ارزیابی گزینه‌های شیشه جاده چنگلی از نظر هزینه ساخت GIS به روش چند معیاری در محیط
مطالعه موردی: بخش نمایه جنگل خیره کنار

احسان علیدی، بازرس مجازیان* و علی اصغر درویش صفت

(تاریخ دریافت: ۱۷/۱۱/۱۳۸۶، تاریخ پذیرش: ۸۰/۴/۱۰)

چکیده
عملیات جاده‌سازی در جنگل با اختصاص حجم بالایی از سرمایه به خود بکی از مهم‌ترین فاکتورهای هزینه‌ی جاده به نمایش می‌گذارد. از دریافتی جنگل مسیا به‌منظور جاده‌سازی گزینه‌های مختلف جاده جنگلی و تعیین مناسب‌ترین گزینه می‌تواند کمک مؤثری در کاهش هزینه‌های جاده‌سازی یافت. در پژوهش حاضر تلاش در این چه جهت بوده که با استفاده از روش ارزیابی چند معیاری، به ارزیابی گزینه‌های شیشه جاده چنگلی با در نظر گرفتن هزینه ساخت پرداته‌ها است. روشن کار به این صورت است که ایدئال‌ترین هزینه‌های مشخص‌های شیشه عرضی دامنه جامع‌تری و نوع کافی منطقه انتخاب شده پس از وارد کردن نظرهای مختصاتی در فرآیند تحلیل سلسله مراتبی (AHP) نسبت به این ارجاع کار به صورت دستی علاوه بر صرف هزینه و زمان کمتر، دقت پیش‌تری دارد بنابراین پیشنهاد می‌شود برای انتخاب مناسب‌ترین از این روش استفاده شود.

ازاویه‌ی کلیدی: ارزیابی گزینه‌های جاده، ارزیابی چند معیاری، نفشه شیست‌گی، تحلیل سلسله مراتبی GIS.

مقدمه
مختلف شیشه جاده جنگلی و تعیین مناسب‌ترین گزینه می‌تواند
کمک مؤثری در کاهش هزینه‌های جاده سازی باشد. به‌منظور
ارزیابی انتخاب (Variants) مختلف شیشه جاده در
با ایده‌های جاده به صورت متقابل تایپ نشده در آینده این مبانی بر
GIS محیط طراحی و ساخت شیشه جاده جنگلی با اختصاص حجم بالایی
از سرمایه‌گذاری به خود، به عنوان یکی از مهم‌ترین
آرایه‌ای فاکتورهای هزینه
در مدیریت جنگل مطرح می‌باشد. بنابراین ارزیابی گزینه‌های

1. به ترتیب دانشجوی دکتری و دانشیاران جنگل‌داری، دانشکده مهندسی منابع طبیعی، دانشگاه تهران
bmajnoni@ut.ac.ir
* مسئول مکاتبات، پست الکترونیکی:
مدیابی آن هزینه گیری‌ها با استفاده از مقایسه نمود، ضمن آنکه به‌دلیل تأثیر مشخصه‌های (Factors) کمی و کیفی مختلف در هزینه ساخت جایگاه جنگلی، ارزیابی آن‌ها توسط ارزیابی‌ها (استر. فرانس) (Multi Criteria Evaluation) (MCE) و (چندمعیاری) (Multi Criteria Decision Making) تصمیم‌گیری چندمعیاری‌های نیز با دو مشکل روبرو است: فقیدان استاندارد برای انتخاب گیری میزان هزینه کیفی و هم‌چنین نیز به‌روزرسانی برای تبدیل معیارهای کمی و کیفی به یکدیگر (9) در این مطالعه به‌منظور ارزیابی این هزینه‌ها با نظر گرفتن ملاحظات اقتصادی و بر اساس نقد مشخصه‌ها که اطلاعاتی کافی از آنها در سیری تأثیرگذار ساخت و بازسازی و ارزیابی چندمعیاری روش برای مقایسه مشخصه‌ها مختلط نسبت به هم و تلفیق آنها باید به‌ویژه صنعت‌های ساخت تجهیزات از تصمیم‌گیری است (24).

در این مطالعه به‌منظور ارزیابی هزینه‌های مختلف صنعت از سه مشخصه شیب عرضی دامنه، چگرایی دامنه و سطح بودن خاک از لحاظ زهکشی بهره‌گرفته شد. این باید تا در هر بازار عامل دارای مدلهای دیگری و نیز به‌منظور ارزیابی صنعت جنگلی تأثیرگذار است و در این رابطه اینکه تشکیل‌های موجود این مشخصه‌ها از دست کافی برخوردار نبود و ممکن بود تأثیر منفی بر نتایج تحقیق داشته باشد. این مشخصه‌ها از روند مطابق با مشخصه‌های دیگر در نظر گرفته شده و هزینه‌های عملیات ثابت و نیازمندی‌ها و تأثیرگذار مصالح است. چنانچه همه مشخصه‌ها باید ارزیابی یکسان در تصمیم‌گیری دخالت آیدشوند. تایید به‌دست آمده می‌تواند برای سیاست‌کنندگان، با تا (وا) و با افتیخت‌های مناسب نشان‌دهنده باشد. به‌رب این ایمپت و دخالت سه مشخصه شیب، چه بسا در هزینه و خاکی در هزینه با هم برای ناشد، بنابراین جهت نیازمندی‌ها باید به کام از این مشخصه‌ها باید ویژه مناسب با اهمیت شان تلقی کرده‌اند. فن‌های زیادی به‌منظور وزن چه در شرایط ویژه یکی از راه‌های متقابل‌هایی زوجی (Pair-wise Comparison)
تصمیم به‌نهایی در بر گیرندگان آرای همه اعضا باشد(۶).

d) در سال‌های اخیر در مطالعات بسیاری از این فن استفاده شده است.

1- احمد مطلاعی با هدف ارائه روشی برای تعیین مسیر بهینه جاده توسط خودکار با در نظر گرفتن جنبه‌های زیست محیطی انجام داد. این مطالعه به‌منظور تلقیف مشخصاتی از مدل‌های روش‌های گردشی و برای تعیین هدف مشخص‌سازی از روش تحلیل سلسله مراتبی استفاده گردید. سپس با استفاده از مسیرپایی خودکار، نمای‌سنجی طراحی و با استفاده از نرم‌افزار سلسله مراتبی، مسیر بهینه مشخص شد. نتایج حاصله قابل‌توجه در GIS مسیرپایی‌ها با حداکثر هزینه زیمت محیطی تانش نمی‌دهد(۷).

2- فلاح شمی مطلاعی با هدف استفاده از تحلیل‌های مکانی در تعیین محل استقرار هر یک از کاربردهای منطقه با توجه به مقدار تخصیص پایه به هر یک از این محل‌ها انجام داد. این مطالعات به‌منظور ارائه نتایج برتری‌های زیستی خاطی در استفاده شد. نتایج نشان‌دهنده که اطلاعات نقشه‌های موضوعی در آن خلاصه شده است در این مطالعه نقشه ناسیب نامیده شده است. به‌منظور محاسبه وزن AHP (همیث نسبی) هر یک از نقشه‌های موضوعی از استفاده شد. در پایان می‌شود که محل برتری رزی خطر و تلفیق آن با GIS می‌تواند به عنوان یک روش مناسب برنامه‌ریزی در تحلیل‌های اقتصادی و مکانی مورد استفاده قرار گیرد(۸).

3- دین به‌پایین مسیرهای بهینه اقتصادی شبکه جاده جنگلی در ایالات کلرادو کشور آمریکا پرداخت. در این مطالعه روش‌های مختلف مکان بهینه برای گرفتن انشغال از یک در روش موجود یک طراحی شبکه با استفاده از مسیرپایی خودکار مورد بحث قرار گرفته است. این محقق برای محاسبه هزینه‌ها از چهار مشخصه نوی خاک، شبیه، جهت جغرافیایی دامنه و وضعیت آرایه‌ها استفاده کرد(۹).

- هانگ و همکاران برای مسیرپایی جاده‌ها حداکثر ریسک ارزیابی گزینه‌های شبکه جاده جنگلی از نظر هزینه ساخت...
شکل 1. موقعیت منطقه مورد مطالعه

امکنی از مشخصه‌های اجتماعی - اقتصادی، میزان خطر، میزان ترافیک و امکان کمک رسانی در مواقع ضروری استفاده نمودند. در این تحقیق با استفاده از تحلیل سلسله مراتبی مشخصه‌ها وزنده و در روند ارزیابی چند معیار وارد شدند. در پایان نشان داده شد که، آن مسیر‌های انجام شد (13).

- مسیری با انجام مطالعه‌ای در یکی از ایالت‌های هندوستان

مسیری با حداکثر هزینه برای خروج محصولات جنگلی را با استفاده از سنجش از دور و GIS طراحی کرد. در این مطالعه رودخانه نیز به عنوان گزینه برای حمل و نقل در نظر گرفته شد. نتایج نشان داد که بهترین سیر به هنگام انجام پروژه‌ها و معیار واریانس (Friction Map) هزینه و مسیر‌پای (Cost) بهینه اقتصادی حاصل شد که قسمتی از آن نیز از داخل رودخانه عبور می‌کرد (14).

- کلاس و همکاران در مطالعه خود از AHP به‌منظور مشخص کردن اولویت‌های تعیین و تعدادی جاده و تیز تعیین مزایای

مواد و روش‌ها

منطقه مورد مطالعه

منطقه مورد مطالعه بخش نمایان از جنگل آموزشی و پژوهشی خیبرودکار واقع در خوزش ایزد 95 از جنگل‌های شمال در کیلومتری شرق شهرستان نوشهر می‌باشد (شکل 1). مساحت این بخش 183 هکتار و بدون در نظر گرفتن بخش پارسال 282
جدول 1. طول و تراکم گرینه‌های طراحی شده

<table>
<thead>
<tr>
<th>تراکم (متر در هکتار)</th>
<th>گرینه</th>
<th>طول جاده (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/98</td>
<td>1</td>
<td>10232</td>
</tr>
<tr>
<td>15/12</td>
<td>2</td>
<td>11943</td>
</tr>
<tr>
<td>17/92</td>
<td>3</td>
<td>14192</td>
</tr>
<tr>
<td>21/77</td>
<td>4</td>
<td>16771</td>
</tr>
<tr>
<td>23/31</td>
<td>5</td>
<td>18799</td>
</tr>
<tr>
<td>21/81</td>
<td>6</td>
<td>17194</td>
</tr>
<tr>
<td>22/77</td>
<td>7</td>
<td>16954</td>
</tr>
<tr>
<td>22/70</td>
<td>8</td>
<td>18623</td>
</tr>
<tr>
<td>22/95</td>
<td>9</td>
<td>19362</td>
</tr>
<tr>
<td>22/10</td>
<td>10</td>
<td>19911</td>
</tr>
<tr>
<td>21/10</td>
<td>11</td>
<td>17620</td>
</tr>
<tr>
<td>25/22</td>
<td>12</td>
<td>19883</td>
</tr>
</tbody>
</table>

همانطور که در جدول ملاحظه می‌گردد به تدریج بر طول و تراکم گرینه‌ها افزوده شده است.

مشخصات
الف) شبپ
برای تعیین کلاسه‌های شبپ، سطح عملیات خاکی در شبپ‌های مختلف دامنه با فرض انبوهی ترکیبی سمت خاکی‌داری دارای شبپ و ترکیبی‌داری دارای شبپ ۲:۳ پاش روی محسوب گردیده. با رسم منحنی سطح کل عملیات خاکی در شبپ‌های مختلف دامنه، ۵ کلاسه شبپ در نظر گرفته شده و نقشه شبپ به همین تعداد کلاسه تقسیم گردیده که در شکل ۲ آمده است.

ب) جهت
در این پژوهش ۴ جهت اصلی جغرافیایی (شمال، شرق، جنوب، غرب) در نظر گرفته شد. لازم به ذکر است که بخش‌هایی از منطقه که دارای شبپ کمتر از ۱۰/۰ بودند به عنوان منطقه شناخت (بدون جهت) در نظر گرفته شده‌اند.

حمایتی ۲۸۸ هکتار است. سنگ مادر بخش نمک‌های آهکی و در بعضی نقاط از طبیعه‌های سفت شکاف دار و طبیعه‌های نرم که به طور متناوب روی هم قرار گرفته‌اند، پوشش‌های شده است. میران زیستی در این بخش بین ۱۶۰۰ و ۱۳۰۰ میلی‌متر می‌باشد. خاک‌های بخش نمک‌های اغلب روزی سنگ مادر آهکی و به ندرت روزی شیست و مران آهکی قرار دارند.

روش تحقیق
اولین مرحله در این پژوهش طراحی گرینه‌های شبکه جاده بود. در این رابطه از ابزار ضمیمه‌ای به نام PEGGER بهره نیه شده است. نهایتاً اجرای فن ArcView به صورت رقومی به گام پرگار (Divider Setting Method) کار رفت. سپس با استفاده از لایه خطوط تویورافی (DesiGN file) DGN استخراج شده از نقشه به ناحیه جاده‌های طراحی شده روی نقشه جاده‌های اقلامی به طراحی ۱۲ گرینه‌ای شبکه جاده در بخش نمک‌های شد که مشخصات آنها در جدول ۱ آمده است.
بعضی از گزارشات کیفیت، کیفیتی که به نظر می‌رسد که از محدوده مورد مطالعه بیشتر است.

نمودار 2 نشان دهنده کلاس‌های شیب منطقه مورد مطالعه است.

نمودار 3 نشان دهنده کلاس‌های چهت منطقه مورد مطالعه است.

خاک نشان دهنده کلاس‌های خاک‌شناسی منطقه مورد مطالعه است.

ارزش‌گذاری کلاس‌های مشخصه چهت

ارزش‌گذاری کلاس‌های داخلی جهت به این صورت انجام گرفت (جدول 2).

ارزش‌گذاری کلاس‌های مشخصه خاک

بر اساس نتایج مطالعات خاک منطقه از نظر مقیاس بزرگی، شدت طبقه خاک مشخص شد (5) که ارزش‌گذاری آنها به صورت جدول (5) انجام گرفت.

تعیین وزن مشخصه‌ها

برای بهبود گیری از تقطیر نظرهای منشتعاب متفاوت به‌منظور

الف) ارزش‌گذاری کلاس‌های مشخصه شیب

ارزش‌گذاری کلاس‌های داخلی شیب به این صورت انجام گرفت (جدول 3).
جدول 2. کلاس‌های خاک شناسی بخش بم‌خانه (اکتشاف از سرمدیان و جمع‌ی‌کن) (۱۳۸۰)

<table>
<thead>
<tr>
<th>کد واحد خاک</th>
<th>شیب</th>
<th>عمق عمق</th>
<th>نفوذپذیری</th>
<th>عمق خاک</th>
<th>بافت خاک</th>
<th>فرسایش</th>
<th>پشت و بلندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>زیاد</td>
<td>بیش از ۱۰۰</td>
<td>بیش از ۷۵</td>
<td>زیاد</td>
<td>سطحی سطحی</td>
<td>سطحی سطحی</td>
<td>بدون فرسایش</td>
</tr>
<tr>
<td>2-1</td>
<td>زیاد</td>
<td>بیش از ۱۰۰</td>
<td>بیش از ۷۵</td>
<td>زیاد</td>
<td>سطحی سطحی</td>
<td>سطحی سطحی</td>
<td>بدون فرسایش</td>
</tr>
<tr>
<td>1-1</td>
<td>زیاد</td>
<td>بیش از ۱۰۰</td>
<td>بیش از ۷۵</td>
<td>زیاد</td>
<td>سطحی سطحی</td>
<td>سطحی سطحی</td>
<td>بدون فرسایش</td>
</tr>
<tr>
<td>0-1</td>
<td>زیاد</td>
<td>بیش از ۱۰۰</td>
<td>بیش از ۷۵</td>
<td>زیاد</td>
<td>سطحی سطحی</td>
<td>سطحی سطحی</td>
<td>بدون فرسایش</td>
</tr>
<tr>
<td>۲-1</td>
<td>زیاد</td>
<td>بیش از ۱۰۰</td>
<td>بیش از ۷۵</td>
<td>زیاد</td>
<td>سطحی سطحی</td>
<td>سطحی سطحی</td>
<td>بدون فرسایش</td>
</tr>
</tbody>
</table>

جدول ۳. متوسط کلاس‌های شیب درصد شیب

<table>
<thead>
<tr>
<th>درصد شیب</th>
<th>رتبه بر اساس مطلوبیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۰-۱۰۰</td>
<td>۱</td>
</tr>
<tr>
<td>۴۰-۷۰</td>
<td>۲</td>
</tr>
<tr>
<td>۲۵-۴۰</td>
<td>۳</td>
</tr>
<tr>
<td>۱۵-۲۵</td>
<td>۴</td>
</tr>
<tr>
<td>۵-۱۵</td>
<td>۵</td>
</tr>
</tbody>
</table>

جدول ۴. متوسط کلاس‌های جهت

<table>
<thead>
<tr>
<th>جهت جغرافیایی</th>
<th>رتبه بر اساس مطلوبیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>جنوب</td>
<td>۱</td>
</tr>
<tr>
<td>غرب</td>
<td>۲</td>
</tr>
<tr>
<td>شرق</td>
<td>۳</td>
</tr>
<tr>
<td>مسطح</td>
<td>۴</td>
</tr>
<tr>
<td>شمال</td>
<td>۵</td>
</tr>
</tbody>
</table>

جدول ۵. متوسط کلاس‌های خاک

<table>
<thead>
<tr>
<th>کلاس‌های خاک</th>
<th>رتبه بر اساس مطلوبیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸-۱</td>
<td>۱</td>
</tr>
<tr>
<td>۱-۱</td>
<td>۲</td>
</tr>
<tr>
<td>۱-۱</td>
<td>۳</td>
</tr>
<tr>
<td>۳-۱</td>
<td>۴</td>
</tr>
<tr>
<td>۴-۱</td>
<td>۵</td>
</tr>
</tbody>
</table>
جدول 6. مقادیر ترجیح‌ها برای مقایسه‌های زوجی انتخابی از فاسی پور (۱۳۷۹)

<table>
<thead>
<tr>
<th>مقدار عددي</th>
<th>ترجیح‌ها (تفضیل شفاهی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>کاملاً مرجح یا کاملاً ممتنع یا کاملاً مطلوب</td>
</tr>
<tr>
<td>7</td>
<td>ترجیح یا اهمیت یا مطلوبیت خیلی قوی</td>
</tr>
<tr>
<td>5</td>
<td>ترجیح یا اهمیت یا مطلوبیت قوی</td>
</tr>
<tr>
<td>3</td>
<td>کمی مرجح یا کمی ممتنع یا کمی مطلوبیت</td>
</tr>
<tr>
<td>1</td>
<td>ترجیح یا اهمیت یا مطلوبیت یکسان</td>
</tr>
</tbody>
</table>

ترجیحات بین فواصل فوق:

<table>
<thead>
<tr>
<th>شیب عرضی دامنه</th>
<th>جهت جغرافیایی دامنه</th>
<th>نوع خاک منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>الف</td>
<td>ب</td>
<td></td>
</tr>
<tr>
<td>ب</td>
<td>ج</td>
<td></td>
</tr>
</tbody>
</table>
| ج | هزینه ساخت جاده به‌صورت مقایسه‌های زوجی ج

جدول 7. جدول قضاوت‌های زوجی مقایسه‌ها

<table>
<thead>
<tr>
<th>شیب عرضی دامنه</th>
<th>جهت جغرافیایی دامنه</th>
<th>نوع خاک منطقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>الف</td>
<td>ب</td>
<td></td>
</tr>
<tr>
<td>ب</td>
<td>ج</td>
<td></td>
</tr>
</tbody>
</table>
|ج | هزینه ساخت جاده به‌صورت مقایسه‌های زوجی ج

وژن دهی مشخص‌های پرشورنامه‌ای طراحی و پس از بیان هدف و تشخیص اصول و کلیات این تکنیک بین استادهای جاده‌سازی جنگل دانشکده‌های منابع طبیعی توزیع و از آنها در خواست گردید که نقطه‌های خود را در رابطه با اهمیت‌های مشخصه شیب عرضی دامنه، جهت جغرافیایی دامنه و خاک منطقه در هزینه ساخت جاده به‌صورت مقایسه‌های زوجی ج

تحویل تجزیه و تحلیل داده‌ها

پس از جمع‌آوری پرشورنامه‌ها، اطلاعات آنها وارد محفظه نرم‌افزار Expert Choice (EC) شد. ضریب ناسازگاری هر پرشورنامه محاسبه گردید. سپس پیشنهاد نموده که اگر ضریب

NASZAGARI تعیین بیش‌تر از 0.1 باشد، بهتر است تصمیم گیرنده در قضاوت‌های خود تجربه نظیر کند که در تمامی پرشورنامه‌های دریافت شده در این پژوهش ضریب NASZAGARI
ارزیابی گزینه‌های شیبک جاده جنگلی از نظر هزینه ساخت

<table>
<thead>
<tr>
<th>عوامل حساسیت از ابعادی هندسی ظرفیت مطلق</th>
<th>دو طرف خاک</th>
<th>نسبت</th>
<th>جهت</th>
</tr>
</thead>
<tbody>
<tr>
<td>طبیعی</td>
<td>سایر محیط‌ها</td>
<td>شیب‌های دریاچه‌ای</td>
<td>طبیعی</td>
</tr>
</tbody>
</table>

شکل 5. وزنه‌های محاسبه‌شده برای هر مشخصه

منابع واحد طول و در نتیجه کمترین مطلوبیت بود. نتایج حاصل از ارزیابی چند معياری در جدول 8 مشاهده می‌گردد.

بحث و نتیجه‌گیری

نتایج وزن‌دهی مشخصه‌ها نشان داد که شیب، بیشترین وزن، بعد خاک و در رده آخر جهت جغرافیایی قرار دارد. وزن شیب نسبت به جهت حدود 4:3 برای نسبت به خاک 4:2 برای محاسبه شد. بنابراین معیار نهایی شیب و جهت در راهی که شیب جاده جنگلی نسبت به دو فاکتور فوق بیشتر می‌باشد و تغییرات درصد کسب بنا به این اگر نسبت به گفته‌های مشخصه جدید و سایر هزینه‌ها با توجه به قرار دارد باب در مرحله طراحی به دقت و نسبت به قرار دارد در همین راستا احتمالاً ارزیابی کرد. در تحقیق خاسیت‌های هزینه‌ها در این مهندسی ارزیابی شیب (بیشترین مطلوبیت) و گزینه‌های هزینه‌های ارزیابی (کمترین مطلوبیت) هستند. علت کمتر بودن ارزیابی گزینه‌های را می‌توان در عبور درصد کمی با شیب جاده از شیب‌های خاکی یا جغرافیایی آتشفشان کمتر با خاک‌های با زره‌های مناسب‌تر داست و در مورد گزینه‌های هزینه‌های این

نتایج بررسی گزینه‌های نشان داد که گزینه‌های هزینه‌ها با داشتن کمترین ارزش (1/745) دارای حداکثر هزینه بر می‌نمای و بر طول در نتیجه بیشترین میزان مطلوبیت و نیاز به هزینه دارا بودن بیشترین ارزش (0/89/638) دارای حداکثر هزینه بر
جدول 8. ارزیابی گزینه‌ها با استفاده از روش ارزیابی چند معیاری

<table>
<thead>
<tr>
<th>ارزش واحد طول</th>
<th>طول جاده به کم‌ترین کمیت</th>
<th>کریته</th>
<th>ارزش استخراج شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>84/395</td>
<td>84</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>84/622</td>
<td>11/9423</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>87/264</td>
<td>14/124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>87/353</td>
<td>16/8771</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>85/218</td>
<td>16/799</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>85/258</td>
<td>17/119</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>85/179</td>
<td>17/952</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>84/990</td>
<td>18/652</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>83/285</td>
<td>19/306</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>83/051</td>
<td>19/591</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>80/373</td>
<td>17/502</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>80/377</td>
<td>17/823</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

مطلب صادقی می‌باشد.

به دلیل امکان بکارگیری میزان‌های کمی و کیفی متعدد در فراپند تحلیل سلسله‌مانی، تعیین ورژن مشخص‌ها بر اساس این روشه مناسب بیشتر می‌رسد. در این راستا احمدی، ستونه، عزیزی و همکاران، احمدی و همکاران و همانگ و همکاران نیز روش مقایسه‌بندی را به کار برده و آن را روش مناسبی به‌ویژه در موارد دسته‌بندی میراث از دست داشته است.

شایان دنیا که تناهی این گونه را به چشم می‌رسد و ارتباط مستقیم با دقت داده‌های مکانی موجود از مناطق مورد مطالعه دارد. این نهایی اطلاعات و نقش‌های مورد مطالعه با دقت بالا برای چنگال‌های شمال ضرورت دارد. این نشانه‌ها به سطح دست‌پخت، روشه‌های نوین طراحی و ارزیابی به نتایج نخواهد دست بیافت، که خود می‌تواند به‌عنوان زمین بنایی حفاظتی، احیا و توسه جنگل‌ها تلقی گردد. در پیان قابل ذکر است که چگونه نتایج حاصل از تجربه و تحلیل در محیط GIS افزاین طراحی و ارزیابی به‌دست‌آمده را به‌طور کامل می‌کنند و لی ارائه نهایی و قطعی به‌منظور تصمیم‌گیری بعد از کنترل کردن زمینی در طبیعت حاصل خواهد شد.

288
منابع مورد استفاده

1. احمدی، ه. 1381. مسیرپیاپی بر اساس اصول زیست محیطی با استفاده از GIS. پایان نامه کارشناسی ارشد محیط زیست، دانشگاه مهر، دانشگاه تهران.

2. احمدی، ح. 1381. اعمال س. ق. ه senate و م. شریعت در تغییرات محیط زیست، 1382. پهنه‌نیزی خطر هواگردانی توده‌های با استفاده از دو روش رگرسیون و تحلیل سلسله مراتبی. مجله منابع طبیعی ایران (35): 333-336.

3. حسنی، ع. غ. ن. و س. ر. نیا. اصول و روش‌ها در سایر مطالعات حرفه‌ای محیط زیست، دانشگاه مهری ایران (46): 127-130.

4. سنته، ا. 1381. رفعی بر اصول زیست محیطی در مسیرپیاپی راه آهن با استفاده از سیستم اطلاعات جغرافیایی. پایان نامه کارشناسی ارشد مدیریت محیط زیست، دانشگاه مهر، دانشگاه تهران.

5. سرمذیان، ف. و. م. جعفری. 1382. بررسی خاک‌های جنگلی استفاده تحقیقاتی اموزشی دانشکده منابع طبیعی دانشگاه تهران، مجله منابع طبیعی ایران (25): 110-121.

7. فتاحی، پ. 1383. بررسی اگزوه مناسب سازمان‌دهی مکانی جنگل در زاگرس شمالی. پایان نامه کارشناسی ارشد جنگل‌داری، دانشکده منابع طبیعی، دانشگاه تهران.

8. فلاحتشمسی، ت. و. م. اسلامی. 1383. بررسی اقتصادی کاربری های مختلف در حوزه آبخیز کلیفر و مطالعه با استفاده از برنامه‌ریزی خطی و GIS. رساله دکتری جنگل‌داری، دانشکده منابع طبیعی، دانشگاه تهران.

9. قدی می. ب. 1379. بررسی اقتصادی کاربریترین یک‌های اقتصادی برای ساختمان امکان انشار زانو و منابع طبیعی ایران. دانشگاه تهران.

