تأثیر زاویه حمله تیغه و فراکتال ارتعاش بر عملکرد یک چندرنگ ارتعاشی

سه واحده در برداشت کشت‌های ۵ سانتیمتری

امین اله مصوصی، عباس همت و مجید رجبی

(تاریخ دریافت: ۸۵/۰۹/۲۳; تاریخ پذیرش: ۸۶/۰۹/۲۷)

چکیده

در سال‌های اخیر کشت چندرنگ قند در رفیع‌های ۵ سانتیمتری به دلیل افزایش عملکرد آن در مقایسه با کشت ۶ سانتیمتر مورد استقبال کشاورزان کشورمان قرار گرفته است. فاصله کم بین رفیع‌های کشت در این روش، برداشت سه روش به جای دو روش محصول را ایجاد می‌نماید. به این علت معاونت کشتی‌های دستگاه چندرنگ‌های مایه به منظور اکمک کشیدن چندرنگ رشدیه به رفیع‌های چندرنگ‌های مایه و ایجاد فاصله تغییرات می‌کند. به‌نوعی مصرف شده در مورد گرفتن این تحقیق از فراکس ارتعاش و زاویه حمله تیغه بر عملکرد یک دستگاه چندرنگ ارتعاشی و مطالعه فرآیند گرفتگی درصد نش نزه دهی‌های مصرف چندرنگ، بررسی چندرنگ‌های سه واحده و تیغه حمله تیغه مشابه، در گزارش‌های سه واحده و غربال مرکز تغییرات با نگشته دستگاه و لغزش چرخ‌های مصرف چندرنگ با نگشته دستگاه در حال ارگ کمترین قدرات مداوم تیغه حمله تیغه مشابه، در صورتی که در حالت ارتعاشی کردن به‌طور استرد ۱۰ هرتز نشان داده شده که ۲۳ درصد زاویه حمله تیغه و فراکس ارتعاش معیاسی و مورد تجزیه و تحلیل آماری قرار گرفت. مقایسه بینی‌های پارامترهای اندازه‌گیری شده و نشان داد که نسبت زاویه حمله تیغه زاویه حمله تیغه ۲۴ درجه و فراکس ارتعاش ۹ هرتز است که در این حالت کمترین درصد نش نزه دهی یافتند و شکست مداخله را داشتند.

واژه‌های کلیدی: فراکس، زاویه حمله، چندرنگ ارتعاشی، عملکرد

شده، کشت چندرنگ در رفیع‌های ۵ سانتیمتری دارای
عملکرد بیشتری نسبت به فاصله رفیع‌های ۶ سانتیمتر می‌باشد (۲). به‌نظر می‌رسد که از کاشت‌های فراکس ارتعاشی می‌تواند به‌طور کامل باکتری‌های نیازمند به فشار جهانی افزایش دهد.

مقدمه

چندرنگ که از دو محصولی است که به‌عنوان منابع تأمین کننده ساکرار در کشت‌های چند میشود که به‌عنوان منابع تأمین

۱. به‌رتبی استدادر، استاد و دانشجوی سابق کارشناسی ارشد مکاتیل‌های کاشت‌های کشاورزی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

masoumi@cc.iut.ac.ir

@masoumi@cc.iut.ac.ir

* : مسئول مکاتبات، پست الکترونیکی: ir
آزمایشگاهی تغییر بولودوزر، گاو اهمیت‌های برگداندار و قلمی نشان داد که اگر ارتعاش در جهت حرکت تراکتور (جهت طولی) اعمال شود، موج کاهش مقاومت کششی در حدود 71 تا 96 درصد می‌کند. همین‌طور در 134 مه‌کاریان (5) یک کاهش 33 درصدی در مقاومت کششی یک زیرشکن نک شاخه‌ای تیغ ارتعاشی بر گزارش نمودند. فرکانس، دامنه ارتعاش و سرعت پیشونده سیگنا هم مقاومت کششی آن تأثیر پزایی دارد. کانکی و همکاران (8) ارتعاش از یک مقاومت کششی مانند سبیل زنی کن در جهت دامنه و چهار فرکانس و سرعت پیشونده مورد ارزیابی قرار دادند. نشان داد انتخاب فرکانس، دامنه و سرعت پیشونده مناسب کاهش توان کششی کل تا 85/5 درصد مقدار می‌باشد. ساکایی و همکاران (12) یک کاهش 35 درصدی در مقاومت کششی یک زیرشکن نک شاخه سیگنال ارتعاشی در دامنه ارتعاش 5 سانتی‌متر و فرکانس ارتعاش 5/4 هرتز به دست آوردند.

به زاویه روبروی ازار خاکوز و سطح افق زاویه حمله (Elevation Angle) نوری عمودی خاک تأثیر قابل توجهی دارد. وقتی ازار به جای نوری فشاری - اطراف نوری بالا قرار گرفته به خاک اعمال کند، گسخنگ که شدیدترین خاک اضافه به اجرای ناحیه انجام می‌گیرد. (1) نویک و مائید (16) در اینجا مقاومت کششی یک تغییر زاویه حمله، تغییر می‌یابد. آنها در نتیجه آزمایش که همگونتر مقاومت کششی در زاویه حمله 7 درجه بوده است. در مقایسه به 45 درجه در مقایسه کششی افزایش یافته و به خصوص در حالت حمله 30 درجه به دست آمده. آزمایش‌های انجام شده توسط گونه و اسپرس (7) با تغییر یافته حاکم‌وز باریک در سه زاویه حمله و سه نوع خاک تراکتور نشان داد که با کاهش زاویه حمله، مقاومت کششی به تقلید مالاظه خاک‌پاش یافته. مقایسه دیگری گزارش نموده که با تقلید زاویه حمله، حداقل تا 80 درجه مقاومت کششی کاهش می‌یابد (13) و (15).

لغزش چرخ‌های محور تراکتور با مقاومت کششی دیات دنبال بند در ارتباط است. همین و همکاران (5) در مطالعه‌ی
تأثیر زاویه حمله یقه و فرکانس ارتعاش بر عملکرد یک چنداندرکن ارتعاشی...

اهداف پژوهش حاضر عبارت بودند از بررسی اثر فرکانس ارتعاش و زاویه حمله یقه بر:
الف) درصد چنداندرکن شکسته شده و باقی مانده در خاک
ب) مقاومت کششی چنداندرکن و لغزش چرخ‌های محرک تراکتور کشیده و همچنین توصیه ترکیب فرکانس ارتعاش و
زاویه حمله یقه مناسب با توجه به درصد چنداندرکن شکسته
شده و درآورده شده خاک و مقاومت کششی دستگاه.

مواد و روش‌ها
آزمایش‌ها در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان واقع در شهرستان تفرش اجرا گردید. بافت
خاک مزرعه، لوس رس (Clay loam) حداکثر گرم بر سانتی‌متر مکعب و pH حداکثر گرم بر سانتی‌متر مکعب و رطوبت خاک در حد
ظرفیت زراعی و نهایت زمین‌گذی، به ترتیب 23 و 10 درصد وزنی بر یارا بر دست آمد. متوسط دصد وزنی
رطوبت خاک تا عمق 30 سانتی‌متر در زمان برداشت
چنداندرکن 12/1 درصد بر یارا تربیع.

منابع مزرعه چنداندرکن قند مورد آزمایش‌ها با نظر گرفتن
حاشیه‌های پایین و بالای هر کرت برای نیاز از دندان‌های
هکتار بود و طول هر کرت آزمایشی 30 متر در نظر گرفته شد.
در هر کرت آزمایشی سه ردیف و سه ردیف پودری و دو
ردیف پک، یکی از راست و دیگری از چپ سطح نزدیک به
میانه. بدین ترتیب هر کرت آزمایشی شالی 5 ردیف و جمعاً
به عرض 2/5 متر بود. فاصله بین ردیف‌های کشت
50 سانتی‌متر، فاصله بین دو همتوندی ری یک ردیف در زمان
کاشت و پس از تعیین کرت به ترتیب برابر 7 و 25 سانتی‌متر
بود. برای کشت مزرعه تعداً 7 واحده صد‌هزار کیلویی
بذر مزرعه رقم 17112 ایرانی بوده که دعه خاک
مزرعه شده 170000 دیده در خاک کشت کرد. به
برای تراک گردید.

عملیات آماده‌سازی، کاشت و کوله‌پوشی زمین، کوده، سمیاتی،
و جنگ علف‌های هرز، مبارزه با آفات و ایثارهای مزرعه با نظارت
مادر مزرعه و کارشناس‌شماری کشت اصفهان انجام

که روی یک زیرشکن تیغه ارتعاشی دریافتند که با افزایش
فرکانس ارتعاش، روند تغییر وزن گره‌های محرک تراکتور
مشابه به نما طولانی‌تر بود. معیارههای کاهش
لقوه (9) در مطالعه‌ای که روی مزرعه ادو نو اثر در بر کرده‌اند
مفتول در ایران، انجام داده شد که تأثیر افزایش وزن
گره‌های محرک تراکتور راپه‌های مستقل با مقاومت کششی
ایک آواز دارد.

با افزایش وزن و کنار سیستمی در عملیات برداشت و پس از
برداشت، منشأ آسیب‌های مکانیکی در گیاهان غده‌ای بیشتر
مطرح می‌شود. عوامل مؤثر بر آسیب‌های وارد برابر
همچنین به کار می‌برد و در آزمایش وارد گردید. میزان آسیب‌های که
در اثر برداشت در خاک‌ها بیشتر می‌باشد به خاطر خاصی
رطوبزیک غده‌ها و نور هراتیگی اعمال شده باند
یک، کنترل میزان آسیب‌های، افزایش یافته است در عامل های
بلیطی که کاهش نورهای خارجی اعمال شده به غده در به
دین و مراحل مختلف گیاه این غده بر انتقال (4).

به منظور ممکن است با به‌کار نشان داده‌است. از طرفین این
دستگاه‌های کار کنن و البته غده‌ها در به‌کار نشان داده است. از طرفین این
دستگاه‌های کار کنن و البته غده‌ها در به‌کار نشان داده است. از طرفین این
دستگاه‌های کار کنن و البته غده‌ها در به‌کار نشان داده است. از طرفین این

شکل 1: چندگردن ارتواش مورد آزمایش بدون واحد کار و پرگ و رکف کن (نمونه مشابه اولین).

میله رابط با پازو ارتباط دارد (2) در شکل 2. دوران محرور عرضی توسط این بیشپهای خارج از مرکز و میله‌های رابط به پازو، ها که در نقطه اتصال به شاسی مسیری دارند (3) در شکل 2. منتقل شده و به آنها حرکت نوسانی می‌دهد.

به زاویه بین لبه پایینی بیشپ و سطح افق، زاویه حمله تغییر می‌شود. هر تغییر توسط دو پیچ و مهر، یکی در جلو و دیگری در عقب به اندازه بار دستگاه مصول شد. به منظور تغییر زاویه حمله تغییر، در اندازه حرکت به سوی اوج خود که باز کردن پیچ اندازه تغییر و تعویض سرعت زاویه حمله تغییر می‌کند. به منظور تغییر فرکانس ارتواش، برای سیستم چرخ زنجیر که دورانها آن را از جعبه‌دنده به بیشپهای خارج از مرکز منتقل می‌نمود، به کمک چرخ زنجیر محرک، فرکاس ارتواش تغییر می‌کرد (1) در شکل 1. به سمت سفید تغییر نیز طول زنجیر هم زمان با تعویض چرخ زنجیر تغییر داده می‌شود.

به منظور آماده‌سازی سطح بیشپهای آزمایش‌های نهایی، یک سری آزمایش‌های اولیه برای ارزیابی و اصلاح عملکرد آن در مناطق مختلف شرایط و اصلاح عملکرد در این شکل. در این

شکل، در عملیات برداشت عمق کار تغییر 16 سانتی‌متر بود که طی آزمایشات اولیه مناسب‌ترین عمق کاری تشخیص داده شد. متوسط عملکرد مزرعه ۶۵ تن در هکتار و متوسط عبارت چندگردن ۱۴۰۵/۰ بود. دامنه قطر سر غده (زرن طوف) ۸ تا ۱۵ سانتی‌متر و دامنه ارتفاع غده (از سر طوفه تا انتهای ریشه) ۱۷ تا ۳۵ سانتی‌متر بود.

در انجام آزمایش‌ها از یک نمونه چندگردن ساقه ارتواشی مشابه چندگردن اولین بدون واحد کار زن برگ و رکف کن استفاده گردید که به کمک یک صفحه‌پذیر اصفهانی در سال ۱۳۸۳ ساخته شده بود. این چندگردن، سه درجه فرود به فاصله چندگردن دو واحد کار هم برای ۵۰ سانتی‌متر می‌باشد (شکل 1). سیستم مرتعش کننده‌های بدون صورت است که دوران محرور توان دهی نداشت و به یک محرور طولی (۵) در شکل ۲ و آن به یک جعبه دنده منتقل شده و پس از ۹۰ درجه تغییر جهت با نسبت یک به یک (۵ در شکل ۳) به یک چرخ زنجیری منتقل می‌شود. دوران توسط سیستم چرخ زنجیری (10 در شکل 2) با نسبت تغییر به یک محرور عرضی که روی آن ۶ عدد بیشپهای خارج از مرکز سوار است، انتقال می‌یابد (۶ و ۷ در شکل ۲). هر کدام از این

بیشپهای خارج از مرکز منظور با یک پازو بوده و توسط یک
تأثیر زاویه حمله تیغه و فرکانس ارتعاش بر عملکرد یک چنگدرکن ارتعاشی

توضیحات

ورودی‌ها

در این درکن، سیستم مراشکار کننده بازوی چنگدرکن (1) و محور طولی به چهار شاخ گردن (3) نقطه اتصال ولایی بازو به شاسی چنگدرکن (2) می‌باشد. محور رابط به بازو (6) محور عرضی (7) به شکلی نشان داده است که اتصال باید به محور مکانیکی خارج از مرکز (1) پوسه جنبشی، (9) چرخ دندانی مخروطی نگرفت جهت دوران، (10) چرخ زنجیری محورک (11) چرخ زنجیری متحرک به‌روش (24) تیغه چنگدرکن و (13) سوراخ‌های نصبی در نمای بار برای نگهداری حمله تیغه.

پارامترهای ساختاری

- ابزارهای اندازه‌گیری شده عبارتند از: 1) مقاومت کششی دستگاه، 2) لغزش چرخ‌های محورک تراکتوری 3) درصد چنگدرکاری شده و 4) درصد چنگدرکاری بازی مانده در خاک.

گزارش این‌دستگاه‌های مقاومت کششی دستگاه از روشنی

تراکتوری استفاده‌شده مقدار مقاومت کششی به وسیله یک دیبومتر کششی اندازه‌گیری شد. بدن صورت که دستگاه به تراکتور عقبی (تراکتور حامل) متصل شد و تراکتور جلویی (تراکتور کششی) به وسیله دو راسته زنجیری که هر کدام از یک سر به دیبومتر متصل می‌شوند و آن را بین خود نگه می‌داشتند تراکتور حامل را می‌کشیدند. ابتدا دستگاه در حالت یا باری (حتالی که دستگاه به تراکتور اتصال داشته اما در حال کار نبود) و تراکتور آزمایش‌ها داده برای صورت تکریفت، یک‌تا یک دستگاه ازیابی شد و نواصع آن برطرف گردید. پس از اصلاح نسبی دستگاه به نحوی که می‌توانست به طور مناسب در خاک توانست که چنگدرکن را درآورد، طراح اصلی اجرای گردید. آزمایش‌ها به صورت بکارهایی 24 در قابل طرح به‌صورت کامپل پیاده‌سازی و در سه تکرار انجام شدند.

آزمایش‌ها در سه سطح زاویه حمله تیغه (11، 24 و 36 درجه) و چهار سطح فرکانس ارتعاش (صفر، 4، 10 و 16 هرتز) انجام گرفتند. حالات بدون ارتعاش به عنوان فرکانس صفر در نظر گرفته شد. نحوه انتخاب مطلوب زاویه حمله تیغه و فرکانس ارتعاش بر اساس آزمایش‌های مشابه انجام شده توسط محققان دیگر بود (5، 8 و 16).
در اندوزی‌باین درصد چندگانه شکسته شده جانتچه
20 درصد از ارتفاع در قسمت پایین غده (قسمتی که در خاک قرار
دارد) بایستی از آن دچار شکست می‌شود بنابراین گردد.
شکسته شده به‌صورت غده از خاک در خاک محسوب می‌شود
در خاک، جزء چندگانه بالای غده در خاک و
حالت وجود داشت: 1- غده کامل و غده بالایی مانده و
هیچ گونه جایگاه و تکانی توسط یافته نبوده است وارد نمی‌شود.
د) در اندوزی‌باین درصد چندگانه بالای غده در خاک
در حال حاضر مشابه می‌باشد که بسیار نزدیک به حساب‌های
اندازه‌گیری مثلاً و حالاتی که بوده ادامه ندارند. با insertion
مصدرسازی غده جزء چندگانه بالای غده در خاک، یک بار
وسیله کمکی مانند داشت در این صورت جزء چندگانه
باقی مانده در خاک و حساب‌های
برای اندوزی‌باین درصد چندگانه شکسته شده و بالای مانده
در خاک، یک کادر چوبی 5/15 متر تهیه گردید (3). پس از
انجام هر آزمایش مقاومت کششی، به طور تصادفی یک نقطه
واستگی هر کرت انتخاب شد و با گذاشتن کادر مزبور در آن
نقطه، تعادل چند‌گانه سالم، شکسته شده و بالای مانده
در خاک چندگانه سالم، شکسته شده و بالای مانده
که در داخل کادر ناشناخته شمارش گردید. سپس درصد
فرآیند نسبی چندگانه شکسته شده و بالای مانده در خاک
با تقسیم تعدادان بر تعداد کل چندگانه در این مساحت و
ضرب در عدد 100 به دست آمد.
پس از انجام آزمایش‌ها داده‌های حاصل مورد تجزیه
و تحلیل آماری قرار گرفتند و برای تجزیه و تحلیل داده‌ها از نرم
افزار آماری SAS و به‌وسیله از (11) و در صورت معنی‌دار
MSTATC بوده یک بررسی اثرات مقابل از نرم افزار آماری
استفاده شد. نتایج مانگیکانه در سطح احتمال 5 درصد و با اثبات از
آزمون با یک‌گانه مقایسه (LSD) برای رسم نمودارها نیاز از
نم‌افزار استفاده گردید.

حمل در وضعیت خلاص قرار گرفت. سپس تراکتور کشیده,
تراکتور ح والا کی. سپس بسیار مشابه می‌باشد مقاومت
کششی تراکتور حاصل و درست‌گاه در حین کار قرار داشت و
گردد. مقاومت کششی خلاف درست‌گاه در ناحیه می‌باشد.
مقاومت کششی به دست آمده در دو حالت ذکر شده از هر
یک به دست آمده (8). دینامو مانندی مورد استفاده در این تحقیق،
ساخت شرکت Novatech و حداکثر طرفیت آن 1400 کیلو
نیوتن بود. تراکتور حاصل تراکتور اوتیورسال مدل
1200 ساخته شد. تراکتور جذب مدیر 1200 ساخته شد. تراکتور
برای حکم در دو روزه‌ای کشت، مجهز به تایرهای باریک
بودند. در تمامی آزمایش‌ها در نظر گرفته شد. مشخصات، دور
موتر 1500 در دو دقیقه و سرعت 42 کیلومتر بر ساعت کار
گردید. تراکتور حاصل نیز در تمامی آزمایش‌ها به خیز
اندازه‌گیری مقاومت گل‌نشین و حالت‌های بدست امکان‌پذیر
با دور محرر توان‌دهی 440 دور بر دقیقه کار می‌کرد. برای هر
اندازه‌گیری مقاومت کششی حداقل 40 مقدار نیرو از دینامو
می‌باشد از ذهن رصد دستگاه به عمق پایدار با تناب
حدود 1 نایبی قرانت شد (8). حدود 100 متر اندازه‌گیری هر کرت
آزمایش برای رسیدن دستگاه به عمق مناسب در نظر گرفته شد.
که در این فصله هیچ برای اندوزی‌باین نیش.

آزمایش‌های لغز چربی نام آزمایش‌های مقاومت
کششی در کرت‌های دچار گرفتگی با تراکتور کشیده دستگاه چربی
گردید. دلیل این امر آن بوده که هدف اندوزی‌باین لغز
چربی هر مکرک تراکتور حاصل دستگاه در حالت کشت متعلق
دستگاه چربی گردن بود. به‌منظور تعیین میزان لغز چربی
مرکز تراکتور طول نظری و طول واقعی از دسته در 10 دور
لغز چربی هر مکرک تراکتور اندوزی‌باینی شد (9). لغز
چربی هر مکرک تراکتور از رابطه زیر محاسبه گردید:

[1] = لغز
[100 \times (طول نظری / طول واقعی)] = لغز
لگز به وضعیت ایست که شمارش 10 دور لغز چربی،
زمانی آغاز می‌شود که دستگاه به عمق پایدار می‌رسید. آزمایش‌ها
در سه تکرار انجام گردید.
جدول ۱ اثر زاوهی حمله تیغه و فرکانس ارتعاش بر میانگین مقاومت کششی چندرنگ. لفظ زاوهی محور تراکتور، درصد چندرنگی شکسته شده و باقیمانده در خاک*.

<table>
<thead>
<tr>
<th>عوارم آزمایش</th>
<th>عوارم حمله تیغه (درصد)</th>
<th>فرکانس ارتعاش (هرت)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>99</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

* میانگین‌ها در هر عوارم آزمایش و در هر ستون که حداکثر مشترک هستند، یعنی تفاوت آماری بر اساس آزمون LSD

تاریخ و بحث

1. مقاومت کششی

نتایج تجربه واریانس نشان داد که اثر زاوهی حمله تیغه و فرکانس ارتعاش در سطح احتمال ۵ درصد بر مقاومت کششی چندرنگ کم معنی دار است. شماری از محضقان قبلی همچون همست و همکاران (۵) ساکای و همکاران (۶) و کاسک و همکاران (۷) که در مقایسه شکستگی‌های تر اثر اثر ارتعاشی نمودند، آنها گزارش نموده‌اند. همچنین نوینک و مؤید (۸) تأثیر منبع دار تغییر زاوهی حمله بر مقاومت کششی را بررسی و گزارش نموده‌اند. جدول ۱ مقایسه میانگین‌های مقاومت کششی در درصد لفظ زاوهی محور تراکتور، درصد چندرنگی شکسته شده و باقیمانده در خاک را در سطوح مختلف زاوهی حمله تیغه و فرکانس ارتعاش نشان می‌دهد.

نتایج تجربه واریانس تأثیر برهمکنش عوارم آزمایشی (زاوهی حمله و فرکانس ارتعاش) بر پرازمان‌های اندازه‌گیری شده نشان داد که در سطح احتمال ۵ درصد اختلاف معنی‌داری وجود دارد. به منظور بررسی و اتخاذ مناسب‌ترین ترکیب زاوهی حمله و فرکانس ارتعاش، اثر برهمکنش عوارم آزمایشی

239
جدول 2: اثر برهمکش زایده حمله تیغه و فرکانس ارتعاش بر پارامترهای اندازه گیری و محاسبه شده*

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>عوامل آزمایش</th>
<th>زایده حمله (درویزه)</th>
<th>مقاومت کششی (کیلو نیوتن)</th>
<th>لغزش چرخ (درصد)</th>
<th>عده‌های شکست (درصد)</th>
<th>عده‌های شکست (کیلو نیوتن)</th>
<th>مقدار K (کیلو نیوتن)</th>
<th>عده‌های شکست (از یک درصد چندین درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/186hbc</td>
<td>36/34</td>
<td>16/8ab</td>
<td>31/2b</td>
<td>11/7ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/197h</td>
<td>25/8bc</td>
<td>7/8</td>
<td>36/14b</td>
<td>10/8ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/137vcd</td>
<td>24/7q</td>
<td>5/14</td>
<td>10/4d</td>
<td>10/1d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/126d</td>
<td>19/8de</td>
<td>15/8c</td>
<td>23/3c</td>
<td>12/3c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/149abcd</td>
<td>21/5h</td>
<td>8/8bc</td>
<td>15/8def</td>
<td>8/8f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/115d</td>
<td>5/1f</td>
<td>1/4a</td>
<td>10/1a</td>
<td>9/1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/114d</td>
<td>18/7cde</td>
<td>12/6f</td>
<td>18/7de</td>
<td>9/3e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/112d</td>
<td>11/5d</td>
<td>9/3e</td>
<td>12/3e</td>
<td>12/3e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/146d</td>
<td>20/8de</td>
<td>10/1bc</td>
<td>10/1bc</td>
<td>12/1bc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/178d</td>
<td>4/0cde</td>
<td>7/3b</td>
<td>7/3b</td>
<td>7/3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/101d</td>
<td>2/3bcde</td>
<td>5/2bcde</td>
<td>2/3bcde</td>
<td>5/2bcde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/108d</td>
<td>1/2abde</td>
<td>1/2abde</td>
<td>1/2abde</td>
<td>1/2abde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* میانگین‌های هر ستون که حداکثر در یک حرف مشترک هستند، فاقد تفاوت آماری برابر از آرون در سطح احتمال ۵ درصد می‌باشند.

بر پارامترهای اندازه‌گیری شده به صورت جدول ۲ تنظیم گردید. بیشترین مقاومت کشی در ترکیب ۹ (غیر ارتعاشی و با زایده حمله ۲۴ درجه) مشاهده می‌شود که شاهد بیشترین درصد گردندره‌ای باقی مانده در خاک تیغه است. ارتعاشی بیشترین ساقه‌های گردندره و زایده بودن زایده حمله تیغه، علی احتمالی افزایش مقاومت کشی بوده است. لیکن به علت بیان مقدارهای بیشتر در خاک شاهد لغزش کمر چرخ بودن باید.

شکستگی بیشتر غده‌ها شده است. کمترین مقیاس مقاومت کشی در ترکیب ۵ (غیر ارتعاشی با زایده حمله ۲۴ درجه) مشاهده گردید. در این ترکیب کمترین درصد گردندره‌ای شکستن شده به دست آمد و درصد زیاد گردندره‌ای تیغه از خاک در نامدند. این امر نشان می‌دهد که دستگاه در این ترکیب عمل کاری انجام داشته و به طور سطحی در حال کار بود و حاصل‌های مهم آن باین آموز خوب مقاومت کششی در این ترکیب گردیده است. اما در ترکیب ۶ (ارتعاشی با فرکانس ۹ هرتز و زایده حمله ۲۴ درجه) بین عکس ترکیب ۵ شاهد بیشترین مقاومت کششی دستگاه و کمترین درصد گردندره‌ای باقی مانده و شکستن شده بودن باید. بنابراین می‌توان ادعای کرد که مقاومت کششی دستگاه صرف کاراسي (درآوردن چگذار از خاک) طی عملیات پرداشت شده است.
لغزش چرخ‌های محرک تراکتور

تابی نجیب و ابراهیم نشان داد که اثر زاویه حمله تیغه و فرکانس ارتعاش چندگانه در سطح احتمال ۵ درصد بر لغزش چرخ‌های محرک تراکتور معنی‌دار است. مقایسه بین میانگین مقادیر کششی و لغزش چرخ‌های محرک در جدول ۱ نشان دهد که روند تغییر این دو پارامتر با تغییر فرکانس ارتعاش و زاویه حمله تیغه، رفتاری مشابه دارد. این امر نشان می‌دهد که لغزش چرخ‌های محرک تراکتور، رابطه‌ای مستقیم با مقادیر کششی دستگاه دارد و با افزایش مقادیر کششی نیز افزایش می‌یابد. تأثیر مشابه در ارزیابی مقادیر کششی گاوهای قلمی با استفاده از دو تراکتور تندوای در ایران برای گزارش شده است. (۹)

چندگانه شکسته شده و پایان مانده در خاک

نتایج تجربه و ابراهیم نشان داد چندگانه شکسته شده و پایان مانده در خاک در سطح ۵ درصد تحت تأثیر زاویه حمله تیغه و فرکانس ارتعاش چندگانه قرار دارند. میانگین چندگانه پایان مانده در خاک در حالت ارتعاشی و بدون ارتعاش (فرکانس صفر) با یکدیگر اختلاف معنی‌داری داشتند (جدول ۱). همان‌طور که در جدول ۱ مشاهده می‌شود یکی از ۵ درصد تغییر در چندگانه پس از عملیات برداشت چندگانه با پاوزه ارتعاش همچنان در خاک پایان مانده است. در حالی که با ارتعاش کردن پاوزه چندگانه این مقدار به ۱۱ درصد رسیده است.

مقایسه مقادیر میانگین درصد چندگانه شکسته شده در زوايا حمله مختلف نشان داد که با افزایش زاویه حمله تیغه، درصد چندگانه شکسته شده کاهش می‌یابد (جدول ۱). این امر احتمالاً این است که با افزایش زاویه حمله، دستگاه در عملیات تری متارگرفتن نیاز به لغزش چرخ‌های محرک تراکتور را متقابل قرار دهد. تابی نشان داد که، چندگانه را نشان می‌دهد. بنابراین این امر، کاهش قابل توجهی در زاویه حمله و درصد چندگانه شکسته شده در فرکانس صفر، می‌توان استنباط نمود که با افزایش فرکانس،
نطنز می‌دهد، اما احتمالاً به علت درآوردن چندترین اثری
بیشتری صرف شده است و همین امر سبب رفت‌و‌آمد مقاومت
کششی و لغزش چرخ‌ها در این ترکیب‌هایی است که به توجه
به تزئین‌های مرسوم لغزش چرخ‌ها (12.7 درصد) با محدوده قابل
قبول (10±0.3 درصد) مناسب‌ترین گزینه می‌باشد که
احتمالاً با افزایش وزن استاتیکی تراکتور این نقشه نیز
بر طرف خواهد شد.

نتایج‌گیری
نتاجی که در طی این تحقیق به دست آمده عبارت است از:
1. تغییرات مقاومت کششی دستگاه و لغزش چرخ‌ها محرک
تراکتور با تغییر فرکانس ارتعاش و زاویه حمله تیغه، مشابه
بود و لغزش چرخ‌ها محرک رابطه‌ای مستقیم با مقاومت
کششی دستگاه داشت.

2. با افزایش فرکانس ارتعاش درصد شکستگی غده‌ها افزایش
و درصد شکستگی غده‌ها را در خاک کاهش یافت.

3. با افزایش زاویه حمله تیغه درصد شکستگی غده‌ها را کاهش
یافت.

4. تراکتور که متغیرهای دیگری ارتعاش با زاویه حمله تیغه 42 درجه
و فرکانس ارتعاش 9 هرثز، مناسب‌ترین عملکرد را داشت.

سیاست‌گزاری
نویستگان از تمامی عواملی که در طول این تحقیق آنها را
مشورا و پایر فرمودن، پیوستن استاد ارجنمن جنب آقای
دکتر عبدالکریم رضایی، پرسنل مهربان کارخانه فنی اصفهان
و پرسنل مهربان کارخانه فنی اصفهان اص(Collider
و پرسنل مهربان کارخانه فنی اصفهان اص
مهربانی پرتره کپی شده در ایران و در داخل
تراکتور که مناسب‌ترین تراکتوری که
باقی‌مانده در خاک را داشته باشد.

تکلیف‌ها:
1. تکلیف کپی شده در ایران و در داخل
2. تکلیف کپی شده در ایران و در داخل
3. تکلیف کپی شده در ایران و در داخل
4. تکلیف کپی شده در ایران و در داخل
5. تکلیف کپی شده در ایران و در داخل
6. تکلیف کپی شده در ایران و در داخل
7. تکلیف کپی شده در ایران و در داخل
8. تکلیف کپی شده در ایران و در داخل

1. کیور، آ. ا.، ر. بیرن و ا. ال. بارکر. 1371. اصول ماسینه‌های کشاورزی (ترجمه: شفیعی، س. ا)، جلد اول، مؤسسه انتشارات و چاپ دانشگاه تهران، تهران.
2. کوک، د. ا. و آ. ک. اسکات. 1375. زراعت جنگل‌زند (ترجمه: کوچکی، عوض و همکاران)، انتشارات جهاد دانشگاهی مشهد، مشهد.
3. کوک، د. ا. و آ. ک. اسکات. 1377. جنگل‌زند. از طریق عمل (ترجمه: اعضای هیئت علمی مؤسسه تحقيقات اصلاح و تهیه بذر جنگل‌زند) تشریح علم کشاورزی، تهران.
5. همتی، ع. ح. صادق نژاد و ر. علم‌آرمانی. 1379. مقاومت کششی زیرشکن ارتقاءشی در دو حالت ارتقاءشی و بدون ارتقاءش و اثر آن بر خواص فیزیکی خاک، مجله علوم کشاورزی ایران 31(1): 127-142.