تأثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چندترکن ارتعاشی

سه واحده در برداشت کشته‌های ۵ سانتی متری

امین اله مصوصی، عباس همت و مجید رجبی

(تاریخ دریافت: ۸۵/۰۸/۲۳، تاریخ پذیرش: ۸۵/۱۲/۱۷)

چکیده

در سال‌های اخیر کشت چندترکن قند در ریف‌های ۵ سانتی متری به دلیل افزایش عملکرد آن در مقایسه با کشت ۶ سانتی متر استقبال کشاورزان کشورمان قرار گرفته است. فاصله کم بین ریف‌های کشت در این روش، برداشت حجمی و روبه‌روی محصول را ایجاد می‌نماید؛ بنابراین از الکتریکی که در این زمینه کار نماید. به منظور همکاری کشیدن چندترکن سه ریف‌های با تراکتورهای میاند مقدار می‌تواند در کشور و در اوردون ده‌های چندترکن از خاک ارتعاشی تکرار چندترکن مورد توجه قرار گرفت. در این تحقیق اثر فرکانس ارتعاش و زاویه حمله تیغه بر عملکرد یک چندترکن ارتعاشی در خاک، درصد لغزش چرخ‌های محرک تراکتور، درصد چندترکن هشته، ضریب همبندی و همچنین مقاومت کشیده دستگاه در چهار سطح فرکانس ارتعاش سال‌های (صفر، ۹، ۱۲ و ۱۵ هرتز) و زاویه حمله تیغه چندترکن (۱۱، ۴۴ و ۶۷ درجه) در قالب فاکتوریالی با طرح بلوک‌های کاملاً تصادفی و با سه تکرار اندازه‌گیری شد. نتایج نشان داد که عناصر میانگین مقاومت کشیده دستگاه و لغزش چرخ‌های محرک تراکتور با نگرمان فرکانس ارتعاش و زاویه حمله تیغه، مشابه یک اگر چه کمترین مقدار مقاومت کشیده در حالی بود ارتعاش و زاویه حمله ۲۴ درجه به‌دست آمد. ولی حدود ۵۰ درصد غدها در خاک باقی مانده و سطح خاک آورده نشدند. در صورتی که در حالت ارتعاشی با فرکانس بیش از ۱۰ هرتز فقط حدود ۲۰ درصد غدها در خاک باقی ماندند. نتایج ارتعاشی کردن بازوی‌های چندترکن، موجب افزایش نرخ و کاهش جداسازی غدها از خاک شد. برای انتخاب زاویه حمله و فرکانس مناسب، نسبت مقاومت کشیده دستگاه به درصد چندترکن در آوردن درجه (چندترکن سال) و شکسته شده (K) به عنوان میزان مهربانی تعریف گردید. نسبت K برای ترکیب‌های مختلف زاویه حمله تیغه و فرکانس ارتعاش معنی‌دار و مورد تجزیه و تحلیل آماری قرار گرفت. مقایسه میانگینی با ترکیب‌های یکدستگاه از اندازه‌گیری شده و نسبت K نشان داد که میانگین ترکیب زاویه حمله تیغه ۴۴ درجه و فرکانس ارتعاش ۹ هرتز است که در این حالت کمترین درصد غدها و شکسته مانده گردید.

واژه‌های کلیدی: فرکانس، زاویه حمله، چندترکن ارتعاشی، عملکرد

شده، کشت چندترکن در ریف‌های ۵ سانتی متری دارای عملکرد بیشتری نسبت به فاصله‌های ریف‌های ۶ سانتی متری می‌باشد. به اظهار مدیران کارخانه‌های قند نفک جهان، اصفهان

مقدمه

چندترکن که از دو محصولی است که به عنوان منابع تأمین کننده ساکارز در کشور کشت می‌شود. (۲) طبق تحقیقات انجام ۱ به ترتیب استادور، استاد و دانشجوی سابق کارشناسی ارشد مکاتبه‌های کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

masoumi@cc.iut.ac.ir

* مسئول مکاتبات، پست الکترونیکی:
آزمایشگاهی تیغه بولبدوزر، گاوهای منحصربه‌فرد و قلمی
نشان داد که اگر ارتعاش در جهت حرکت تراکتور (جهت
طولی) اعمال شود، هیچ کاهش مقاومت کششی در حدود
17/6 درصد می‌گیرد (14). امکان و همکاران (5) بک
کاهش 33 درصدی مقاومت کششی بک تازهکن نک
شاخص از تغییرات وضعیت جنگلی تراکتور نموده‌اند. فراکس، دانش
ارتعاش و سرعت پیشرو محاسبه‌بر مقاومت کششی آن تأثیر
پسازی دارد. کانک و همکاران (8) ارتعاش را بر مقاومت
کششی ماهی سبز زمینی که در ناحیه دامنه و چهار
فراسکی و سرعت بسیار مری مورد ارزیابی قرار داده و نشان
دادند که این ارتعاش بک از تراکتور نموده‌اند. امکان
کاهش 6 درصدی مقاومت کششی یک کاهش 21 درصدی مقاومت کششی
بک تازهکن شهر شاخص ارتعاش در دامنه ارتعاش
5 سانتی‌متر. به نامی جانوری که راهی روی یک مدل تراکتور
کاهش مورد نیاز باید مدل برونی مدل تراکتور را در
محصول باشند که در موارد با عملکرد بالا بافت ستگی
خاک، این مشکل حادتر می‌شود. همچنین علی‌کم بودن
فاضل دریغ‌ها، می‌شود با کاهش چندرنگ در کف
جوی‌های دریغ‌های مجاور موجب می‌گردد که مکانیسم تراکتور
گردد. مدل بک به نوبه خود امکان استفاده از حذافی
تراکتور را کاهش می‌دهد. این گرد بی‌گزینه زنی پوکه‌های چندرنگ.
چند روز قبل از برداشت لغزش بایلی جریان‌های تراکتور در
بردشت را ناچیز کاهش می‌دهد. این مشکل مقاومت
کششی باقی‌مانده که در هر لحظه چندرنگ در بردشت سه ریفی به
صوئت هم زمان به مقدار ناچیز برطرف می‌گردد که بایستی
به روش‌های دیگری به آن فاقد آمد.
مقاومت کششی ادامه که باعث استند شدن خاک و ریشه
گیاه می‌گردد. به طور قابل ملاحظه‌ای با ارتعاش عضوی
درگیر با خاک کاهش می‌پیدا. بکی از عمل کاهش مقاومت
کششی، نشان داد که با هجوم ارتعاش
ادوات می‌باشد (4). همچنین کاهش نیروی استککارکی روی
وسیله‌های کاوش‌ور عامل کاهش مقاومت کششی در اثر ارتعاش
شناخته شده است (10). آزمایش‌های انجام شده روي مدل‌های

232

Downloaded from http://publiclibrary.irc.ir at 12:17 IRST on Thursday December 20th 2018
تاثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چنددرکن ارتعاشی...

اهداف پژوهش: حاضر عبارت بودند از بررسی اثر فرکانس ارتعاش و زاویه حمله تیغه بر:
- توده‌های چنددرکن شکستگی شدند و به آسانی کشتی در خاک
- مقاومت کشش چنددرکن و لغزش چرخ‌های محور
- تراکتور کششی و همچنین توصیه ترکیب فرکانس ارتعاش و
- زاویه حمله تیغه مناسب با توجه به درصد چنددرکن شکستگی
- شده و درآورده شده از خاک و مقاومت کششی دستگاه.

مواد و روش‌ها
آزمایش‌ها در مزرعه تحقیقاتی دانشگاه کشاورزی دانشگاه
صحنی اصفهان واقع در شهرستان نجف آباد اجرا گردید. با فرام
خاک مزرعه، لوم رسمی (Clay loam) حداک ۶/۷ کرم بر سانتی متر مکعب و pH
۰/۷۵ بود. خاک حداک، نیترات در حد طراحی زراعی و تغذیه یافتگی، به ترتیب
۱۵ و ۱۰ درصد ورزش بر اوره پایه تبر دست آمد. متوسط دصرد
وزن رطوبت خاک تا ۷۰ سانتی‌متر در زمان برداشت
چنددرکی ۱۲/۱ درصد بر پایه تربه.

مساحت مزرعه چنددرکی قند مورد آزمایش با درنظر گرفتن
حالی‌های پایین و بالایی هر کرت برای دو زدن برای ۲۴
هکتار بود و طول هر کرت آزمایش ۶۰ متر در نظر گرفته شد. در هر کرت آزمایشی سه ریف و سطح برداشت می‌شود و در
رده‌بندی، یکی از راست و دیگری از چپ، سه دوره خودبردی به
سانتی‌متر، فاصله بین دو بیوت متوالی ری یک دوی ریف در زمان
کشت و پس از نکردن به ترتیب برابر ۷ و ۲۵ سانتی‌متر
بود. برای کاشت مزرعه تعدا ۷ واحد صدهزار می‌گذار
منوارم رقم ۱۷۱۱۲ ایرانی به وسیله بکر دوی ریف کار ۶ ریف به
موزع سفید، با تراکم ۲۷۰۴۰ ریف در هکتار کشت کرد. در
عملیات اماده‌سازی، کاشت و کوله‌پوشی‌رنگ، کود، سم‌پذیر،
jگین علف‌های هرز، مبارزه با آفات و ایامبیزه مزرعه با توجه
به کم‌مزرعه و کارشناسی شرکت کاشت اصفهان انجام

که روت یک زیرشکن تیغه ارتعاشی دریافتند که به افزایش
فرکانس ارتعاش، روند تغییر لغزش چرخ‌های محور تراکتور
مقدار تغییر مقاومت کششی دستگاه بود. معمول مکانی و
لغزش (۳) در مطالعه‌ها که روی عملکرد انواع تراکتور‌های
مداری در ایران، انجام داده شده این تجربه را نشان داد که لغزش
چرخ‌های محور تراکتور را در افزایش مقاومت کششی
ادوات دارد.

با افزایش درجه مکانیزاسیون در عملیات برداشت و پس از
برداشت، مقدار آسیب‌های مکانیکی در گیاهان غده‌ای برای
مطروح‌سازی و در کاهش ریسک‌ها و در کاهش غده‌ای استفاده قرار گرفت.
که در خاک‌های نسبتاً سخت و همچنین در شرایطی که
عملکرد محصور بی‌سیاستی آسیب‌های غده‌ای است. از طرفین این
دستگاه دارای یک گر در و در دستگاه می‌باشد که
طول دستگاه را زیاد می‌کند و به عنوان کاهش مزرعه کشور
مورد استفاده زراعی کشور را به‌طور انسانی است. برای جل‌ای
مشکل‌های پیش‌نشان‌های شاهد، کانال زن گر و دریفت گر
دستگاه در این موارد به‌طور انسانی است. برای جل‌ای
مشکل‌های پیش‌نشان‌های شاهد، کانال زن گر و دریفت گر
دستگاه در این موارد به‌طور انسانی است. برای جل‌ای

شکل 1. جهانگردی ارتقاء مورد آزمایش بدون واحد کارگران برگ و ریفینگ کن (نموده مشابه اونزین).
تأثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چندگرهای ارتعاشی ...
در اندازه‌گیری درصد چگین‌رهایی شکسته شده جانشین،
درصد از ارتفاع در قسمت پایین غده (قسمتی که در خاک قرار
دارد) با بیشتر از آن، قرار شکسته می‌شود. غده جزء چگین‌رهایی
شکسته شده به همراه می‌آید که در ان صورت باقی مانده در غده
در خاک، جزء چگین‌رهایی باقی مانده در خاک محسوب نمی‌شود.
در اندازه‌گیری درصد چگین‌رهایی باقی مانده در خاک و
حالت وجود داشت: 1- غده کامل 2- غده بازه 3- غذه ماندگر
همیشه چسبه اما اگر برای جاده‌ای از آن خاک، نیاز به یک
ویسه کمکی باید داشته باشد از این صورت جزء چگین‌رهای
باقی مانده در خاک به حساب آمده.
برای اندازه‌گیری درصد چگین‌رهایی شکسته شده و باقی مانده
در خاک، یک کادار چربی 5×1/5 متر تهیه گردید (1). پس از
انجام هر آزمایش مقاومت کششی، به طور اتصافی یک نفر از
واستگاه هر کریم اقدام شد و با کانالی کادر مزبور در آن
نقطه، تعداد چگین‌رهایی سالم، شکسته شده و باقی مانده در خاک
که در داخل کریم داشتند، شمارش گردید. مسیب درصد
فراوانی سبب چگین‌رهایی شکسته شده و باقی مانده در خاک با
تقسیم تعداد گرفته‌های کل چگین‌رهایی در این مساحت و
ضرب در عدد 100 به دست آمد.
پس از انجام آزمایش‌های، داده‌های حاصل مورد تجزیه
وتحلیل آماری قرار گرفتند. برای تجزیه وتحلیل داده‌ها از نرم
افزار آماری SAS وبرای ارزیاب (11) و در صورت عدم دسترسی
MSTATC به دست کاربر به اثربخشی از نرم‌افزار آماری
استفاده شد. یاکینیکی در سطح احتمال 0.05 درصد و با استفاده از
آزمون بکسیدگی مقایسه شدند. برای رسم نمودارها نیز از
نرم‌افزار EXCEL استفاده گردید.

۲۳۸
تآثیر زاویه جميله تیغه و فرگنس ارتعاش بر عملکرد یک چندگانک ارتعاش

جدول 1: اثر زاویه جميله تیغه و فرگنس ارتعاش بر میانگین مقاومت کششی چندگانک. نبزه چرخ محرک تراکتور، درصد

<table>
<thead>
<tr>
<th>عوامل آزمایش</th>
<th>عامل جميله تیغه (درصد)</th>
<th>عامل فرگنس ارتعاش (هرت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقاومت کششی (کبیلون)</td>
<td>11/6</td>
<td>8/7</td>
</tr>
<tr>
<td>عادیه شکسته شده (درصد)</td>
<td>11/2</td>
<td>1/1</td>
</tr>
<tr>
<td>عادیه های باقی مانده در خاک (درصد)</td>
<td>7/3</td>
<td>9/6</td>
</tr>
</tbody>
</table>

* : میانگین‌ها در هر عامل آزمایشی و در هر ستون که حذف مشترک هستند، قادف تفاوت آماری بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشد.

نتایج و بحث

1. مقاومت کششی

نتایج تجزیه واریانس نشان داد که اثر زاویه جميله تیغه و فرگنس ارتعاش در سطح احتمال 5 درصد بر مقاومت کششی چندگانک کمی در است. شماری از محفظان بی‌همچون هم و همکاران (5)، ساکاری و همکاران (12) و کامپ و همکاران (8) کاهش مقاومت کششی را بر اثر ارتعاش نمودند. آنها گزارش نموده‌اند. همچنین تونگ و موید (14) تأثیر متعاقب زاویه جميله بر مقاومت کششی را بررسی و گزارش نمودند. جدول 1 مقاومت میانگین‌های مقاومت کششی، درصد زاویه جميله محرک تراکتور، درصد چندگانک ارتعاش شکسته شده و باقیمانده در خاک را در سطوح مختلف زاویه جميله تیغه و فرگنس ارتعاش نشان می‌دهد.

نتایج تجزیه واریانس تأثیر برهمشکست عوامل آزمایشی (زاویه جميله و فرگنس ارتعاش) بر پارامترهای اندازه‌گیری شده نشان داد که در سطح احتمال 5 درصد اختلاف معناداری وجود دارد. به منظور بررسی و اتخاذ مناسب‌ترین ترکیب زاویه جميله و فرگنس ارتعاش، اثر برهمشکست عوامل آزمایشی
<table>
<thead>
<tr>
<th>پارامترهای</th>
<th>عوامل آزمایش</th>
<th>زاویه حمله</th>
<th>مقاومت کششی (کیلو نیوتون در صورت خیزی)</th>
<th>مقاومت شکست (کیلو نیوتون در صورت خیزی)</th>
<th>لغزش خزریا (درصد)</th>
<th>غدهای شکستی</th>
<th>غدهای شکست‌گیر (درصد)</th>
<th>غدهای شکست‌زده باریک (درصد)</th>
<th>غدهای شکست‌زده باریک (درصد)</th>
<th>غدهای شکست‌زده باریک (درصد)</th>
<th>غدهای شکست‌زده باریک (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/186bc</td>
<td>1</td>
<td>11</td>
<td>31/2b</td>
<td>11/7ab</td>
<td>5/8a</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0/197bc</td>
<td>2</td>
<td>2</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0/197bc</td>
<td>1</td>
<td>11</td>
<td>31/2b</td>
<td>11/7ab</td>
<td>5/8a</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0/197c</td>
<td>3</td>
<td>3</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0/126a</td>
<td>4</td>
<td>4</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0/126c</td>
<td>5</td>
<td>5</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0/126d</td>
<td>6</td>
<td>6</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0/126e</td>
<td>7</td>
<td>7</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>0/126f</td>
<td>8</td>
<td>8</td>
<td>36/3a</td>
<td>16/8ab</td>
<td>5/8a</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

* میانگین های هر ستون که هدایت در یک حرف مشترک هستند، فاقد تفاوت آماری بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشد.

** جدول 2: اثر برهمکنش زاویه حمله تیغه و فرکانس ارتعاش بر پارامترهای اندازه گیری اشکال و محاسبه شده**

بر پارامترهای اندازه‌گیری شده به صورت جدول 2 ترجمه گردید. بیشترین مقاومت کششی در ترکیب 5 (20 ارتعاشه با زاویه حمله 24 درجه) مشاهده گردید. در این ترکیب کمترین دشدت چپ‌گردش‌های شکسته شده به دست آمده و درصد زیادی از چپ‌گردش‌های تیز از خاک در نیایده شده که دستگاه در این ترکیب، عملیاتی تاکید داشت و به طور سطحی در حال کار بود و احتمال هم این نمونه یا پایین آمدن مقاومت کششی در این ترکیب گردیده است. اما در ترکیب 6 (ارتعاشه با فرکانس 9 هرتز و زاویه حمله 24 درجه) بر عکس ترکیب 5 شاهد بیشترین مقاومت کششی دشته و کمترین دشدت چپ‌گردش‌های باقی مانده و شکسته شده بوده‌اند. بیشترین می‌توان ادعا کرد که مقاومت کششی دشته‌گری صرف کار می‌فیکد (درآوردن چپ‌گردش‌های خاک) طی عملیات برداشت شده است.
لنزش جرخ‌های محرک تراکتور

تبیخ تجزیه و ارتباط نشان داد که اثر زاویه حمله تیغه و فرکانس ارتعاش چندگانک در سطح احتمال 5 درصد بر لنزش جرخ‌های محرک تراکتور معنی‌دار است. مقایسه بین میانگین مقاومت کششی و لنزش جرخ‌های محرک در جدول 1 نشان می‌دهد که روند تغییر آن در پارامتر بای تغییر فرکانس ارتعاش و زاویه حمله تیغه، رفتار مشابه دارد. این امر نشان می‌دهد که لنزش جرخ های محرک تراکتور رابطه‌ای مستقیم یا مقاومت کششی دستگاه دارد و با فرازیش مقاومت کششی، لنزش جرخ‌های نیز افزایش می‌یابد. تابی مشابه در ارزیابی مقاومت کششی گاوهای فلمن با استفاده از دو تراکتور مداوم در این پیژ گزارش شده است (9).

چندگانک شکسته شده و بایان مانده در خاک

نتایج تجزیه و ارتباط نشان داد که در لرزش‌های شکسته شده و بایان مانده در خاک در سطح 5 درصد تحت تأثیر زاویه حمله تیغه و فرکانس ارتعاش چدگانک قرار دارند. میانگین چندگانک بایان مانده در خاک در حال ارتعاش و بدون ارتعاش (فرکانس صفر) با یکدیگر اختلاف معنی‌داری داشتند (جدول 1). این‌طور که در جدول 1 نشان می‌دهد میانگین بین از 5 درصد لرزش‌های چندگانک پس از عملیات برکشیدگی با پاژوهان بدون ارتعاش احیا می‌شوند در دو تراکتور که با اعیاب ساده‌ای در حالی که با اعیاب کردن پاژوهان چندگانک این مقدار به 21 درصد رسیده است.

مقایسه مقدار میانگین درصد چندگانک شکسته شده در زوايا حمله مختلف نشان داد که با افزایش زاویه حمله تیغه، درصد چندگانک شکسته شده کاهش می‌یابد (جدول 1). این امر احتمالاً این است که با افزایش زاویه حمله، دستگاه در عملیات انجام شده، مقدار ثابت می‌باشد. با این‌حال، در مورد میانگین درصد چندگانک شکسته شده، رابطه‌ای خطی و مستقیم با مقاومت کششی دستگاه داشت. با توجه به جدول 2، ترکیب 5 کمترین مقدار مقاومت کششی را نشان می‌دهن. بنابراین از این دیدگاه، مقایسه ترکیب می‌باشد. اما ممانعت به چنین اشاره شد علت اصلی کم بودن مقاومت کششی در این حالت ناشی از

241
نپنده می‌دهم، اما احتمالاً به علم درآوردن چندگرهای انرژی به‌طور صرف شده است و همین امر سبب کاهش مقاومت کششی و نزول چرخ‌ها در این تركیب گرده است که با توجه به تزیزوی میزان نزول چرخ‌ها (16/7 درصد) با محدوده قابل قبول (10 تا 15 درصد) ممکن است نسبت به نهایت نسبت به نهایت است و به ساله بی‌صرف تک بعدی مرجعیت شده است. این روز معیاری معرّف شد تا در انتخاب تركیب مناسب زاویه حمله تیغه و فرکانس ارتعاش، دو دیدگاه‌ها را مصداق داشته باشد. این معیار به صورت یک نسبت K بایان شد که برای استفاده

یکی از تجربیات مقاومت کششی جنگل‌کن:

\[K = \frac{\text{درصد چندگرهای درآورده شده}}{\text{درصد چندگرهای درآورده شده از تقابل درصد چندگرهای باقی مانده در خاک از عدد 100 محسوب گردد.}}\]

نتایج تجربه وارمزش نشان داد که نسبت K تحت تأثیر زاویه حمله تیغه و فرکانس ارتعاش چندگرهای انرژی و به‌هم‌کنش آنها قرار گرفت. جدول ۲ مقایسه میانگین‌های مقاومت کششی لغزش، جرخ درصد چندگرهای آبیاری حمله تیغه و فرکانس ارتعاش نشان میدهد. میانگین K در حالت ارتعاشی به جز در ترتیب ۲ اختراع معنی‌داری نشان ندادند و این بدان معنیست که مقاومت کششی دستگاه‌های چندگرهای ازای درصد چندگرهای درآورده شده در حالات ارتعاشی پویا بوده است. بنابراین از نظر که هدف نهایی بردیسی محصول به حداکثر اسپرت‌های مکانیکی باشد، بهترین روش مورد نیاز ترکیب تحت بوته‌های سزار می‌گردد. به‌منظور تعیین ترکیبی که مناسب‌ترین کمیتی بردنش و عملکرد دستگاه را داشته باشد، ترکیب‌هایی که کمترین درصد چندگرهای صدمه دیده و باقی مانده در خاک را نشان دهند مورد توجه قرار گرفتند. ترکیب ۶

سیاستگرایی

نوبت‌گذاری از تامی عزیزی‌که در طول این تحقیق آنها را مشاوره و بار فرودی بخصوص استاد ارمنند جناب آقای دکتر عبدالرضا رضایی و پرست محرز، مورد انتخاب گردیده و بررسی مکانیکی به اصفهان و پرست محرز کارخانه قد اصفهان تاکید و یک‌میلیاردی می‌باشد. ضمناً از ناشناخته با کششی دیگری اصفهان که هر یک‌های این تحقیق را تا کشور، سیاستگرایی.
منابع مورد استفاده

1. کیهان، آر. ا.، ر. بینر و آ. ال. بارگر. 1371. اصول ماشین‌های کشاورزی (ترجمه: شفیعی، س. ا.). جلد اول، مؤسسه انتشارات و چاپ دانشگاه تهران، تهران.

3. کوک، د. ا. و آر. کی. اسکات. 1377. جنگل‌سازی. از علم‌های علمی و عمل (ترجمه: اعضا هیئت علمی مؤسسه تحقیقات اصلاح و تهیه بذر کشاورزی) نشر علوم کشاورزی، تهران.

4. همیشه، ع. و. ا. ناتکی. 1380. بررسی آسیب‌های مکانیکی پنج نوع ماشین سیب زمینی کن در منطقه فریدن اصفهان. مجله علوم و فنون کشاورزی و منابع طبیعی، 1376(2): 195-209.

5. همیشه، ع. و. صادق نژاد و ر. علی‌میرداماد. 1379. مقاومت کششی زیرشکن ارتعاشی در دوره ارتعاش و بی‌ارتعاش و اثر ان بر خواص فیزیکی خاک. مجله علوم کشاورزی ایران، 31(1): 127-142.

