چکیده
گیاه کلزا در پاسخ به نش شوری، مقاومت‌های مختلف یافته یا مراحل مختلف رشد از خود برای می‌دهد. اغلب گیاهان از جمله کلزا، در مراحل ترشحی رشدی به شوری حساس تر بوده و با افزایش سی، مقاومت‌های آنها به شوری افزایش می‌یابد. دوره زادنی ای جهانی تین به خس زندگی گیاه می‌باشد که در این دوره تحت شرایط ناگهانی است. عملکرد چندانی نخواهد داشت. هدف از این پژوهش کمی نمونه واقع کردن کلزا (رقم 500) به شوری توسط رشد زایی که کمک به کنترل مدل بوده برای بررسی اثر شوری در آب‌پذیری گیاه کلزا در مرحله‌گیاهی می‌باشد. این آزمایشات در سال 1389 در دانشکده کشاورزی دانشگاه تربیت مدرس، شهرآباد پیام بر تعریق گیاه در مرحله‌گیاهی و عملکرد دانه آزمایش گردید. به منظور کنترل اثر شوری در هر یک از مراحل رشد، مضافات تعریق (Option500) و عملکرد توسط دانه (T<sub>y</sub> و T<sub>0</sub>) در شرایط مختلف گیاه داشته باشد. با استفاده از مدل‌های مس و هافمن، نگویخون و هافمن، دیرکسم و همکاران و همکاران برآورد و پارامترهای مورد نظر به‌دست آمده. مقایسه مدل‌ها با استفاده از آمارهای مربوط به آزمایش. بررسی مدل‌های مختلف بر مفاهیم اندوزگی و شکن، طی مرحله گلدهنناده، داده‌های سلجم داده که مدل ونگویخون و هافمن از دقت ویژه نسبت به سایر مدل‌ها پروردگار است. حال آنکه برای مرحله بلور، مدل همایی و همکاران توانست برآورد بهتری نسبت به سایر مدل‌ها ارائه دهد.

واژه‌های کلیدی: شوری آستانه، تعریق نسبی، عملکرد نسبی، مدل ونگویخون و هافمین، مدل همایی و همکاران

مقدمه
رشد و توانایی جمعیت ژن‌های و جای پیشتر به تولیدات کشاورزی از نیاز که اکثر کشورها برای آن روش‌هایی از دریافت تولیدات کشاورزی برای طرح بوده و بررسی‌های استفاده به‌هیچ‌یک از منابع آب موجود و آب‌های شور و یا کمیت تامینی مورد

سرلوبه‌های مختلف که فعالیت‌های کسانی یا نسبت به شوری از خود بندهای دهانه‌ای

پژوهش‌های پیرامون اثر شوری بر گیاهان مختلف

انجام شده است. کمی نشان داده‌اند (1). گلی و همکاران (9) از تحقیقات خود بیان کرده که گل‌های زیاد تاثیر زیان آوری بر شکری گیاهان دارد همچنین ماس و پس (21) از پژوهشی روز لوبی چندین بلیک دریافت کرده و گیاهی طی مراحل مختلف رشد. واکنش‌های متفاوت را نسبت به شوری از خود بندهای دهانه‌ای

1. به ترتیب دانشجو دکتری و دانشیاران خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
V_Jalali@Modares.ac.ir: پست الکترونیکی: *
در تحقیق که توسط ویلسون و همکاران (۲۸) انجام گرفت، واکنش دو گونه گیاهی خاص از استقامت و کل دسته نسبت به سطوح مختلف بیماری فقط زمان‌های گوناگون مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد که این دو گونه زراعی در اولین فصل رشد به نسبت حساس بوده ولی به تبعیق افرادی اعمال بیماری مقاومت آنها به نشان افزایش می‌یابد. فرانسوا (۸) در آزمایش‌هایی بر اساس رشد نشان داد که همکارنگی بین دو گونه تأثیرگذار است. این نتایج به چیزی باغی می‌گردد که در مراحل گیاهی و ابتداهی دوره رشد به نسبت حساسیت به در اثر تاثیر خونه مانند مرحله پر گرسنگی دانه به بعد یکی از سه دسته کشاورزی نشان داده شده است. همکاران (۹) تأثیر شده مدل‌های (Models) وجود دارد که می‌توان آنها را به دو دسته مدل‌های خرد (Microscopic models) (۱۰) و مدل‌های کلان (Macroscopic models) تقسیم کرد. مدل‌های خرد (Actual transpiration, 

\[ \frac{\partial S}{\partial T} = \frac{T_p}{Z_i} \] 

در شرایط که یک جنبه، تولیدات آبی در خاک وجود داشته باشد و در انتهای گرفتن شده و مدل‌های کلان (۱۱) کار در حاله دانه‌کشیده که یک مدل گیاهی می‌باشد. تقریباً (Potential transpiration, 

\[ S = \alpha S_{\text{max}} = \alpha \frac{T_p}{Z_i} \] 

در شرایط که در ذیل این بیماری در مراحل عوامل دارد. بیماری چربگیر و قابل توجه است. این موضوع برای گردش (۲۴) می‌باشد. در (۱۸) لویزی چربگیری (۲۱) و خریزه (۲) نشان دهنده این‌که که به آن تعلق کاهش (Reduction Function) می‌شود: 

\[ \alpha = \frac{T_p}{Z_i} \] 

در نوع مختلف مدل‌های کلان این را به توصیف و نشان می‌دهد. مدل‌های ۳ شکل عمومی مدل‌های کلان است
اگر $h_0$ به خوراک یک تنها امکان باشد در نظر گرفته شود، پس $\alpha(h_0) = 1$.

در سیستم $h_{max}$، مقدار $h$ به مقدار $h_{max}$ لفت می‌گیرد. همچنین $h$ باختری نموده و به خوراکی، که در آن $h_{max}$ کاهش است. در مقادیر $h_{max}$، $h$ به مقدار $h_{max}$ لفت می‌گیرد.

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$

$\alpha(h) = \left( \frac{h_{max}}{h_{max} - h_0} \right)^p$

$\alpha(h) = \left( \frac{1}{1 + \alpha(h_0)^p} \right)^{\frac{1}{p}}$
مواد و روش‌ها

آزمایش بر پایه خاک شور زراعی با شیمیایی و در
گلدارهای به میزان 34 و 59 سانتی‌متر اجراء گردید. برای
اعمال آزمایشی شوری، یک نمونه خاک سیستم‌بندی
Typic Toriorthent بستگی به برش خاکی یافت. (Leaching Fraction, LF)
از منطقه مردوخ استان قم (47° و 59° طول)
شریق و (27° و 24° عرض شمالی) تهیه و به گلخانه حمل شد.
برخی از ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش در
جدول 1 کارگردان است.

با توجه به آزمایش شوری بالاترین شد در پایان شوری کل
(Leaching Fraction, LF) نسبتاً یکنواخت نگه داشت. در این پژوهش
افزودن بر خاک شور از آب شور طبیعی که در دروازه‌های
سیستمی با فراهم کردن شوری نیز می‌تواند ایجاد کردد.

از آنجایی که شوری در دو گروه شوری با NaCl و
NaCl+CaCl2 مورد ارزیابی قرار گرفت و با نتایج اصلی و با
تأثیراتی که در آزمایش‌های انجام داده شده در مورد
شناسایی یک گروه از فراورده‌هایی که در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
کلگردهای نوعی از روزنامه و در روز سوخت و به
جدول 1. برخی ویژگی‌های شیمیایی و فیزیکی خاک مورد استفاده

<table>
<thead>
<tr>
<th>ماده</th>
<th>سر</th>
<th>آماده</th>
<th>روز</th>
<th>ترانسپرتیون</th>
<th>قند</th>
<th>کلسیم</th>
<th>مس</th>
<th>سبزیجات</th>
<th>pH</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₃</td>
<td></td>
</tr>
<tr>
<td>Na⁺</td>
<td></td>
</tr>
<tr>
<td>Mg²⁺</td>
<td></td>
</tr>
<tr>
<td>Ca²⁺</td>
<td></td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td></td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

می‌شود تا از صحت عوامل LF = 1/5 اطمینان حاصل شود. در مرحله گل‌دهی، گل‌دانه به صورت روزانه توزین و تعرق هر کدام گل‌دانه محاسبه و تحت‌کیفی و بر اساس رابطه دویت (4) عملکرد نسبی در این مرحله تعرق گیاه در هر سطح نسبت به بیمار شاهد (آب معمولی) در نظر گرفته شد.

در مرحله بلحاظ، عملکرد نسبی تخلخل وزن دانه در هر سطح نسبت به شاهد (آب شیر) در نظر گرفته می‌شود. به منظور کمی کردن اثر شوری بر رشد و عملکرد کلی در دوره زایشی عملکرد نسبی با استفاده از مدل‌های فیزیولوژیک و همافن (44) و نگنوخت و همافن (27)، دیروکس و همکاران (4) و همکاران (44) محاسبه شد. مدل‌های اهدا شده بر مبنای عملکرد نسبی به‌دست آمده در مراحل گل‌دهی و بلحاظ برآورد شده شاخص تولد مدل‌ها را بر مبنای مقادیر اندازه‌گیری شده در برای سطوح مختلف خاص عصره اشاعه رسم و نتایج مدل‌های مختلف با یکدیگر مقایسه گردیدند. همچنین، مقایسه کیت مدل‌ها با محاسبه آمارهای خطای ماکوریم (ME) (Maximum Error) ریشه میانگین (RMSE) (Root Mean Square Error) مربعات خطا (MSE) و کواریانس (CD) (Coefficient of Determination) ضریب جرم خامه‌ای (EF) (Efficiency of model) و برای هر کدام از CRM (Coefficient of Residual Mass)}
بهتری را نسبت به مقدار برآورد شده از آن‌های مدل CRM

پیشین کننده گرافی مدل به تخمین بیشتر و با یک کمتر از مقادیر

اندازه گیری شده است. به‌دست آمده مقدار متنی

یک مدل تمامی مدل برای برآورد انداده‌گیری کیفیت شده

می‌دهد. بر اساس آماری، مدل CRM در بهترین

واحدهای خود و SPSS تحلیل آماری و کارایی

گرافیکی با نتیجه افزار

انجام ناپذیرفت.

نتایج و بحث

مرحله گل‌دهی

تعریف شکل کلارا در مرحله گل‌دهی به سطوح مختلف شوری (ECe)

عنصره انتخاب مدل (ME) در شکل 1 نشان داده شده است.

براساس این شکل، تعریف شکل کلارا به شوری 8م، بر اساس جدول 1

متر کاهش نداشت. از آن پس، به‌این شوری کاهش گرفت. در

شروع حداکثر 24می‌زینم بر متر به کمترین مقدار خود

رسیده است.

حدود آستانه تحمیل شوری کلارا هنگامی که شوری خاک

از ابتدا تا پایان دوره رشد نبات باشد، بر اساس پایه‌های

ماس و هفمن (21). 11 مسی‌زینم بر متر می‌باشد.

حال آنکه پرداخت هر نیروی کاهش داده دهان که آستانه کاهش

عمک‌گیری کلارا در مرحله گل‌دهی دهی 7می‌زینم بر متر

است. شکل 2 بررسی مدل‌ها بر داده‌های انداده‌گیری شده

در مرحله گل‌دهی را نشان می‌دهد. جرخ ر و O به

ترتیب بانگ‌داره مشاهده شده (Observed) می‌باشد. با برآورد

بینی شده توسط مدل (Predicted) می‌باشد. با برآورد

مقدار مورد نظر برابر با داده‌های مختلف دهی که با برآورد

مقدار هر یک از مدل‌ها، برآورد و در جدول 3 ارائه

شده است.

همان‌طور که از شکل 2 و ضریب تبیین (R²) ارائه شده در

جدول 3 بر می‌آید، مدل‌های غیرخطی نسبت به مدل ساده و

خطی ماس و هفمن (21)، برآورد بهتری بر داده‌های

اندازه‌گیری شده دارند. با پایان انتخاب مناسب‌ترین مدل

برآورده در این مرحله، با کمک آماره‌های ذکر شده در جدول می‌توان به ارزیابی صحیحی از

CRM
شکل 1. تعریف نسبی گیاه کلزا در مرحله گلدی به عوامل تابعی از شوری عصاره

درکسن و همکاران (Dirksen et al.) داشتهای تعریف نسبی گیاه کلزا در مرحله گلدی به عووان تابعی از شوری عصاره خاک جریان کارایی هر مدل دست یافته و مناسب‌ترین مدل را انتخاب نمود. جدول 6 مقدار این آماره ها با برای مدل‌های مختلف نشان میدهد. با توجه به اینکه آماره‌های ضریب تیپسین (R²)، ریشه
جدول ۳: پارامترهای مدل‌های ماس و هافمن، ونگوختن و هافمن، دیرسن و همکاران و هماپ و همکاران برای برآورد پاسب گیاه کلزا به شوری عصاره اشباع خاک در مرحله گل‌دهی

<table>
<thead>
<tr>
<th>مدل</th>
<th>ECө</th>
<th>EC50</th>
<th>ECmax</th>
<th>b</th>
<th>α</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maas &amp; Hoffman</td>
<td>۴/۸</td>
<td>-</td>
<td>-</td>
<td>۰/۱۴</td>
<td>-</td>
<td>-</td>
<td>۴/۱۷</td>
</tr>
<tr>
<td>van Genuchten</td>
<td>۴/۸</td>
<td>۱۹/۴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳/۹</td>
<td>۴/۹۴</td>
</tr>
<tr>
<td>Dirksen et al</td>
<td>۴/۸</td>
<td>۱۹/۳</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۲</td>
<td>۴/۹۴</td>
</tr>
<tr>
<td>Homaee et al</td>
<td>۴/۸</td>
<td>۴۷</td>
<td>-</td>
<td>۰/۲۷</td>
<td>۲</td>
<td>-</td>
<td>۴/۹۴</td>
</tr>
</tbody>
</table>

جدول ۴: آماره‌های محاسبه‌شده برای مقایسه مدل‌های برآورد پاسب گیاه کلزا به شوری عصاره اشباع خاک در مرحله گل‌دهی

<table>
<thead>
<tr>
<th>مدل</th>
<th>RMSE</th>
<th>CD</th>
<th>EF</th>
<th>ME</th>
<th>CRM</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maas &amp; Hoffman</td>
<td>۱۲/۶</td>
<td>۱/۰۷</td>
<td>۰/۸۸</td>
<td>۰/۱۲</td>
<td>-</td>
<td>۴/۱۷</td>
</tr>
<tr>
<td>van Genuchten</td>
<td>۸/۲۲</td>
<td>۱/۲۱</td>
<td>۰/۹۵</td>
<td>۰/۱۰</td>
<td>۰/۲۴</td>
<td>۹/۴</td>
</tr>
<tr>
<td>Dirksen et al</td>
<td>۸/۴۴</td>
<td>۱/۳۵</td>
<td>۰/۹۵</td>
<td>۰/۱۰</td>
<td>۰/۲۶</td>
<td>۹/۴</td>
</tr>
<tr>
<td>Homaee et al</td>
<td>۸/۳۴</td>
<td>۱/۳۵</td>
<td>۰/۹۵</td>
<td>۰/۱۰</td>
<td>۰/۲۶</td>
<td>۹/۴</td>
</tr>
</tbody>
</table>

شکل ۳: عملکرد نسبی برآورد اثر شوری عصاره اشباع خاک در مرحله بلوغ به عنوان نتایجی از جدول ۴

جدول ۵: پارامترهای مدل‌های ماس و هافمن، ونگوختن و هافمن، دیرسن و همکاران و هماپ و همکاران برای برآورد پاسب گیاه کلزا به شوری عصاره اشباع خاک در مرحله بلوغ

<table>
<thead>
<tr>
<th>مدل</th>
<th>ECө</th>
<th>EC50</th>
<th>ECmax</th>
<th>b</th>
<th>α</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maas &amp; Hoffman</td>
<td>۵/۵</td>
<td>-</td>
<td>-</td>
<td>۰/۳۶</td>
<td>-</td>
<td>-</td>
<td>۴/۹۷</td>
</tr>
<tr>
<td>van Genuchten</td>
<td>-</td>
<td>۱۸/۵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۳/۲۴</td>
<td>۹/۸8</td>
</tr>
<tr>
<td>Dirksen et al</td>
<td>۳/۴</td>
<td>۱۸/۳</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>۱/۶</td>
<td>۹/۹9</td>
</tr>
<tr>
<td>Homaee et al</td>
<td>۵/۶</td>
<td>-</td>
<td>۴۹/۹</td>
<td>-</td>
<td>۰/۲۱</td>
<td>۲</td>
<td>۹/۹9</td>
</tr>
</tbody>
</table>

118
پژوهشگران و استادان کاری در تحلیل عواملی که در برآورد مدل‌های پیشنهادی گیاه گازگیری در مدل‌های پیشنهادی تأثیر گذار هستند، بررسی می‌کنند. در این مطالعه، تأثیر شرایط محیطی، مدل‌های پیشنهادی و روش‌های آماری بر برآورد مدل‌های پیشنهادی گیاه گازگیری در مدل‌های پیشنهادی گیاه گازگیری مورد بررسی قرار گرفت. در آخرین بخش، نتایج به روش‌های آماری و تحلیل عناصرهای ابزاری و موادهای شرایط محیطی بررسی شدند. در نهایت، نتایج نشان داد که افزایش میزان گازگیری در مدل‌های پیشنهادی باعث افزایش میزان گازگیری در مدل‌های پیشنهادی می‌شود. در این مطالعه، نتایج نشان داد که افزایش میزان گازگیری در مدل‌های پیشنهادی باعث افزایش میزان گازگیری در مدل‌های پیشنهادی می‌شود.

متابع‌مورد استفاده

1. همایی، م.1381. واکنش گیاهان به شوری. کمیته ملی آبیاری و زه‌کشی ایران. نشریه شماره 48. تهران.