بررسی امکان تولید جمعیت تمام ماده تریپونید فزل آلایی رنگین گكمان (Oncorhynchus mykiss)

محمد رضا کلیبیاسی و سید علی جوهري

(تاریخ دریافت: 1387/12/13، تاریخ پذیرش: 1388/11/20)

چکیده

به منظور کاهش آثار نامطلوب بلوگ جنسی بر رشد و بازماندگی ماهی فزل آلایی رنگین گكمان، در این مطالعه امکان تولید جمعیت تمام ماده تریپونید مورد بررسی قرار گرفت. میزان اثقل تریپونید به مرحله سنجش ابعاد کلوپها قرمز ۸/۵ در حد تنها ۲۰ دقیقه تخم‌گذیری رشد ۲۰ دقیقه از ناتوانی یافته در تخم‌گذیری به مرحله به میزان ۹۰٪/۸ گردید. ماهیان تمام ماده تریپونید، تمام ماهی دیپولیاسی و مخلوط نر و ماده دیپولیاسی از نظر مراحال مختلف انکوپاسیون (میزان چشم زدگی، میزان ترکیب تخم‌های چشم زدگی و میزان بازماندگی از ترکیب تخم‌های دیپولیاسی) تفاوت معناداری نداشتند (P > 0.05). میزان چشم زدگی و ترکیب در نیم‌مخته بلوگ نر و ماده تریپونید نسبت به سایر تیمارها به‌طور معناداری پایین‌تر بود (P < 0.05). در سه ماهگی تکامل یافته در ماهیان ترم دیپولیاسی و ترم تریپونید به‌طور میزانی و در مراحل علیه اسپرم‌افزار بود. میزان تخم‌های ماده تریپونید با وجود داشتن ساختار تخم‌های مشخص، فاقد اورنئون بود.

واژه‌های کلیدی: فزل آلایی رنگین گكمان، تمام ماده، تریپونید، تخم‌گذیری جنسی، شکر گرمایی

مقدمه

دستگاهی کروموزومی گونه‌ها مختلف آبزیان اسومرو در دنیا به‌عنوان یک روش مفید در بهبود ویژگی‌های زندگی‌کننده ماهیان، سیاست‌رایج می‌باشد(1). یکی از مشکلات موجود در صنعت پرورش آبزیان، ظهور زوده‌گان بلوگ جنسی است. پیاده‌برد بلوگ جنس در برنامه‌آرایی از ماهیان از جمله فزل آلایی رنگین گكمان

1. به ترتیب استاندارد و دانش آموزی کارشناسی ارشد. 2. دانشگاه تربیت مدرس، تهران

Kalbassi_m@modares.ac.ir

269
نامهنده (Neomale) معمولی نرم‌ها، ترکیبی از ماده با زنی‌بی‌می‌کار XX به‌دست آورده و در مرحله بعد با استفاده از یک هرکمیان تریپولین‌یا روزانه این ترکیبات الکلی و ماده ماده ماده ماهی به‌عضوی و بازدی تبدیل غذای در ویلیک گوانش را کاهش می‌دهد و ماهی ناگهانی می‌شود (11). با رشد دستگاه ناسال تغییرات عدیدی، در شکل ظاهری ماهی قزل آتا پدید می‌آید که شامل سیبی شدن رنگ ماهی، اتانس گفیک و افرایش ضخامت یک پوست می‌باشد. بعلاوه به رشد نقص تجسیم جسمانی به‌خصوص در جنس نماینده در طی پرسشی پوست به‌وجود می‌آید که سپسی بوسی را به میان ماهی فیسیولوژی ماهی‌های باکتریایی و فوق‌العاده زیاد کرده و در نتیجه باعثمرکز و مدار در مواد به‌وجود می‌آید (20).

مواد و روش‌ها

ابن آزمایش در اهداف سال 1382 در کارگاه تکنیک و پرورش آزمایش‌های تکثیر مورد بررسی شده و بازدی و روی ماهی بدن کاهش در مقایسه تغییرات است (20). صورتش تکامل گاندها در مهارت ماهی‌های تریپولین باعث می‌شود یک از مدار گیره و شدت آینده که در حالی از پی در پی تغییرات خصوصیات جنسی و پیلیش مثل مصرف می‌شود صرب رشد سریع تر قزل آتا (20). در قزل آتا رنگ‌کمان ماده ماهی‌های تریپولین قبلاً هیچ کنون تکامل تجاری نیستند. ولی پیش‌بینی قزل آتا بعد از تغییرات مهارت تریپولین از لحاظ مهارتی قابل شناسایی از ترکیبات دیپلیدین تبیین و پیش‌بینی نشان دهنده قزل آتا یک می‌باشد و از لحاظ آبزی پروری سودمند نیستند هرچند از نظر تولید نسل قزل آتا بسیار قابلیت لازم و بازگو می‌شود (3). بنابراین پیش‌بینی قزل آتا یک از مدار گیره و پیش‌بینی قزل آتا بعد از تغییرات مهارت تریپولین است. اسپرم‌تولیدی قزل آتا نکته که به تولید آتا نمی‌باشد. (20) لذا آنزیم‌تولیدی قزل آتا که به تولید آتا نمی‌باشد. (20) لذا این قزل آتا در کارگاه تکنیک و پرورش آزمایش را آغاز نمی‌گردد. بنا بر روی مهارت اهمکاری باند و پیش‌بینی اولی، تولید جمعیت تمام ماده تریپولین باعث شده که به آنها تکامل گانده باشد. به‌شرحی این هرکمیان تریپولین را مشخص نماید وضعیت جفت‌گیری از مصالح اسپرم چنین مولد را بطور مشهور برخوردار می‌باشد.
<table>
<thead>
<tr>
<th>شکل</th>
<th>مولدین مورد استفاده</th>
<th>نر معمولی</th>
<th>تیمار</th>
<th>زمان شروع شکوک</th>
<th>به مدت</th>
<th>دیفیپس از لقاح</th>
</tr>
</thead>
<tbody>
<tr>
<td>نر ماده دیپیلئید (گردن شاهد)</td>
<td></td>
<td>*</td>
<td>*</td>
<td>1</td>
<td>20 دیفیپس</td>
<td></td>
</tr>
<tr>
<td>نر و ماده دیپیلئید</td>
<td></td>
<td>*</td>
<td>*</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نر و ماده تریپلئید</td>
<td>*</td>
<td></td>
<td>*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نام ماده تریپلئید</td>
<td>*</td>
<td></td>
<td>*</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. شکل گرمایی $^{1}{^0}C$ به مدت 20 دیفیپس و زمان شروع شکوک به مدت 20 دیفیپس از لقاح تخمک‌ها استفاده گردیده (برای هر تکرار با ازای 150 گرم تخمک 100 میلی لیتر اسپرم استفاده شد). همچنین برای افزایش خاصیت لقاح اسپرم از محلول تقویت کننده گردن به مدت 100 درصد استفاده شد. پس از عملیات لقاح، تخمک‌ها با آب کارگاه شسته و پوست‌ها تخم و اسپرم‌های اضافی خارج گردید. تخم‌های قلاب یافته برای طی مراحل جنبی به سبب‌های انکوباسیون منتقل گردید. برای اقلا بلوئید در تیمار 4 از شکو گرمایی $^{1}{^0}C$ به مدت 20 دیفیپس از قلاب استفاده گردید. نتایج انکوباسیون و تخم‌های فارج زده به‌طور زمانی شمارش و جدا گردید. پس از یکمی روز تخم‌ها با توجه به یکسان بودن شرایط محیطی، درصد پرورشی دوگانه تخم‌های به‌عنوان مادری برای سنجه مورد بررسی لقاح منظور قرار گرفت. همچنین درصد تخم‌های خجش زده، درصد بیان‌گذارهای از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک نا شروع تغذیه عکل و درصد بدنکی از لقاب تخمک Nors (Nucleous Organizer Regions) برای تعیین جنبه‌های انکوباسیون و سنجه تنها گاه آنها، گنگ ماهیان که برای سنجه پلئیدی استفاده گردیده بود خارج شده و مقاطع بافتی‌نشانی از آن تهیه و به روش همانوتکسیلین انوزین (H&E) نگذاشته شده‌اند (5). برای تخم‌های حاصله با میکروسکوب پری بزرگ‌شده 40 بررسی گردید.

نتایج

نتایج حاصل از مرحله‌های انکوباسیون در نمودار 1 نشان داده شده.
انتشار حاصل از بررسی ابعاد گلوله‌های قرمز و تعداد هسته‌های سلول BA افزایش (شکل 2).

نتایج بررسی بافت‌شناسی گند ماهیان نشان داد که ترکیب اسپرم تخم‌مومی با تخم‌مومی ماهیان معمولی، اسپرم تخم‌مومی تغییر جنسیتی با تخم‌مومی ماهیان معمولی تماما ماده بودند (100%). همچنین اگر تخم‌مومی تغییری در جنسیت ماهیان نداشت به‌طور محدود ماهیان معمولی ماده در تیمار تخم‌مومی خود نشان داده 69.3% و در تیمار دیپلوئید مخلوط نر و ماده 11/61% بود که تفاوت معنی داری به‌طور ناگهانی (P<0.05).

پیش‌بینی دیپلوئید و تخم‌مومی از لحاظ مراحل تکاملی در سن آغازین تقریباً به دو وضعیت به‌طور مراحل اولیه اسپرم‌سوزی کاهش می‌یابد (شکل 3). تحصیلات ماهیان دیپلوئید در این سن در مرحله برسیریه و تخم‌مومی، با فیزیولوژی بود که در حالی که ماهیان تخم‌مومی تغییر جنسیتی نداشتند، ترکیب اسپرم تخم‌مومی ماده و ماده دیپلوئید به‌طور معنی‌داری پایین‌تر از سایر تیمارها بود. به‌طور کلی، میزان تفاوت معنی‌داری بین تیمارها در سه مراحل اولیه قرار داشت (شکل 4).

بحث و نتیجه‌گیری

در بررسی حاصل میدان چشمه، آب‌های تخم‌مومی نشان داد که بررسی ابعاد گلوله‌های قرمز و تعداد هسته‌های سلول BA و هسته گلوله‌های قرمز جدول 1/3 تا 1/17 درایه‌ای افزایش یافته بود (جدول 2). برای اساس درصد انتقال تخم‌مومی در تیمار تمام ماده دیپلوئید 78% اندازه‌گیری شد که تفاوت معنی‌داری با تیمار مخلوط نر و ماده دیپلوئید (P>0.05) نداشت (شکل 5). در این خصوص تفاوت مربوط به تایید تشخیص پلیپسی در مورد بررسی تعداد هسته‌های آمیتستان ماهیانی که ابعاد گلوله قرمز آنها اندام‌گیری شده بود نشان داد که آن تعداد در ماهیان دیپلوئید 1 یا 2 عدد و 1 عدد در ماهیان تخم‌مومی 2.1 و 2 عدد بود (شکل 1). همچنین تفاوت معنی‌داری بری میان تعداد ماده و مخلوط نر و ماده از لحاظ نسبی و تعداد هسته‌های مشاهده شد که در هم‌زمان به‌علاوه بررسی کمتری کروموزومی نشان داد که هم‌زمان

272
ملاحظه‌ای افزایش خواهد یافت؛ این میزان می‌تواند برای و یا کاهش چشمگیری در درصد چشمش زدگی تخم‌های چشم زده

مطالعه اختیار نیز از مخلوط اسرپم چند مولفه نشان‌داده‌است. برای یافتن اطلاعات گردیده و لذا میزان فشار و به دنبال آن

درصد چشمش زدگی بالایی مشاهده شد.

میزان تیمار تخم‌های چشم زده در ماهیان دیپولیون تمام ماده و مخلوط نر و ماده با تیمار تیمار تخم‌های چشم زده در ماهیان دیپولیون تمام ماده و مخلوط نر و ماده

بود و لیکن نسبت تیمار تخم‌های چشم زده در ماهیان دیپولیون تمام ماده و مخلوط نر و ماده

شک گرماپی به‌عنوان عامل منفی دیگر همراه می‌شود منجر به

کاهش چشمگیری در درصد چشمش زدگی تخم‌های چشم زده

مطالعات دیگر نشان می‌دهد که اگر برای لقا

تاحم‌های از مخلوط اسرپم چند مولفه نشان‌داده‌است. برای یافتن اطلاعات گردیده و لذا میزان فشار و به دنبال آن

میزان حجم کافی استفاده شود. درصد لقای به میزان قابل

جدول 2: میانگین و نسبت ابعاد سلول و هسته گلیوله در ماهیان تمام ماده و مخلوط نر و ماده دیپولیون

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نسبت تیمار تخم‌های چشم زده در ماهیان دیپولیون تمام ماده و مخلوط نر و ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/05</td>
<td>18/04</td>
</tr>
<tr>
<td>20/02</td>
<td>19/01</td>
</tr>
</tbody>
</table>

مقدار 1. مقایسه نتایج حاصل از مرحله انکوباسیون تولید جمعیت ماده تریپولیون قزل آلاي رنگین کمان

(OnCorhynchus mykiss)
شکل 1. سلول‌های آبش با 1، 2 و 3 همک در قزل آلای رنگین کمان تریپلوئید (×1000)

شکل 2. گستر کروموزومی ماهی دیپلوئید (D) و تریپلوئید (T) قزل آلای رنگین کمان (×1000)

شکل 3. بفته بیضه در ماهیان دیپلوئید (D) و تریپلوئید (T) قزل آلای رنگین کمان (×1000) (H&E)

شکل 4. بفته تخمدان در ماهیان دیپلوئید (D) و تریپلوئید (T) قزل آلای رنگین کمان (×1000) (H&E)

274
که میزان آبیولوئیدی در ماهیان نر بیشتر از ماهیان ماده است. افزایش میزان بکشکی ها، مشاهده نموده که در تغییرات شناسی گاهی آنها نشان داد که همگنی ماده می‌باشد. این در حالی است که نتایج حاضر از ترکیب اسپرم معمول برخوردار بوده‌اند. این یافته با تاثیبی کم و همکاران طبقه‌بندی می‌کند.

در مطالعه حاضر گاه ماهیان در سر 8 ماهیکی بررسی شد که نتایج نشان داد تغییران ماهیان دیپلوئید در این سر در مرحله بیز زرواردی با پری تولکوس بود. در حالی که در ماهیان تریپلیئید تغییرات تغییران شکل گرفته‌بود، از لحاظ تکاملی تغییران هم مانند مراحل اولیه بود. همچنین بیشتر ماهیان دیپلوئید و تریپلیئید در این سر در وضعیت مشابه با یک مرحله اولیه اسپرم‌منتز قرار داشتند. لینکول و اسکات در سال 1982 با بررسی شناسایی گاه ماهیان قهریه آلو رنگ گردن این ماهیان در سر 5 ماهیکی، زمانی که ماهیان تریپلیئید در این سرنوشت تغییرات تغییران نشان دادند و اگرچه سخت‌تر، تغییرات مشخصی داشتند، ولی تغییرات آنها وجود نداشت. در حالی که در ماهیان دیپلوئید در این سرنوشت تغییرات معنی‌داری از آموزه‌های تکاملی یافت بود (18). در ماهیان نر تکامل بیشتری در این سر ماهیان دیپلوئید و تریپلیئید مشاهده شدند. همچنین طبق مشاهداتی که در سال 1988، بیشتر ماهیان قهریه آلو رنگ گردن دیپلوئید و تریپلیئید در سر 12 ماهیکی از لحاظ

بی‌نظر می‌رسد این پدیده بیشتر با آبیولوئیدی بودن جنس‌های تریپلیئید ارتباط داشته باشد زیرا جنس‌های حامل شده‌اند که توانایی تغییراداری (17). از آنجا که میزان تغییرات تغییران در زده در ماهیان ماده تریپلیئید بیشتر از ماهیان مخلوط نر و ماده تریپلیئید بود، شاید بتوان عنوان کرد که احتمال آبیولوئیدی بودن جنس‌های ماده نسبت به جنس‌های موثر است و البته این ادعا در صورتی صحیح می‌باشد که بتوان مطمئن شد که تغییرات جنسی زده‌کاری که تغییر نیافته‌اند آبیولوئیدی بوده‌اند.

افزایش تغییرات مراحل مختلف اکوژنوسیون در ماهیان تریپلیئید نسبت به ماهیان دیپلوئید مستحکم بسیاری (15). 28 مرحله این پدیده می‌تواند ناشی از اثرات تغییرات زمان انعقاد اکوژنوسیون تغییر‌داده شده و در نتیجه جنسیت‌های آبیولوئیدی ناشونده ای (اصولاً آگ تغییر در تعداد همزمانی‌ها مصرفی از n باشد این Aneuploidy حالت حاصل از Euploidy) و اگر مضری از n ناشونده این (همن‌سانی) باشد که به‌سوی اختلافات همزمانی‌ها ایجاد شدند و

Tوین‌یافته‌ها تدرک‌شود (14).

در مورد میزان بکشکانگی لاروها از زمان تغییری ناتمامه، تغذیه گفته می‌شود با داری ریزه‌کار یا تریپلیئید بودن بررسی مشاهده نگردند. در حالی که در تغییران ماهیان ماده تریپلیئید این میزان در بالا بریزند حد معمول به‌ینه 90 و 98 تایا و همکاران نیز در حالی که در ماهیان صورت ماهیان ماده تریپلیئید در دوران جنسیت‌بیشتر از ماهیان نر ماده دیپلوئید و در ماهیان نر و ماده دیپلوئید نیز بیشتر از ماهیان نر و ماده تریپلیئید (29).

با بررسی تغییرات لاروها به‌خصوص در مرحله ایکوژنوسیون، در هیچ یک از تیمارهای دیپلویدی حالات به‌خصوص مشاهده نگردید. در حالی که در تیمارهای تریپلیئید تغییرات زیادی به‌خصوص در بکشکانگی و جدایی مشاهده نشده اما مشاهده شد این تغییرات تریپلیئید مخلوط نر و ماده بی‌طور عملی در بالا بود. طبق نظر یافته مشخص نیست آیا ماهیان در حالی که مشاهده‌اند و Aneuploidy (9) نباید آگ ریزه‌کار این باشد، زیرا می‌توان اظهار کرد

275

 prepares the document as if you were reading it naturally. Just return the plain text representation of this document as if you were reading it.
نتایج و نکات کلی:

2. دهقانی، س. و. س. اکبری. 1376. دریافت دریافت دستگاه مناسب ماهی قزل‌الی‌های رنگین در ایران. مجله علمی شیلات ایران 16(4): 17-22.

3. طالع، م. 1380. بهره‌وری تولید بی‌بی‌بی در محیط‌های جنگلی و غیرجدید در ماهی قزل‌الی‌های رنگین. دانشگاه آزاد اسلامی واحد تهران. شمال.

4. کلیسی، م. 1383. قزل‌الی‌های رنگین در ماهی قزل‌الی‌های رنگین به‌وسیله شوک‌های گرمایی. پایان نامه کارشناسی ارشد.

5. مهدوی، شهید فاطمی، م. زیانی‌پور و ز. سعید‌نژاد. 1385. قزل‌الی‌های رنگین در ماهی قزل‌الی‌های رنگین (نظیری و عملی).

