه کریبنت کلستم در خاکهای کشور جا دارد.
پژوهش‌های بیشتری در این زمینه به ویژه در شرایط طبیعی و
در مجله صورت گیرد.

مباحث مورد استفاده

