تأثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چندرنگ ارتعاشی

سه واحده در برداشت کشت‌های ۵۰ سانتی‌متری

امین اله مصوصی‌ها، عباس همت و مجید رجبی‌ها

(تاریخ دریافت: ۱۳۸۵/۰۱/۲۳ تاریخ پذیرش: ۸/۰۲/۱۷)

چکیده

در سال‌های اخیر کشت چندرنگ قند در رفیع‌های ۵۰ سانتی‌متری به دلیل افزایش عملکرد آن در مقایسه با کشت ۵۰ سانتی‌متری سورد استقبال کشاورزان کشورمان قرار گرفته است. فاصله کم بین زاویه‌های کشت در این روش، برداشت سه زاویه به جای دو زاویه محصول را ایجاد می‌نماید که با این علت مقاومت کشی دستگاه چندرنگ افزایش می‌یابد. به منظور اکمات کشیدن چندرنگ سه زاویه با تراکتورهای میان دوره موجود در کشور و در اورده اثر انگشت چندرنگ از خاک ارتعاشی کرد سه‌تا چندرنگ مورد توجه قرار گرفته است. در این تحقیق اثر فرکانس ارتعاش و زاویه حمله تیغه بر عملکرد یک دستگاه چندرنگ ارتعاشی مورد مطالعه قرار گرفت.

درصد لغزش چرخ‌های محور تراکتور، درصد چندرنگ‌های شکسته، شده و باقی مانده و همچنین مقاومت کشی دستگاه در بهترین سطح فرکانس ارتعاش سال‌های (صفر، ۷ و ۱۲ هرتز) و سه زاویه حمله تیغه چندرنگ (۰/۰۱، ۲۴ و ۲۷ درجه) در بالاترین فاکتورهای ثابت زاویه کامل تصویفی با سه تکرار اندازه‌گیری شد. تاثیر نشان داد که روند تغییرات مقاومت کشی دستگاه و لغزش چرخ‌های محور تراکتور با تغییر فرکانس ارتعاش و زاویه حمله تیغه مشابه بود. اگر چه کمترین مقدار مقاومت کشی در حال حاضر ایجاد ارتعاش و زاویه حمله ۲۴ درجه بوده‌است. ولی حدود ۲۰ درصد غدها در خاک به‌نامه و بسط خاک آلوده، در صورتی که در حال واقع زاویه‌های پایین‌تر بازه‌های چندرنگ، موجب اعمال موثرتر انرژی جداسازی غدها از خاک شد. برای انتخاب زاویه حمله و فرکانس مناسب، نسبت مقاومت کشی دستگاه به سطح غدها در محموله چندرنگ در دو ساله سال و شکسته (K) به عنوان میارک نسبت تعیین گردید. نسبت K برای تبریز‌های مختلف زاویه حمله تیغه و فرکانس ارتعاش محاسبه و مورد تجزیه و تحلیل آماری قرار گرفت. مقایسه میانگین‌های پارامترهای اندام‌گیری شده و نسبت K نشان داد که مانند تبریز، زاویه حمله تیغه ۲۴ درجه و فرکانس ارتعاش ۹ هرتز است که در این حالت کمترین درصد غدها بایاق بمانند و شکسته مانندی نماید.

واژه‌های کلیدی: فرکانس، زاویه حمله، چندرنگ ارتعاشی، عملکرد

مقدمه

چندرنگدند قندی که در محصولی است که به عنوان منابع تأمین کننده ساکارز در کشت می‌شود (۲). طبق تحقیقات انجام

1. به ترتیب استفاده، استاد و دانشجوی سابق کارشناسی ارشد مدرسان منابع چندرنگدند، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

masoumi@cc.iut.ac.ir

* مسئول مکاتبات پست الکترونیکی: masoumi@cc.iut.ac.ir

1387
Rake Angle
تأثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چنددرکن ارتعاشی...

اتهاف پیروزه حاضر عبارت بودند از بررسی اثر فرکانس ارتعاش و زاویه حمله تیغه بر:

الف) درصد چنددرکن شکسته شده و باقیمانده در حاکم
ب) مقاومت کششی چنددرکن و لغش‌های چرخ‌های محرک
تراکتور کششی و همچنین توصیف ترکیب فرکانس ارتعاش و
زاویه حمله تیغه مناسب با یک توجه به درصد چنددرکن شکسته
شده و درآورده شده از خاک و مقاومت کششی دستگاه.

مواد و روش‌ها

آزمایش‌ها در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه
صحنه اصفهان واقع در شهرستان نجف آباد اجرا گردید. بافت
خاک مزرعه، روسیم (Clay loam) حداکن 1/4 درصد، pH، و رطوبت خاک در حداکن 0/5 درصد به ترتیب در دو
و 10 درصد وزنی بر پایه تری دسته آماده. متوسط درصد
وزنی رطوبت خاک تا 30 سانتی‌متری در زمان برداشت
چنددرکن برای 1/2 درصد بقا بر ثروت
مصایح مزرعه چنددرکن قند مورد آزمایش با نظر گرفتن
حاجت‌های پایین و بالای هر کرت برای دور دند برای 2/6
بکار بود و طول هر کرت آزمایش 80 متر در نظر گرفته شد.
در هر کرت آزمایشی سه ردیف و سه زمان برداشت به
دو رنگ، یکی از راست و دیگری از چپ دست نخورده به
می‌ماند. بین ترتیب هر کرت آزمایشی شالی 5 ردیف و جمعا
به عرض 2/5 مترب. فاصله بین ردیف‌های کشت
50 سانتی‌متری، فاصله بین دو بونه تمامی ریک ردیف در زمان
کاشت و پس از تکن کردن به ترتیب برای 7 و 25 سانتی‌متر
مورد برای کشت مزرعه تعداد 3، 4 و 7 واحد از دست رها شدن با
منورم رقم 17112 ایرانی و به روش کار 6 ردیف با
مزرعه مفهومی، با تراکم 2/60000000000 در هر کرت کشت گردید.
عملیات آماده‌سازی، کاشت و کولی‌ولوژیزی، کوده، سمپتی،
و جنین عفونی‌های هر، مناسب و آبیاری مزرعه با نظارت
مدیر مزرعه و کارشناس شرکت قند اصفهان انجام

که روی یک زیرشکن تیغه ارتعاشی دریافتند که با اندازه
فرکانس ارتعاش، روند تغییر لغش چرخ‌های محرک تراکتور
مشابه تغییر مقاومت کششی دستگاه بود. معمولی کافی و
لاغر 99 درصد چرخ‌های روز امکان پذیرانه انتخاب تراکتورهای
مداوم در ایران، انجام داده به این توجهی رساند. که لغش
چرخ‌های محرک تراکتور رایلی‌ها مستقیماً با مقاومت کششی

ادوات دارد.

با افایش درجه مکانیزاسیون در عملیات برداشت و پس از
برداشت، می‌شد. عوامل مؤثر بر پسماند وارد در بر
نیازها شامل
رکم، درجه و شاخص‌های داده، شاخص‌های محاسبه و همچنین به
کارگیری نادستی می‌باشد. میزان آب‌رسایی که
در اثر برگردان در برداری می‌شد به خواص مکانیکی و
رژنژیکی غده با نیروهای خارجی اعمال شده به آن پیمای
دارد. بنابراین، کنترل میزان آب‌رسایی از جمله
به کاهش نیروهای خارجی اعمال شده به غده در حین کنگ

مراحل مختلف یافته باید غده‌های نیز پیمایی دارد (4).

با منظور فائق آمدن بر مشکلات مانند برداشت سه راهیه
چنددرکن در کشورمان، در سال‌های واحده مانند چنددرکن
ارتعاشی اولین با صاحب خور آلمان مورد استفاده قرار گرفت
که در خاک‌های نسبتاً سنگین و همچنین در شرایطی که
عملکرد محقق بالاست کارایی‌شان است. از طرفی این
دستگاه دارای کارت برگ و رفت و دریافت کن می‌باشد که
طول دستگاه را زیاد می‌کند و به علت کم‌کمی مزارع کشور
مورد استقبال زاری کشور در نظر گرفته است. برای حل این
مشکل یک نمونه مشابهی که فاقد کنار زن برگ و رفت کن
می‌باشد، با توجه به تحقیق حاضر استفاده گردید. از آنجا
که برای برداشت مؤثر (آیرون آذر) پیشتر چنددرکن از خاک
قرار دادن آنها روی سطح خاک) در شرایط مرطوبی کشورما

انتحاب فرکانس ارتعاش و زاویه حمله مناسب ضروری است.
در این تحقیق به بررسی تأثیر آن با توجه به عملکرد استفاده
یافته دیده‌وشد. بنابراین با توجه به مطالب ذکر شده,

235
شکل 1. جنگفردک ارتعاشی مورد آزمایش بدون واحده کارگر، بدنه کاهن
(نمونه مشابه اوتین).

میله رابط با بازو ارتباط دارد (3) در شکل 2. دوران محور عمیق تیغه‌ها 16 سانتی‌متر بوده که
ظری به این شکل برداشت عمیق کار تیغه‌ها 16 سانتی‌متر بوده که
ظری آزمایشات اولیه مناسب‌ترین عمق کاری تشخیص داده شد. متوسط شامل کردن مزرعه 65% در هر کار استفاده گردید که به کمک یک سنجاق اصفهانی در سال 1383
ماشین جنگفردک ارتعاشی، به این شکل بوده و فاصله به 5 سنین متر کارگر (شکل 1) و
دنده نتیج لایه های تیغه‌ها است که دوران محور نیوز
ده نتیجه‌ی بی‌گوی محور طولی (7) در شکل 2 و از آن به یک
تیغه‌دهنده گازشده و پس از 90 درجه تیغه به نسبت
یک به یک (9) در شکل 2، یک تیغه نیز طول تیغه‌ها شود.
دوران توسط سنجش این تیغه‌ها (7) در شکل 2، به نسبت
جهت نیوز بی‌گویی هیچ چیزی را نشان نمی‌دهد. در این
سنجش این تیغه‌ها به‌طور کامل تیغه‌ها و موارد
سنجیده شده بی‌گوی خارج از مرکز
سوار است. انتقال می‌یابد (6) و 7 در شکل 2. هر کدام از این

صفحه 235
تأثیر زاویه حمله تیغه و فکرانس ارتعاش بر عملکرد یک چنددرکن ارتعاشی...

شکل 2. نحوه تامین نوار سیستم مرتعش چندرکن. (1) بازو، (2) محل اتصال محور طولی به چهار شاخ گردن، (3) نقطه اتصال لولایی بازو به سیستم چندرکن، (4) میله رابط (5) نقطه اتصال لولایی میله رابط به بازو، (6) محور عرضی، (7) پیشکت خارج از مرکز، (8) پوسته جعبه‌دنده، (9) چرخ دندان‌های مخروطی تغییر جهت دوران، (10) چرخ زنجیره‌ای محورک، (11) چرخ زنجیر محورک.

(12) تیغه چنددرکن و (13) سوراخ‌های نیم‌کره شده روی تیغه برای تغییر زاویه حمله تیغه.

پارامترهای انتخابی که در تغییر چرخ‌های محورک تراکتور، درصد چنددرکن شکسته شده و درصد جنگل‌های باتری مانند در خاک برای انتخاب گیری مقاومت کشتی درختان از روش دو تراکتوری استفاده شد. مقادیر مقاومت کشتی به وسیله یک دامن‌متر کشتی انتخابی شده به صورت کف دستگاه به تراکتور عقبی (تراکتور حامل) منصل شد و تراکتور جلویی (تراکتور کشنده) به وسیله دو رشته زنجیری، که هر کدام از یک سر به دامن‌متر منصل می‌شود و آن را بین خود نگه می‌دارند، تراکتور حامل را می‌کشید. ابتدا دستگاه در حال به باری (حالی که دستگاه به تراکتور اتصال داشته اما در حال کار نبود) و تراکتور آزمایش‌ها. داده‌برداری صورت گرفت، بلوک به صورت مشاهده‌ای عملکرد دستگاه ارزیابی شد و نتایج آن برطرف گردید. پس از اصلاح نسبی دستگاه به نحوی که می‌توانست به طور مناسب در خاک نفوذ کند و چنددهنه را در آورده طرح اصلی اجرای گردید. آزمایش‌ها به صورت تکراری در قالب طرح بلوک‌های کامل تصادفی و در سه تکرار انجام شدند. آزمایش‌ها در سه سطح زاویه حمله تیغه (11، 24 و 36 درجه) و سه سطح فکرانس ارتعاش (صف، 8 و 12 هرتز) انجام گرفتند. حالت بدون ارتعاش به عنوان فکرانس صفر در نظر گرفته شد. نحوه انتخاب سطوح مختلف زاویه حمله تیغه و فکرانس ارتعاش بر اساس آزمایش‌های مشابه انجام شده توسط محققان دیگر بود (5، 8 و 16).
در اندازه‌گیری درصد چغندرهای شکسته شده چنانچه
20 درصد از ارتفاع در قسمت بالای عرض شکسته نشده که در خاک قرار دارد (با باشگاه از طریق اکتشاف زیر شکسته می‌شود. اگر این گونه جایگاه و تکانی توسط تیغه ای‌ها به آن وارد نمی‌شود.
1.7 پوشین بین ریشه‌های عرض و خاک از هم گسیخته می‌شد اما
از حاکم یک گلد، خاک باید قسمت مبود. در حالت
اول، خاک به دو علت که یک علت خاکه شده به حساب می‌آمد و
در حالت دوم، خاک باید به سهولت و با اعمال نیروی اندازه
ظرف کارگر یک گلد و این گونه جایگاه چغندرهای شکسته شده
محصول شد، آنگونه اگر باری تجربه‌ای آن خاک، نیاز به یک
وسیله کمکی مانند دلایت در این صورت جریه گذشته و
باقیمانده در خاک به حساب آمد.

برای اندازه‌گیری درصد چغندرهای شکسته شده و باقیمانده
در خاک، یک کادر چوبی 5 × 5 متر نهایی گردید (3). پس از
انجام هر آزمایش مقاومت کششی، به مورد تصادفی یک نقطه
واسته هر گونه البته آلودگی و با گذشتن کادر مزبور در آن
نقطه، تعادل حداکثر مالیات شکسته شد و باقیمانده در خاک
که در داخل کادر داشته و بخشی شمشیر گردید. سپس درصد
فراوانی نسبی چغندرهای شکسته شده و باقیمانده در خاک
با تئوری تعدادی بر علائم کل چغندرهای در این راسته و
ضرب در عدد 100 به دست آمد. پس از انجام آزمایش‌ها، داده‌ها حاصل مورد تجزیه
و تحلیل آماری واریانس غرفه و برازش مدل SAS و برای آماری
MSTATC و E2/08 و در صورت معنی‌دار برای برابری اثبات می‌کنند. به ساعت از
آزمایش الکترونیک مورد 5 دقیقه و با استفاده از
LSD با یکدیگر مقایسه شدند. برای رسم نمودارها نیز از
برای آزمایش الکترونیک مورد 5 دقیقه و با استفاده از
LSD با یکدیگر مقایسه شدند. برای رسم نمودارها نیز از

حمل و وضعیت خلاص قرار گرفت. سپس تراکتور کشیده،
تراکتور حاصل را ریسید. سپس به روش مشابه میانگین مقاومت
کششی تراکتور حاصل و دستگاه در حین کار قرار داد و بست
گردد. مقاومت کششی حاصل دستگاه از تفاضل میانگین
مقاومت کششی به دست آمدن به در دست خلاص هم از هر کرت
به دست آمد (8). دنبال مانندی مورد استفاده در این تحقیق,
ساخت شرکت Novatech و حداکثر طرفیت آن برابر 44.5 کیلو
نیوتن بود. تراکتور حاصل تراکتور اوتیورسال مدل 4620 و
تراکتور کشیده، تراکتور جاندار مدل 4340 بود. هر دو تراکتور
برای حرکت در زمین ریسه کش در دسترس قرار دارد. تراکتور
کشیده با نام 240، می‌تواند به هر زمان و در هر سطح
مودول 1500 بر دقیقه و سرعت 50 کیلومتر بر ساعت کار
کرده. تراکتور حاصل نیز با نام آزمایشی‌ها به خصوص
اندازه‌گیری مقاومت و حالت‌ها دیده از این امر
محور توانده 50 دور بر دقیقه کار می‌کرد. برای هر
اندازه‌گیری مقاومت کششی حداقل 4 مقدار نیرو از دنیانور
مایلیزی زمین ریسه‌دانگاه به عمق پایدار با تعیین
حدود 1 نانومتر قطعه شد (8). حدود 10 متر از زمین
آزمایشی برای ریسه‌دانگاه به عمق مناسب در نظر گرفته شد.
که در این فصل هیچ تجربه‌ای اندازه‌گیری نشان

آزمایش‌ها لغزش چرخ، چرخ به چرخ، چرخ به چرخ، چرخ به چرخ، چرخ به چرخ
کشیده کردن پسماند با 1 تارکتور کشیده و دستگاه مدل جیرا
گردید. دلیل امر این بود که هدف اندازه‌گیری لغزش
چرخ‌های محرک تراکتور حاصل دستگاه در حین کار کشش
مشترک دستگاه چغندرکن بود. به منظور تعیین فاصله
لغزش چرخ‌های محرک تراکتور اندازه‌گیری شد (9). لغزش
چرخ‌های محرک تراکتور از رابط زیر محاسبه گردید:

\[\text{لغزش} = 100 \times \left(\frac{\text{طول نظری}}{\text{طول واقعی}} \right) \]

لزوم به توضیح اینکه شماره 10 دور چرخ که هر
زمانی آغاز می‌شد که دستگاه به عمق پایدار می‌رسید.
آزمایش‌ها در سه تکرار انجام گردید.
جدول 1- اثر زاوهی حمله تیغه و فرکانس ارتعاش بر میانگین مقاومت کششی چنددرنگ. فرکانس چرخش محور تراکتور. درصد

<table>
<thead>
<tr>
<th>عوامل آزمایی</th>
<th>زاوهی حمله تیغه (درجه)</th>
<th>فرکانس ارتعاش (هر ثانیه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

* : میانگین‌ها در هر عامل آزمایی و در هر ستون که حداکثر هستند، فاقد تفاوت آماری بر اساس آزمون LSD سطح احتمال 0.05 می‌باشند.

نتایج و بحث

۱. مقاومت کششی

نتایج تجزیه واریانس نشان داد که اثر زاوهی حمله تیغه و فرکانس ارتعاش در سطح احتمال 0.95 درصد بر مقاومت کششی چنددرنگ کم معنادار است. شماری از متغیرهای فیزیکی همچون هسته و همکاران (5)، سایکل و همکاران (13) و کانگ و همکاران (8) کاهش مقاومت کششی را بر اثر ارتعاش نمودار آنها گزارش نموده‌اند. همچنین تونگ و موت (16) تأثیر معنادار تغییر زاوهی حمله بر مقاومت کششی را بررسی و گزارش نمودند. جدول 1 مقایسه میانگین‌های مقاومت کششی درصد لزغ جرخ‌های محور تراکتور درصد چنددرنگ برای شکسته شده و باقی مانده در در صورت مختلف زاوهی حمله تیغه و فرکانس ارتعاش نشان می‌دهد.

مقایسه کششی دستگاه در این زاوهی بود.

نتایج تجزیه واریانس تأثیر برهمکنش عوامل آزمایشی (زاوهی حمله و فرکانس ارتعاش) بر پرآرایه‌های اندام‌گیری شده نشان داد که در سطح احتمال 5 درصد اختلاف معنی‌داری وجود دارد. به منظور بررسی و انتخاب مناسب‌ترین ترکیب زاوهی حمله و فرکانس ارتعاش اثر برهمکنش عوامل آزمایشی
جدول 2. اثر برهمکنش زاویه حمله (جهد) و فرکانس ارتعاش بر پارامترهای اندازه‌گیری و محاسبه شده*:

<table>
<thead>
<tr>
<th>عوامل آزمایش</th>
<th>فرکانس (جهد)</th>
<th>زاویه حمله (درجه)</th>
<th>مقاومت کششی (کیلو نیوتون)</th>
<th>لغزش قرچک (درصد)</th>
<th>عددهای نکشته (درصد)</th>
<th>عددهای باقی (درصد)</th>
<th>نسبت K (کیلو نیوتون به ازای درصد چگنگی در آزمایش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/188hbc</td>
<td>36/2 b</td>
<td>36/8 b</td>
<td>31/2 b</td>
<td>11/8 ab</td>
<td>0/188hbc</td>
<td>0/188hbc</td>
<td>0/188hbc</td>
</tr>
<tr>
<td>0/197b</td>
<td>35/8 bc</td>
<td>25/8</td>
<td>25/4 bc</td>
<td>16/8 ab</td>
<td>0/197b</td>
<td>0/197b</td>
<td>0/197b</td>
</tr>
<tr>
<td>0/197cd</td>
<td>26/1 c</td>
<td>9/1 b</td>
<td>5/1 b</td>
<td>12/1 a</td>
<td>0/197cd</td>
<td>0/197cd</td>
<td>0/197cd</td>
</tr>
<tr>
<td>0/197d</td>
<td>19/8 de</td>
<td>17/8</td>
<td>10/8 de</td>
<td>16/8 de</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
<tr>
<td>0/197ed</td>
<td>27/5 bc</td>
<td>15/8 abf</td>
<td>16/8 abf</td>
<td>10/8</td>
<td>0/197ed</td>
<td>0/197ed</td>
<td>0/197ed</td>
</tr>
<tr>
<td>0/197d</td>
<td>15/4 cd</td>
<td>14/6</td>
<td>9/2 c</td>
<td>9/2 c</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
<tr>
<td>0/197d</td>
<td>11/4 ef</td>
<td>10/6</td>
<td>9/2 c</td>
<td>9/2 c</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
<tr>
<td>0/197d</td>
<td>22/1 gd</td>
<td>22/1</td>
<td>12/1 a</td>
<td>12/1 a</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
<tr>
<td>0/197d</td>
<td>20/2 gde</td>
<td>14/8 ef</td>
<td>16/8 ef</td>
<td>10/8</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
<tr>
<td>0/197d</td>
<td>18/4 d</td>
<td>18/4</td>
<td>16/8 de</td>
<td>10/8</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
<tr>
<td>0/197d</td>
<td>20/2 gde</td>
<td>14/8 ef</td>
<td>16/8 ef</td>
<td>10/8</td>
<td>0/197d</td>
<td>0/197d</td>
<td>0/197d</td>
</tr>
</tbody>
</table>

* میانگین‌های هر ستون به‌طور جداکدی در هر سری مشترک هستند. فاقد نتایج آماری بر اساس آزمون LSD در سطح احتمال 5 درصد باشد.

شکستگی بیشتر غده‌ها شده است. کمترین مقدار مقاومت کششی در ترکیب 5 (غیر ارتعاشی با زاویه حمله 24 درجه) مشاهده گردید. در این ترکیب، کمترین ضریب چگانگی در شکسته‌شده، به دست آمد و ضریب زیادی از چگانگی‌های نیز از خاک در نیامدند. این امر نشان می‌دهد که دستگاه در این ترکیب، عمل کاری اندازه‌گیری و مقدار سطحی در حال کار بود و احتمالی همین امر سبب آمدن مقاومت کششی در این ترکیب گردیده است. اما در ترکیب 6 (ارتعاشی با فرکانس 9 هرتز و زاویه حمله 24 درجه) بر عکس ترکیب 5، شاهد بیشترین مقاومت کششی دستگاه و کمترین درصد چگانگی شکستگی غده‌ها بود. بنابراین، می‌توان ادعا کرد که مقاومت کششی دستگاه صرف کار می‌شود (در آوردن چگانگی از خاک) طی عملیات برداشت شده است.
2. لغزش جرخهای محرک تراکتور

نتایج تجربه ای واربین نشان داد که اثر زاویه حمله تیغه و فرکانس ارتعاش چندگانه در صفحه احتمال 5 درصد بر لغزش جرخهای محرک تراکتور معنی دار است. مقایسه بین میانگین مقادیر کششی و لغزش جرخهای محرک در دستگاه 1 نشان داد که روند تغییر این دو پارامتر با تغییر فرکانس ارتعاش و زاویه حمله تیغه، رفتاری مشابه دارند. این امر نشان داد که لغزش جرخهای محرک تراکتور رابطه‌ای مستقیمی با مقادیر کششی دستگاه دارد و با افزایش مقاومت کششی، لغزش جرخهای نیز افزایش می‌یابد. تعداد مشاهده ارزیابی مقاومت کششی گواه‌مند قلمی با استفاده از دو تراکتور متدال در ایران نیز گزارش شده است (9).

3. چندگانه شکستگی شده و بایا مانده در خاک

نتایج تجربی و ارتباطی نشان داد که چندگانه شکستگی شده و بایا مانده در خاک در سطح 5 درصد تحت تأثیر زاویه حمله تیغه و فرکانس ارتعاش چندگانه حاکم است. میانگین چندگانه بایا مانده در خاک در حالت ارتعاشی و بدون ارتعاش (فرکانس صفر) با یکدیگر اختلاف معنی‌داری داشتند (جدول 1). همانطور که در جدول 1 مشاهده می‌شود پیش از 5 درصد گده‌های چندگانه پس از عملیات بردادن چندگانه با بایا مانده بدون ارتعاش همچنان در خاک بایا مانده است. در حالی که با ارتعاش کردن یک تراکتور چندگانه بایا مانده 21 درصد رسیده است. مقدار میانگین درصد چندگانه شکستگی شده در زواجی حمله مختلف نشان داد که با افزایش زاویه حمله تیغه، درصد چندگانه شکستگی شده کاهش می‌یابد (جدول 1). علت این امر احتمالاً آن است که با افزایش زاویه حمله، دستگاه در جرخهایی انجام شده، مقادیر ثابت بی‌شمار، بایا بایا چندگانه شکستگی مورد نیاز تراکتور، رابطه‌ای خطر و مستحیق می‌باشد. مقادیر کششی دستگاه درجه یا توجه به جدول 1، 5 کمترین مقدار مقاومت کششی نشان داده می‌شود. بنابراین از این دیدگاه، مقدار کششی را نشان می‌دهد. بنابراین از این دیدگاه، مقدار کششی، مقادیر لغزش جرخهای محرک در فرکانس‌های مختلف، بدون در نظر گرفتن مقدار به دست آمده بایا درصد کششگی غده‌ها در فرکانس صفر، می‌توان استنباط نمود که با افزایش فرکانس، تأثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چندگانه ارتعاشی...
نگاهی که در طی این تحقیق به دست آمده عبارت‌اند از:
1. نتایج تحقیق مقایسه‌ی کشتی زیرزمینی و لغزش چرخ‌های محرک
2. نتایج تحقیق مقایسه‌ی کشتی زیرزمینی و لغزش چرخ‌های محرک
3. نتایج تحقیق مقایسه‌ی کشتی زیرزمینی و لغزش چرخ‌های محرک
4. نتایج تحقیق مقایسه‌ی کشتی زیرزمینی و لغزش چرخ‌های محرک

سیاست‌گرایان
نوبن‌ده‌ها از تمامی عوامل‌هایی که در طول این تحقیق آنها را مشاور می‌پرداختند بخصوص استاد ارمند جناب آقای دکتر عبدالجلیل رضایی، پرسل محرک مزرعه دانشگاه صنعتی اصفهان و پرسل محرک کارخانه قد اسفهان تشویق و قدردانی می‌نمایند. ضمناً از دانشکده کشاورزی دانشگاه صنعتی اصفهان که هرینه‌ی این تحقیق را تقبل فرمودند، سیاست‌گرایان.

عدم نفوذ کافی دستگاه بوده است که نتیجه‌ی آن باید مانند حدود 50 درصد غذای چندرفتار در حالی‌که سایش بیشترین شاید انتخاب زاویه حمله و فرکانس مناسب با توجه به هر یک از دو دیگران امکان‌پذیر است و به همین‌نامه این نتیجه‌ی شناختی که در نظر گرفته شده است و به دلیل نقص شناسایی دیدگاه نشده است. این روز معمایی می‌شود شک در انتخاب کردن مناسب زاویه حمله تغییر و فرکانس ارتقاءش، هر دو دیدگاه را محدود نمی‌کند. باشد. این معمایی موثر یک نتیجه

**: مقایسه کشتی زیرزمینی

k = \frac{\text{درصد چندرفتهای در آورده شده}}{\text{درصد چندرفتهای در آورده شده}}

بت‌که تحت تأثیر زاویه حمله تغییر و فرکانس ارتقاءش چندرفته و به‌همکاری آنها قرار گرفت. حدود 2 میلی‌متری‌های مقایسه‌ی کشتی لغزش چرخ در چندرفته یکسان کشتی زیرزمینی و لغزش چرخ‌های محرک شکسته شده و بایگانی‌های در خاک و

ناتایج تحقیق این نشان داد که نتیجه

7. بررسی کم‌ترین فرکانس زاویه حمله تغییر و فرکانس ارتقاءش کشتی زیرزمینی

8. بررسی کم‌ترین فرکانس زاویه حمله تغییر و فرکانس ارتقاءش کشتی زیرزمینی

9. بررسی کم‌ترین فرکانس زاویه حمله تغییر و فرکانس ارتقاءش کشتی زیرزمینی

10. بررسی کم‌ترین فرکانس زاویه حمله تغییر و فرکانس ارتقاءش کشتی زیرزمینی

11. بررسی کم‌ترین فرکانس زاویه حمله تغییر و فرکانس ارتقاءش کشتی زیرزمینی

12. بررسی کم‌ترین فرکانس زاویه حمله تغییر و فرکانس ارتقات
منابع مورد استفاده

1. کیتی، آ.ر. ا. و پی. ا. ال. بارکر. 1376. اصول ماشین‌های کشاورزی (ترجمه: شفیعی، س. ا.). جلد اول، مؤسسه انتشارات و چاپ دانشگاه تهران. تهران.
2. کدک، د. ا. و آزیمی، ا. اسکات. 1375. رزاعت چندریه. (ترجمه: کوچکی، عوض و همکاران). انتشارات جهاد دانشگاهی مشهد.
3. کدک، د. ا. و آزیمی، ا. اسکات. 1377. چندریه. از علم تا عمل (ترجمه: اعتیاد هیئت علمی مؤسسه تحقیقات اصلاح و تهیه بذر چندریه) نشر شرکت کشاورزی تهران.
4. همیشه، ع. و. تاکی. 1380. بررسی آسیب‌های مکانیکی به استحکام سپر زمینی کن در منطقه فیروزکوه اصفهان. مجله علوم و فنون کشاورزی و منابع طبیعی (39): 75-105.
5. همیشه، ع. و. صادق نژاد و. اسکات. 1379. مقاومت کشی زیرشکن ارتقاء در دو حالت ارتقاء و بدون ارتقاء و اثر آن بر خواص فیزیکی خاک. مجله علوم کشاورزی ایران 31(1): 127-142.