شناسایی خاک‌های لسی و تفکیک آنها از سایر خاک‌ها در جنوب شهر مشهد

عليضا کرمی، حسین خادمی* و احمد جلالیان

(تاریخ دریافت: 86/2/21، تاریخ پذیرش: 86/5/9)

چکیده

البته وجود خاک‌های سرشار از سیلت در جنوب مشهد، هیچ گونه اطلاعاتی در پاره مشا بادرقی وتا تکنیکی در جای آنها وجود ندارد. هدف از این پژوهش تعبیری آن است تولید سیلت در این منطقه بود. به‌طور مقایسه، این ماده‌های گرانیتی جنوب مشهد به‌صورت تایپوسه توسط رسوات سیلتی پوشیده شده‌اند. اساساً تکنیک خاک‌های چهار تیره، شامل خاک درجا با پوشش رسوات سرشار از سیلت و خاک در جا با سیلت کم ری، نمک‌های گرانیتی خاک سرشار از سیلت در طول درجه خاک در دامنه‌های گرانیتی و خاک آبی تهیه و قرار در دل‌های دامنه‌ای همچنین یکی منطق طبیعی دارای تناوب از لایه‌های سیلتی و آبی مطمئن شد. محتوی تجویز توزیع اندازه درات (SKS) و نمونه‌گیری توزیع عمیق شیب سیلتی به شن (S/S)، انحراف میانگین جمعیت اکسکی (GFXL)، تجزیه‌گر پیش‌بری جامع فولکس (SE) و برای تفکیک افتخارات مختلف خاک‌ها از نظر منشأ استفاده شد.

1. وژه‌های کلیدی: خاک‌های لسی، خاک‌های درجا، خاک‌های سیلتی، اقطاع سنجی، منطق جمعیتی اندازه درات

مقدمه

لسیر سربرو تابعی و رنگ، کرمی - فهیوهای دارای ترکیبات آهن و مواد زیاد میکا، فلزاتی و کوارتز هستند. این رسوات پیش از درات به ابعاد میکرونیک 20 تا 60 میکرون تکنیک شدند.

1. ب. تریب دانشجوی دکتری، دانشگاه اسلامیه، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

* مسئول مکاتبات: پست الکترونیکی: khademi@ec.iut.ac.ir

185
ضخامت کمتر روی ته ماهوره‌ها گرانیتی وجود دارد. در بعضی از قسمت‌های ته ماهوره‌ها گرانیتی، خاک‌های با منشا هوادیگی در یخ و پوششی ناپایداری از رسوایی سرشار از سیل ایجاد شده و یک شکل کبالتیک آزاد می‌شود. این گونه خاک‌ها از مناطق گرم و صحرایی نیز جنوبی گرما و خشک باریک‌های ماهوره، بطور میانگین در ارتفاع مختلف آن (از شن خلوت درشت تا شن ریز) کمتر توزیع شده است.

در طول این مدت، دیدگاه‌های مختلفی در مورد مس و چگونگی تشکیل آن ارائه شده است. این دیدگاه‌ها از نظره س ناتوکسکی اکرانی که سایه‌های ملی را عامل اصلی بوده و فردی احساس سیل ایجاد می‌کند. براي تشکیل لس می‌دانست این پروانه که چنین لس‌های داغ به یادآوری ارائه داد. در حالی که در بودن، این تئوری و تخیل بوده است (26 و 27).

لست‌ها عمده‌ای از دوره کوارتز تشکیل و تجمع یدا کره‌ایند. اقیانوس و گوشی‌هایی که پادشاه زنده در این میان ایفا کرده‌اند و کوارتز یک دوره تولید سیل محسوب می‌شود (9). لست‌ها همان‌ند که با یک‌پایگان مطفوع، تغییرات اقلیمی را در خود ذخیره‌کرده‌اند. باربارا مطالعه لست‌ها و خاک‌های قبیلی تشکیل شده بین یاده‌های لس اطلاعات خوبی در مورد تغییرات دوره کوارتز در اختیار ما قرار خواهد داد (12 و 15).

در آبیاری نیز بخش‌هایی از شال‌های کوچک به‌وجود می‌آید که در این مدت استان گستران و با وسط کمتر در دامنه‌های شمالی تغییرات حوضه‌که داغ (به‌سمت آسیای میانه) از رسوایی لس پوشیده شده‌اند (11 و 19). بخش‌های مرکزی که جنوبی ایران نیز حاوی رسوایی لس است، لیتو به‌دلیل گسترش بکارگیری و ضخامت کمتری که در آن مورد توجه کافی قرار نگرفته‌اند. به‌وجود گسترش مناسب لس در شمال شرق کشور، نا کنون مطالعات محدودی روى آنها انجام شده است و در قسمت‌های دیگر ایران تنها یک تحقیق درباره ویژگی‌های لس و نیش لس‌های حوزه اینک تخت جمشید صورت گرفته است (15).

است (15).

بر خلاف لس‌های شمال شرق، شرق ایران که گسترده و ضخیم هستند، لس‌های مرکز و جنوب ایران نپاپسخته‌اند. با ضخامت کم و در بسیاری موارد فرآیندهای پیپ از رسوب لس، باعث تغییر ماهیت آنها شده‌است. باربارا در این گونه موارد، قدم اول شناسایی و تشخیص لس از رسوایی دیگر است نا بتوان در پذیرش‌های بعیضی آن به‌عنوان رسوایی لس یا نیش لس استفاده شود.

درجنبه مشه‌، در انتهای زون بیانی، پوشش نسبتاً ضخیم از رسوایی سرشار از سیل مانند سه‌گانه یا به‌صورت تاپویسته و
شناختی‌های نسبی و تفکیک آنها از سایر خاک‌ها در جنوب شرق مهد

ارزیابی ماده آلی توسط آب اکسنت 30 درصد مجددا خشک و توزین شده و بدون اکسنت‌دار برای تعیین توزین انتزاع دراز استفاده شد. شبکه‌های مخیم درشت (12 میلی‌متر) و درشت (20 میلی‌متر) و شبکه‌های مخیم درشت (20-5 میکرون) و شبکه‌های ترش (20-5 میکرون) تکمیل شد. پیش رسم (1 میکرون) تیز تکمیل گردید.

منحنی تجمعی توزیع اندازه ذرات افتخارات مختلف ترسیم گردید. برای نشان دادن اندازه ذرات در محور X از مقياس فی (8) استفاده شد. درک مقياس لگاریتمی است که توزیع کوروباین در سال 1944 ارائه شد و عبارت است از گرافی مفی فیزیکی در حس میلی‌متر پایه 2، بنابراین، با افزایش میانگین اندازه ذرات کاهش می‌یابد (8).

برای محاسبه پارامترهای توزیع اندازه ذرات از روی ترسیم و نظیرهای استفاده شد. در روش ترسیم (13) از پارامترهای انحراف معيار ترسیم جمعاً فولک (Folk inclusive graphic standard deviation)، SKI (Folk inclusive graphic skewness) ترسیم جامع فولک و میانگین اندازه ذرات (MZ)، برای مقایسه بهتر و نشان داد که اندازه ذرات توزیعی اندازه ذرات نیز محاسبه شد. (18). این پارامترها با استفاده از معادلات زیر محاسبه گردید.

روش ترسیم:

\[MZ = \frac{q_{10} + q_{50} + q_{90}}{3} \]

\[cI = \frac{q_{90} - q_{10}}{q_{50} - q_{10}} \]

\[SKI = \frac{q_{25} - q_{75} + q_{75} - q_{25}}{(q_{90} - q_{10}) + (q_{10} - q_{50})} \]

سه نوع گرانیت مختلف از این منطقه وجود دارد که به علامت‌های \(g^1 \) و \(g^2 \) و \(g^3 \) می‌تواند نقشه زمین شناسی به مقياس گرانیت‌های یون‌داری گرایشدار (Gl) بیش از انواع دیگر است و در آن فلسفه‌سازی تاوانی دار سانتی‌متر نیز دیده می‌شود. نوده این گرانیت‌های (G) به ابعاد 15 در 15 کیلومتر، در درون \(g^2 \) ترسیم شده و جوانتر از ان است. \(g^1 \) نسبت به \(g^2 \) مانند فرمانی بوکت و آنکریانه مختلف تیره و پورترینده است. در حالی که \(g^2 \) گرانیت‌های هم اندلی و دانه‌ها، دانه متوسط و روزن دانه‌ها و سیلیس بیشتری نیز دارد. \(g^3 \) نسبت به دو نوع دیگر گرانیت گردی مثبت (2) و (4).
رشح لحظه‌ای:

\[\bar{x}_{\varphi} = \frac{\sum f \cdot m}{n} \]

\[\sigma_{\varphi} = \sqrt{\frac{\sum (f \cdot (m - \bar{x}_{\varphi}))^2}{100}} \]

\[SK_{\varphi} = \frac{\sum (f \cdot (m - \bar{x}_{\varphi}))^2}{100 \cdot \sigma_{\varphi}^2} \]

در معادلات روش‌های بررسی، به عنوان مثال، نشان دهنده قطعیت از داده‌ها می‌باشد.
شناختی خاک‌های لسی و تفکیک آنها از سایر خاک‌ها در جوی شهیر مهد

در روش ترسيمي و لحظه‌ي بحث در 100 و 99 درصد منحني تجمعی ازداز ماح써ي مي‌شوند.

انقاظ سىگي (Lithologic discontinuity)

نواحی در موارد مادی خاک است. این تغیيرات از دور مورد اثر روند مدیره‌کنگري است. عدم وجود انقاظ سنتي نشان دهنده تشکیل خاک از نوع مادی مادی است. تشخیص وجود یا عدم وجود انقاظ سنتی لازم مطالعه چگونگی تحول خاک‌ها و تمایز بین توالی‌های خاک‌سازی و روس‌گذاری است. اگر خاک از موارد مادی تشکیل شده باشد، چگونگی تغییرات مختلف از ویژگی‌های مقاوم در برای فاکتور خاک‌سازی با عمل روند کم و بیش ثابت را خواهد داشت. در طبیعت از موارد از خاک عاري از رس، سنی و سیلاب استفاده شده و تغییرات نسبت‌های این و جزء با عمل، شامل مناسب برای تشخیص انقاظ سنتی است. برای تعیین انقاظ سنتی از تغییرات این سنی، سیلاب شن جواردی (10) و چوجه ابتداء شد.

گرسنگی و پاک‌سازی بخش شن می‌تواند تأثیر

فرایند حمل و نقل را نشان دهد (17). برای این مظور، پس از تیمار بخش شن با اسید کاربندریک و از بین بردند ناخاص‌های سطح ذرات، شکل و پاک‌ساز سطح ذرات شن توسط میکروسکوپ الکترونی روی مورد مطالعه قرار گرفت.

نتایج

نتایج تجربی و تحلیل اندازه دراز تیم‌رسی‌های شاهد در جدول 1 نشان داده شده است. براساس مشاهدات صحرایی، مورفولوژی تیم‌رسی و نتایج آزمایشگاهی تیم‌رسی‌های مورد مطالعه تفکیک شدند. بر روی ماهورهای کرایتي در نوع خاک وجود دارد.

خاک‌های درجا (تیم‌رسی شماره 2) که از هوازدگی گرانت حاصل شده و دارای خاک زیاد در بخش کمتر از 0.9 میلی‌متر هستند. در بعضی از قسمت‌های ماهورهای کرایتي، خاک‌های درجا بطور توسط یک لایه نازک تا ضخیر سرشور از سیلت
جدول 1. توزیع اندازه ذرات در بخش کمتر از ۲ میلیمتر در نیم‌های مورد مطالعه

<table>
<thead>
<tr>
<th>وسیله</th>
<th>سایه‌های سیلیتی</th>
<th>آجریتی سیلیتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Ap</td>
<td>۰-۵۰</td>
<td>۷/۵</td>
</tr>
<tr>
<td>L Bk</td>
<td>۰-۵۰</td>
<td>۳/۸</td>
</tr>
<tr>
<td>RL 2Bk</td>
<td>۴۰-۵۰</td>
<td>۵/۳</td>
</tr>
<tr>
<td>R 2Cry1</td>
<td>۸۰-۱۲۰</td>
<td>۲/۹</td>
</tr>
<tr>
<td>R 2Cry2</td>
<td>۱۲۰-۱۵۰</td>
<td>۱/۹</td>
</tr>
</tbody>
</table>

- حاک در جا تشکیل شده روی نیمه‌های گرانیت‌ها

<table>
<thead>
<tr>
<th>وسیله</th>
<th>سایه‌های سیلیتی</th>
<th>آجریتی سیلیتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Ap</td>
<td>۰-۵۰</td>
<td>۷/۵</td>
</tr>
<tr>
<td>L Cy1</td>
<td>۰-۵۰</td>
<td>۷/۸</td>
</tr>
<tr>
<td>L Cy2</td>
<td>۷۰-۱۰۰</td>
<td>۳/۷</td>
</tr>
<tr>
<td>L Cy3</td>
<td>۱۰۰-۱۰۰</td>
<td>۱۸/۸</td>
</tr>
</tbody>
</table>

- حاک آبرنی وضع در دشت دامنه‌ای

<table>
<thead>
<tr>
<th>وسیله</th>
<th>سایه‌های سیلیتی</th>
<th>آجریتی سیلیتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Ap</td>
<td>۰-۵۰</td>
<td>۷/۵</td>
</tr>
<tr>
<td>A BCK1</td>
<td>۵۰-۱۰۰</td>
<td>۵/۵</td>
</tr>
<tr>
<td>A 2BCk2</td>
<td>۵۰-۱۰۰</td>
<td>۵/۵</td>
</tr>
<tr>
<td>A 2C</td>
<td>۴۵-۱۰۰</td>
<td>۵/۵</td>
</tr>
</tbody>
</table>

- پنجانه از یک مقطع تشکیل شده از لاگه‌های سیلیت و آبرنی

<table>
<thead>
<tr>
<th>وسیله</th>
<th>سایه‌های سیلیتی</th>
<th>آجریتی سیلیتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 5C</td>
<td>۰-۵۰</td>
<td>۷/۵</td>
</tr>
<tr>
<td>AL 6C</td>
<td>۵۰-۱۰۰</td>
<td>۵/۵</td>
</tr>
<tr>
<td>L 7C</td>
<td>۰-۵۰</td>
<td>۷/۵</td>
</tr>
<tr>
<td>AL 8C</td>
<td>۵۰-۱۰۰</td>
<td>۵/۵</td>
</tr>
</tbody>
</table>
جدول 2. پارامترهای آماری محاسبه شده از منحنی توزیع آنتیژ در انتزاع نیکره‌های مورد مطالعه

<table>
<thead>
<tr>
<th>روش ترسیم</th>
<th>روش لحظه‌ای</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق (cm)</td>
<td>SKI</td>
</tr>
<tr>
<td>عمق انتظار</td>
<td>(φ)</td>
</tr>
</tbody>
</table>

1- خاک در جا با پوشش سرشار از سیب و بر روی ته ماهورهای گرانیتی

2- خاک در جا تشکیل شده بر روی ته ماهورهای گرانیتی

3- خاک سرشار از سیب واقع در دامنه گرانیتی

4- خاک آبرنی واقع در دامنه دامنه‌ای

5- بخشی از یک مقطع تشکیل شده از لایه‌های سرشار از سیب و آبرنی

<table>
<thead>
<tr>
<th>روش لحظه‌ای</th>
<th>5/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6C</td>
<td>3/9</td>
</tr>
<tr>
<td>7C</td>
<td>5/3</td>
</tr>
<tr>
<td>8C</td>
<td>2/2</td>
</tr>
</tbody>
</table>
شکل 2. نمودار توزیع فراوانی اندازه چندی اجزای مختلف خاک بعضی از اوقاها با میانگین منفیت
الف) افق 1
\(\text{Cry1} \) خاک سرشار از سیلیت (افق اول) و \(\text{Btk} \) خاک در جا با پوشش سیلیت (افق دوم)
ب) افق 2
\(\text{Msi} \) خاک آبرفتی (افق دوم) و \(\text{Csi} \) خاک در جا با پوشش سرشار از سیلیت (افق دوم)
ج) افق 3
\(\text{MSi} \) مقطع طبیعی (افق دوم) و MSi متوسط : SFI ، MSi متوسط : SFi ، MSi متوسط : SFi و MSi متوسط : SFi.

تشناسی خاکهای مست و تفکیک آنها از سایر خاک‌ها در جنوب شرق مهد

دیگری در بخش سیلیت مشاهده می‌شود؛ این ویژگی در افتخاه‌های آبرفتی سبب افزایش است. یکی از افتخاه‌های سرشار از سیلیت، درجه و آبرفتی نک تا تغییری در آن وجود ندارد.

منحنی تجزیه توزیع اندازهِ ذرات افتخاه‌های می‌بادد. (شکل ۲-۴) مطالعات نشان داده که ذرات این اندازه‌ها ۵۰-۵۰ میکرو متر در ارتفاع سطح به‌صورت متفاوت منتفی شده و بخش قابل توجه‌سیر را تک شکل می‌دهند. به‌دست دلایلی توجه گرفته اندازه‌های سرشار از سیلیت و آبرفتی می‌شود. خیز ناکامی‌ها داشته و شکل خوایش شد (شکل ۲) افتخاه‌های سرشار از سیلیت در این منطقه نیز به‌طور متوسط بیش از ۵۰٪ درصد سیلیت داشته و سطح با این فاصله مخلوط می‌شود. هم‌اکنون وارد شدن ذرات زیر توسط آب و رسوب آنها به سیلیت‌ها در اثر آب‌گیری در آب‌گیری‌ها (شکل ۴) مقداری از سیلیت سپس از اضافه‌گذاری سطح شدن و ناکامی به‌صورت طبیعی در دو ذرات درشت‌تر آنها وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴) هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)

توزیع عمیق‌ترین اقلیم‌های محکمی شده از توزیع اندازه‌های ذرات سبب می‌شود. این سبب می‌شود بتواند منحنی تجزیه توزیع اندازه‌های ذرات افتخاه‌های سرشار از سیلیت با هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)

توزیع عمیق‌ترین سیلیت‌های محکمی شده از توزیع اندازه‌های ذرات سبب می‌شود. این سبب می‌شود بتواند منحنی تجزیه توزیع اندازه‌های ذرات افتخاه‌های سرشار از سیلیت با هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)

توزیع عمیق‌ترین سیلیت‌های محکمی شده از توزیع اندازه‌های ذرات سبب می‌شود. این سبب می‌شود بتواند منحنی تجزیه توزیع اندازه‌های ذرات افتخاه‌های سرشار از سیلیت با هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)

توزیع عمیق‌ترین سیلیت‌های محکمی شده از توزیع اندازه‌های ذرات سبب می‌شود. این سبب می‌شود بتواند منحنی تجزیه توزیع اندازه‌های ذرات افتخاه‌های سرشار از سیلیت با هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)

توزیع عمیق‌ترین سیلیت‌های محکمی شده از توزیع اندازه‌های ذرات سبب می‌شود. این سبب می‌شود بتواند منحنی تجزیه توزیع اندازه‌های ذرات افتخاه‌های سرشار از سیلیت با هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)

توزیع عمیق‌ترین سیلیت‌های محکمی شده از توزیع اندازه‌های ذرات سبب می‌شود. این سبب می‌شود بتواند منحنی تجزیه توزیع اندازه‌های ذرات افتخاه‌های سرشار از سیلیت با هم‌اکنون وارد شده و باعث تغییر در سیلیت شده که منحنی تجزیه توزیع ذرات آنها حداکثر (شکل ۴)
شکل ۳. منحنی توزیع اندازه‌ذرات در خاک‌های مورد مطالعه
الف) خاک در جا با پوشش سرشار از سیلت (ب) خاک در جا (ج) خاک سرشار از سیلت (د) خاک آب‌تراز و (ه) به‌شان از یک مقع عبی.
شناسایی خاک‌های لی و تفکیک آنها از سایر خاک‌ها در جنوب شهر مشهد

شکل ۴. نگرش‌بندی عمیق نسبت به شن در خاک‌های مورد مطالعه

الف) خاک در جا با پوشش سرشار از سیلت (ب) خاک شردار از سیلت (ب) خاک آبرفی و (ه) بخشی از یک مقطع طبیعی

خاک قبلی، در این نیم‌رخ، انقباض سنگی تشخیص داده شد. در نیم‌رخ خاک شردار از سیلت، نگرش‌بندی عمیق نسبت به سیلت به شن نگرش‌بندی کمی را نشان می‌دهد (شکل ۴-ج). نگرش‌بندی عمیق سیلت SKI و نیز نگرش‌بندی پوششی صاف است (شکل ۴-چ) که بر اساس سنگی تجمیعی توزیع اندازه ذرات (شکل ۴-ج) قابل توجه است. این یک نمایی از شن دهنده منشا یکسان آنها است. مقدار اندک نگرش‌بندی خاک‌های مذکور، احتمالاً به‌دلیل نگرش‌بندی قدرت‌های باد در حین انتقال مواد است. در نیم‌رخ خاک آبرفی، بر اساس نگرش‌بندی عمیق شناسی شناخته شد. در این نیم‌رخ، دو مخلوط شدنداند: در نتیجه شناسی خاک‌های مورد استفاده برای تغییر انقباض سنگی به‌صورت ناشی از اتفاق اول به دوم نگرش‌بندی ناشی از دمای دمای (شکل ۴-ب و ۴-د) و به دلیل عملیات کشاورزی و درشت‌بافت بودن اتفاق‌ها زیرین در نظر گرفته می‌شود. با توجه به اینکه محدوده‌ای که

این خاک در آن قرار دارد از اطراف بالاتر قرار گرفته است، منشا آبرفی برای آن غیر محتمل بوده و منشا نیز باید مقصد زیاد سیلت در افق‌های رویی، منشا باید مصروف بشد. به علاوه افق‌های سرشار از سیلت دارای گچ در مقادیر متفاوت نیز

می‌توان گفت که گچ به همراه سیلت وارد نیمه‌های گراینی‌های

شده است.

در نیم‌رخ خاک درجا، دو انقباض رویی با سیلت اضافه و

انقباض سنگی به‌صورت ناشی از تغییر می‌پانند (شکل ۴-ب و

۴-پ) و به دلیل تهدید داده شده در مورد افزایش نیم‌رخ

۱۹۵
شکل ۵ تغییرات عمیقی و آسی در خاک‌های مورد مطالعه
الف) خاک در چا با پوشش سرشار از سیلت ب (خاک در چا ج) خاک سرشار از سیلت از خاک آبرفتی و خاک از یک مقطع طبیعی مقداری از اجرا سیلت افق سطحی از طریق فرآیندهای جانوری و عمودی از این افق خارج شده و باعث کاهش ناپایداری نسبت سیلت به شن شده است. در مقطع طبیعی متشکل از اجراهای آبرفتی و سرشار از سیلت، تغییرات عمیقی شاخص ها بین
 Skipping, please refer to the provided text.
نتایج نشان می‌دهد که سیستم شکل نسبت به سیستم SEE (شکل چپ) بکر و توده‌های میکروگرافی در سیستم SEM (شکل راست) همگام باشند.

نتایج نشان می‌دهد که سیستم نسبت به سیستم SEE (شکل چپ) بکر و توده‌های میکروگرافی در سیستم SEM (شکل راست) همگام باشند.

نتایج نشان می‌دهد که سیستم نسبت به سیستم SEE (شکل چپ) بکر و توده‌های میکروگرافی در سیستم SEM (شکل راست) همگام باشند.

نتایج نشان می‌دهد که سیستم نسبت به سیستم SEE (شکل چپ) بکر و توده‌های میکروگرافی در سیستم SEM (شکل راست) همگام باشند.

نتایج نشان می‌دهد که سیستم نسبت به سیستم SEE (شکل چپ) بکر و توده‌های میکروگرافی در سیستم SEM (شکل راست) همگام باشند.

نتایج نشان می‌دهد که سیستم نسبت به سیستم SEE (شکل چپ) بکر و توده‌های میکروگرافی در سیستم SEM (شکل راست) همگام باشند.
منابع مورد استفاده

1. پاشانی، غ. 1387. بررسی ویژگی‌های فیزیکی و شیمیایی و چگونگی خاستگاه رسوب‌های لیس در منطقه گرگان و دشت. علوم زمین 23:42-67.
2. دموش زاده، غ. 1380. زمین شناسی/ ایران. چاپ دوم، انتشارات امیرکبیر، تهران.
3. ستایشی اردکانی، س. 1386. بررسی رسوب‌شناسی و چیپشناسی خاک‌های شرق ایران و شمال شرق آسیا. نهضت مولودی: نقطه قیان و دره ناهارخوران استان کرمان. پایان نامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، دانشکده علوم زراعی.
4. شهریابی، م. 1383. شبکه زمین‌شناسی چهار گوش مشهد، مقياس 1:500,000، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
5. صاحب جمع، ع. 1381. گزارش نهایی مطالعات تفصیلی دقیق خاک‌شناسی و طبقه‌بندی اراضی استان علویه. نقطه قیان.
6. طاهری، م. 1377. نقطه زمین‌شناسی 1:100,000 مشهد. وزارت معدن و فلزات، سازمان زمین‌شناسی کشور.
7. عدلی‌پور، م. 1387. پراکنده ویژگی‌های شیمیایی، رسوب‌شناسی، محیط‌ریزی و رسوب‌گذاری رسوب‌های سانترالی نشان‌دهنده در حوضه خر زمین‌شناسی مشهد، مقالات نصیحتی سیاست‌های پیش‌بینی و سیاست‌های کاوش.
8. موسوی حرمی، ر. 1383. رسوب‌شناسی چهار گوش مشهد، به نشر (انتشارات آستان قدس رضوی)، مشهد.