برآورد توده زندگی و تولید ثانویه ماکروبینتوزهای خور모سی

سیدمحمدباقر نیوی، احمد سواری، غلامحسین وقوقی و علیرضا نیکویی

چکیده

به منظور بررسی و برآورد توده زندگی و تولید ثانویه ماکروبینتوزهای خورموسی، در خلال سال‌های 1375 و 1376، تعداد 116 نمونه رسوب از چهار خور م مهم خورموسی برداشت گردید. نمونه‌برداری‌ها هر دو ماه یک بار از بخش‌های ابتدا، متوسط و پایانی خور و با استفاده از گرم با سطح 71 متر مربع انجام گرفت. برای تعیین توده زندگی با روش ارائه شده توسط کریسپ، میزان توده زندگی‌گرم‌های Apseudes sp. حضور داشت. این گونه دارای ارزش پژوهشی بوده‌است که در کلیه فصول و نحوه پردازش حضور داشته و سپس بررسی گردید.

نتایج بررسی نشان می‌دهد که از نظر ماکروبینتوز خورموسی از توده زندگی زندگی‌گرم‌های Apseudes sp. در میان گروه گرم در میروی (18/60 گرم در متر مربع) که بیشترین و کمترین میزان به ترتیب در بیشترین (32/30 گرم وزن خشک در متر مربع) و آدرهای (19/272 گرم وزن خشک در متر مربع) به دست آمده است. در همین زمان، خور مهیا، خور دوراها و آدرهای 33/60 گرم در متر مربع وزن خشک بیشترین میزان توده زندگی و خور بین نسبت به جمع‌آوری مواد (1383 عدد از گونه) لگد که با استفاده از روش گازداری در بین کلاس طولی (سانی) تا گردای کننده بیشتر آمده نشان می‌دهد که تولید ثانویه سالانه این گونه با 800/00 گرم در متر مربع، بیشترین میزان تولید ثانویه این گونه معادل 33/60 گرم در متر مربع و در بروز به در گردای کننده سالانه ماکروبینتوزهای آبی رجوع به میزان افزایش در سطح تغذیه‌ای به سطح دیگر، که نیاز به درصد با باید، رسم 22/00 گرم در متر مربع سالانه ذخایر خورموسی قابل پیش‌بینی است.

واژه‌های کلیدی: توده زندگی، تولید ثانویه، ماکروبینتوژ، نسبت تولید به توده زندگی

1. استادیار بیولوژی دریا و اقیانوس‌شناسی، دانشگاه علوم دریایی، دانشگاه شهید چمران
2. دانشیار اکولوژی دریا و اقیانوس‌شناسی، دانشگاه علوم دریایی، دانشگاه شهید چمران
3. دانشیار ماهی‌شناس، دانشگاه دانشگاه، دانشگاه تهران
4. استادیار بیولوژی دریا، سازمان تحقیقات شیلات ایران

137
مقامه

فیتوپلاستون‌ها اترزی مورد نیاز خود را از طریق پدیده قطبیت و تولید مواد آلی به دست می‌آورند که به‌طور اولیه، می‌گویند. درک و جلوگیری از تولید این مواد آلی نیاز بسیاری از گیاهان و جانوران دیگر به دست می‌آورند. به تولید مواد آلی، توسط جانوران اترزی مورد نیاز خود را از طریق امکان‌پذیری‌ها، جایگاهی و سایر مواد آلی می‌گذرانند. برای درک و شناخت نقش اکولوژیکی بسترهای در هر منطقه، نیاز به دانستن تولید آنها در یک مقطع زمانی معین می‌باشد. این میزان تولید به نوبه خود به میزان نرخ و سینگونه‌های موجود در منابع برنده شده و در حلقه زیستی زندگی است. پژوهشگران با بررسی توده شده و تولید تاناهایی تشخیص دارند، تا به‌طور کامل این جایگاه‌ها در اجتماعات یافته‌ای نموده و اکوسیستم‌های گوناگون را با هم مقایسه نامنند.

ماکروبیوتوزا یکی از مهم‌ترین منابع غذایی آبزیان محسوب می‌شود، و در هر غذاهای آبزی‌ها از جایگاه و روش‌های فرخورداری برای محاسبات ادوم (18) و ادگا (19) میزان آنزیم متنقل شده از حلقه زیستی با حلقه تولید مالاییان حدود 10 درصد می‌باشد. بنابراین با توجه به این میزان انتقال آنزیم، اگر محاسبه میزان تولید سالانه مکروبیوتوزا موجود باشد، می‌توان میزان تولید سالانه غدازی را محاسبه نمود.

یکی از منابع بیشتری روش‌های محاسبه تولید شانه‌بی، به کارگیری روش آنالیز کووترونت است، که توسط بسیاری از پژوهشگران در مدل‌های مالزیان (20) گزارش و همکاران (11) و کریپس (21) مورد تأکید گرفته است. با توجه به این که هیچ‌کدام از روش‌های این تکنیک‌ها در ایران مورد استفاده نیکوکاری (23) در چلیند چهار با کار رفته، بنابراین محاسبه کریپس (24) نیاز به حوزه‌ای در خوراکی‌های ماهشهر است، با استفاده از روشهای آنالیز کووترونت، و با توجه به دریافت بودن آن در مقایسه با روشهای دیگر، می‌توانند بتوانند خوشنویسی راه‌های جدیدی و مقایسه آن با روشهای دیگری باشد که در ارزیابی ذخایر آبزیان مورد استفاده

1. Primary production
2. Secondary production
3. Zoobenthos
4. Cohort analysis
5. Student t-test
6. Van-Veen grab
7. Total organic matter
شکل 1. موکتیت استفاده نمونه‌برداری در خورموزی

باشند، تا پیامده با تکمیل کلاس‌های طولی گونه مورد نظر و تبیین میزان رشد هر یک از کلاس‌های طولی در فاصله دو نمونه‌برداری یا پیایی و نهایتاً در طول کل دوره بررسی، مقدار افزایش تولید همان گونه را محاسبه نمود. با توجه به این ویژگی‌ها در طی شش دوره نمونه‌برداری تنه یک گونه از سخت‌پوستن کافی‌بندی نام گفته Apseudes sp. در اختیار خانواده Apseudes sp. یارای چنین ویژگی‌هایی بوده و تولید ثانویه بیاین گونه محاسبه شد.

در ادامه این روش، وزن تر، وزن خشک و وزن خشک بدون خاسته مرکب از کلاس‌های طولی در دوره‌های نمونه‌برداری با استفاده از ترازوی حساب می‌شود. سپس برای در کلاس‌های طولی در دوره‌های نمونه‌برداری میانگین وزن (W) و از نمایش (MAW) برای مرکب از کلاس‌های طولی (سنی) در فاصله دو نمونه‌برداری یا پیایی محاسبه گردید. در ادامه این محاسبات، نمونه‌برداری تولید (NDW) بر حسب نق در متری منیر، برای هر یک از کلاس‌های طولی در کلیه دوره‌های نمونه‌برداری اندام‌گیری شد. این نمونه‌برداری با توجه به روشن کریسمی 5% محیط به ظروف پاسخ‌پذیری انتقال داده شد، و سپس محدود به میلی متری به آزمایشگاه در اندازه 25% نگهداری می‌شد. رنگ‌آمیزی ماکروتیزه‌گر جداسازی شده از رسوای با استفاده از روش صالح (25) صورت گرفت. سپس نمونه‌ها با استفاده از کلیدهای شناسایی استر (24)، جونیز (14) و اوادان (17) شناسایی شد.

به منشور آنتی‌ژن دانسته‌بردي رسوب از روش استاندارد معرفی شده توسط بوکین (5) و برای سنچی میزان کل ماده آلی موجود در رسوب از روش احترام معرفی شده توسط ساردا و همکاران (22) استفاده گردید. میزان پیوام‌گردی به سالمه (P) استفاده گردید و روش کریسم (5)، اندازه‌گیری شد، و برای وزن خشک و وزن خشک بدون خاسته با استفاده محاسبه گردید.

پرس در انتقال خورموزی کاراً با گونه‌های را بررسی نمود که در انتقالهای طولی یا وزنی مختلف به سپس کافی در بیشتر نمونه‌ها و دو کلیه دوره‌های نمونه‌برداری وجود داشته‌اند.

1. Apseudesidae
سالیانه ماکروبتونوزا استفاده گردید.
در این پژوهش برای تعیین کلاس‌های طولی (صنی) گونه Apsceudes sp. با استفاده از روش بالاترین (به تخمین از 20) در ELEFAN، بت‌رنگ این تمام کلاس‌های طولی به تفکیک دوره‌های نمونه‌برداری تعیین گردید. همچنین، کلیه محاسبات آماری و آزمون ضریب همبستگی با استفاده از نرم‌افزار STATISTICA انجام گرفته است.

نتایج

بررسی بافت رسب در ایستگاه‌های نمونه‌برداری، که میانگین سالیانه آن در جدول 1 نشان داده شده است، نشانگر آن است که ترکیب عضدهای خوراکی از جنس ذرت سیلیکا-رسیاست، که از ویژگی‌های خوراکی محصول می‌شود که میانگین رسب سیلیکا-رسیاست مربوط بررسی با 98/8 درصد در انتهای خور غناگ در مردادماه ثبت شده است. از این فراوانی و ترکیب سخت‌پوشان به عنوان ترکیب اصلی ماکروفورمات منطقه با ذرات سیلیکا-اجرا 1/25 میلی‌متر در خور به دست آمده است. از این‌رو نسبت بین همبستگی در حد 95% اطمینان می‌دارد مقدار مطلق (r = 1) و با ذرات سیلیکا-اجرا 63/50 میلی‌متر در خور غناگ معنی دار مقدار مطلق (r = 1) است.

طبق نتایج به دست آمده، مقدار کل مواد آلی موجود در رسوب، در طی دوره‌ها و ایستگاه‌های نمونه‌برداری شده از نوسانات خیلی پرخوردار بوده است (جدول 1 میانگین سالیانه مواد آلی را در ایستگاه‌های نمونه‌برداری ثانی می‌دهد). حداکثر درصد مواد آلی موجود در رسوب در وسط خور غناگ (22/70%) در تیرماه، و حداقل درصد مواد آلی در انتهای خور غناگ (19/99%) در مردادماه ثبت شده است.

میزان میانگین توده زنده ماکروبتونوزا برای همه‌ها مختلف 1. Predation rate 2. Bhattacharya

1380

(6) از حاصل ضرب رقم R به کمک از کلاس‌های طولی (در

میزان توده‌گردانی در هر دو نمونه‌برداری) در رقم میانگین افراد همان کلاس سنی در

فصله زمینی که در نمونه‌برداری (Δt) به دست می‌آید. حاصل

جمع میزان توده‌گردانی در هر کلاس سنی در دوره‌های متوالی

نمونه‌برداری، میزان توده‌گردانی افراد در طول دوره پایه به

حساب آمده که با نتیجه عددی اندکی ناشی از حاصل ضرب میزان

Apsceudes sp. مقدار کل افزایش تولید گونه Apsceudes sp. به تولید کلیه کلاس‌های سنی به دست آمده محاسبات مربوط به

سالیانه ماکروبتونوزا استفاده گردید.

در جدول 5 آزاد شده است.

یکی از مشاهدات برآورده تولید نانون، محاسبه نسبت

تولید به میانگین توده زنده (برای پایه وزن خشک بدون خاکستر) P/B ratio با وجود

یکی از موارد مربوط به که خرید خرید آنها یک ساله‌ای باشد. نسبت P/B ratio شاخص بند

به عنوان مثلث و P/B ratio = 411/411 است (15). این به یاد توجه داشت که نسبت P/B ratio = 411/411

همواره تحت تأثیر عوامل زیادی قرار دارد. مثال درجه حرارت

این باعث کاهش نسبت P/B ratio = 411/411 خواهد شد (15). ضمناً، به منظور

تبدیل وزن خشک به وزن تر از ضریب تبدیل معنی‌دار شده

توسط ساندرز (21) استفاده شده است.

طبق نظر ساندرز (21)، میزان تولید سالیانه ماکروبتونوزا در

مجموع حدود دو تا یک تا سه تا یک تا سه تا یک تا یک تا سه در

بای برآورده نمونه‌برداری ماکروبتونوزا، با میزان

تووده زنده آنها نتیجه نهایی است. ضریب فوق ناک از

بررسی یکی در هر زمینه در جدول آنها ایجاد می‌شود دنم به

عمل آمده که جمله فرآیندهای پارالوکا و همکاران (19) و

هارکاترا (11) مورد استفاده قرار گرفته است (این ضریب

همچنین برای تبدیل وزن خشک به وزن تر نیز کار رفته

است). در بررسی حاصل برای فرآیند تبدیل تولید
جدول ۱. مقایسه منابع سالیانه مواد آلی موجود در رسوب و ذرات سیستم‌رسی در استگاه‌های خورهای مورد بررسی ماه‌های

<table>
<thead>
<tr>
<th>شماره استگاه</th>
<th>عمر آب (متر)</th>
<th>سرمایه (متر)</th>
<th>درصد ذرات رسوبی کوچکتر از ۲۳ میکرون</th>
<th>درصد مواد آلی</th>
<th>SE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۸</td>
<td>۴۲</td>
<td>۹۶/۸۲</td>
<td>۸/۶۹</td>
<td>۱۰/۵</td>
<td>۱۰/۵</td>
</tr>
<tr>
<td>۲</td>
<td>۴۲</td>
<td>۸۶</td>
<td>۹۶/۸۲</td>
<td>۸/۶۹</td>
<td>۱۰/۵</td>
<td>۱۰/۵</td>
</tr>
<tr>
<td>۳</td>
<td>۴۲</td>
<td>۹۶</td>
<td>۹۶/۸۲</td>
<td>۸/۶۹</td>
<td>۱۰/۵</td>
<td>۱۰/۵</td>
</tr>
</tbody>
</table>

تیبل به دست آمده برای تبدیل وزن خشک به وزن نرمال، محاسبه شده که نتایج آن در جدول ۲ آورده شده است. حداکثر میزان تواده وزن در هر ۴۷/۵۸ گرم در متر گرم در انرژی مصرفی در وزن خشک. و حداقل میزان آن با وزن ۲۸/۸۲ گرم در متر گرم در وزن خشک) در اثر آب‌های بیش از حد است. محاسبه میزان تواده وزن به تفکیک برای خورهای مورد بررسی نتایج مهم دوگانه دارد که نتایج آن در جدول ۳ آورده شده است. همانطور که در این جدول مشخص است، حداکثر میزان تواده وزن ۴۷/۵۸ گرم در متر گرم وزن خشک در خور دوره، و حداقل میزان آن با ۲۴/۷۶ گرم در متر گرم وزن خشک در خور بیش از حد است. نتایج آن در جدول ۳ آورده شده است. طبق نتایج همکاران در سال ۷۳ تداوم دوگانه نتوانسته ظرفیت مکاشفه‌های ماهواره‌ای در پایان آتشگاه اندامشده واقع شوند. شکل ۲ گونه شناسایی شده است پژوهش‌های توانسته با بستری میزان دارد. با استفاده از روش بانجاری (به تقلیل از ۲۳/۲۲)، ۱۴۸۳ عدد از

Apsudeas sp. تولید ثانویه گونه غالب است. این گونه به عنوان یکی از گونه‌های است. این گونه به عنوان یکی از گونه‌های است. این گونه به عنوان یکی از گونه‌های است.
جدول ۲. میانگین توده زندگی ماکروپنطوزه در ماه‌های نمونه‌برداری در خوره‌های مورد بررسی ماه‌هشتر

<table>
<thead>
<tr>
<th>توده زنده (گرم در متر مربع)</th>
<th>ماه‌های نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن تر</td>
<td>SE</td>
</tr>
<tr>
<td>۷/۲۴۴</td>
<td>۰/۱۲۳</td>
</tr>
<tr>
<td>۷/۴۵۰</td>
<td>۰/۱۰۲</td>
</tr>
<tr>
<td>۸/۳۷۴</td>
<td>۰/۱۲۰</td>
</tr>
<tr>
<td>۱۰/۲۸۸</td>
<td>۰/۱۰۶</td>
</tr>
<tr>
<td>۱۱/۴۲۲</td>
<td>۰/۲۷۷</td>
</tr>
<tr>
<td>۶۸/۲۷۸</td>
<td>۰/۲۸۸</td>
</tr>
<tr>
<td>۱۰۸/۲۵۶</td>
<td>۰/۰۷۲</td>
</tr>
<tr>
<td>۱۸/۰۴۰</td>
<td>۰/۵۵۵</td>
</tr>
</tbody>
</table>

جدول ۳. میانگین توده زندگی ماکروپنطوزه در استگاه‌های خوره‌های مورد بررسی ماه‌هشتر

<table>
<thead>
<tr>
<th>میانگین میزان توده زنده (گرم در متر مربع)</th>
<th>نام</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن تر</td>
<td>SE</td>
</tr>
<tr>
<td>۴/۲۴۴</td>
<td>۰/۰۲۳</td>
</tr>
<tr>
<td>۴۹/۲۸۰</td>
<td>۰/۰۸۲</td>
</tr>
<tr>
<td>۱۸/۶۹۸</td>
<td>۰/۱۲۳</td>
</tr>
<tr>
<td>۲۶/۲۵۶</td>
<td>۰/۱۲۲</td>
</tr>
<tr>
<td>۱۰۸/۲۵۶</td>
<td>۰/۰۸۷</td>
</tr>
</tbody>
</table>

شکل ۲. گونه شناسایی شده اسپودسی (Aposeudes sp.) در منطقه مورد بررسی ماه‌هشتر (حداکثر طول ۱۶ میلی‌متر)

از ماه‌های نمونه‌برداری در شکل ۲ و مراحل گوناگون محاسبه تولید تانه‌های در جدول ۵ اثرات شده است. داده‌های به دست آمده از این محاسبه نشان می‌دهد که بیشترین میزان تولید این گونه با گونه‌های طولی (سنی) مشخص، به تفکیک برای هر یک Aposeudes sp. (سنی) قرار گرفته. منحنی‌های توزیع فراوانی گونه (سنی) با گونه‌های طولی (سنی) مشخص، به تفکیک برای هر یک Aposeudes sp.
شکل ۲۳. نمودار توزیع طول گونه Apseudes sp. در ماه‌های تولید تازیه‌های ماکروئنترزم‌های خوروموسی
جدول 2: میانگین توده زنده گونه Apsenodes sp. در ماههای نمومه‌برداری در خورهای مورد بررسی ماهشهر

<table>
<thead>
<tr>
<th>ماههای نمومه‌برداری</th>
<th>وزن ترهوره</th>
<th>SE</th>
<th>وزن خشک بدون خاکستر (AFDW)</th>
<th>SE</th>
<th>وزن خشک (DW)</th>
<th>SE</th>
<th>وزن زنده (WW)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهار-آین</td>
<td>0/130 7 2/130 0</td>
<td>0/130 0</td>
<td>0/130 6 2/130 3</td>
<td>0/130 5</td>
<td>0/130 1 2/130 4</td>
<td>0/130 2</td>
<td>0/130 0 2/130 1</td>
<td>0/130 5</td>
</tr>
<tr>
<td>آذر-بسمت</td>
<td>0/130 7 2/130 0</td>
<td>0/130 0</td>
<td>0/130 6 2/130 3</td>
<td>0/130 5</td>
<td>0/130 1 2/130 4</td>
<td>0/130 2</td>
<td>0/130 0 2/130 1</td>
<td>0/130 5</td>
</tr>
<tr>
<td>بهمن-اسفند</td>
<td>0/130 7 2/130 0</td>
<td>0/130 0</td>
<td>0/130 6 2/130 3</td>
<td>0/130 5</td>
<td>0/130 1 2/130 4</td>
<td>0/130 2</td>
<td>0/130 0 2/130 1</td>
<td>0/130 5</td>
</tr>
<tr>
<td>فروردین-اردیبهشت</td>
<td>0/130 7 2/130 0</td>
<td>0/130 0</td>
<td>0/130 6 2/130 3</td>
<td>0/130 5</td>
<td>0/130 1 2/130 4</td>
<td>0/130 2</td>
<td>0/130 0 2/130 1</td>
<td>0/130 5</td>
</tr>
<tr>
<td>خرداد-تیر</td>
<td>0/130 7 2/130 0</td>
<td>0/130 0</td>
<td>0/130 6 2/130 3</td>
<td>0/130 5</td>
<td>0/130 1 2/130 4</td>
<td>0/130 2</td>
<td>0/130 0 2/130 1</td>
<td>0/130 5</td>
</tr>
<tr>
<td>میاگنی توده زنده</td>
<td>0/130 7 2/130 0</td>
<td>0/130 0</td>
<td>0/130 6 2/130 3</td>
<td>0/130 5</td>
<td>0/130 1 2/130 4</td>
<td>0/130 2</td>
<td>0/130 0 2/130 1</td>
<td>0/130 5</td>
</tr>
</tbody>
</table>

بجست و نتیجه‌گیری:
رسوب دانه رز و گلی از ویژگی‌های ساختار خوراها محصول می‌شود. با روش‌های عامل مهمی است که در پیش و پراکنش موجودات خوراها نقش اساسی دارد. به همین دلیل، تغییر در

مرداد-شهبوز

بجست و نتیجه‌گیری:
رسوب دانه رز و گلی از ویژگی‌های ساختار خوراها محصول می‌شود. با روش‌های عامل مهمی است که در پیش و پراکنش موجودات خوراها نقش اساسی دارد. به همین دلیل، تغییر در
<table>
<thead>
<tr>
<th>جدول 5. محاسبه تولید کالری به وسیله اکسیژن Apsides sp.</th>
<th>NΔw (mg/m³)</th>
<th>SE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/5</td>
<td>0/224</td>
<td>0/24</td>
<td>0/14</td>
</tr>
<tr>
<td>10/5</td>
<td>0/196</td>
<td>0/21</td>
<td>0/10</td>
</tr>
<tr>
<td>0/75</td>
<td>0/171</td>
<td>0/19</td>
<td>0/08</td>
</tr>
<tr>
<td>2/50</td>
<td>0/113</td>
<td>0/13</td>
<td>0/07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میزان تولید کلاس سنی 1 در طول دوره پرورسی</th>
<th>NDW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5</td>
<td>0/267</td>
</tr>
<tr>
<td>1/2</td>
<td>0/205</td>
</tr>
<tr>
<td>2/5</td>
<td>0/136</td>
</tr>
<tr>
<td>1/7</td>
<td>0/047</td>
</tr>
<tr>
<td>4</td>
<td>0/018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میزان تولید کلاس سنی 2 در طول دوره پرورسی</th>
<th>NDW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/9</td>
<td>0/167</td>
</tr>
<tr>
<td>1/7</td>
<td>0/127</td>
</tr>
<tr>
<td>0/75</td>
<td>0/057</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میزان تولید کلاس سنی 3 در طول دوره پرورسی</th>
<th>NDW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/6</td>
<td>0/142</td>
</tr>
<tr>
<td>0/2</td>
<td>0/102</td>
</tr>
<tr>
<td>0/75</td>
<td>0/044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>میزان تولید کلاس سنی 4 در طول دوره پرورسی</th>
<th>NDW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/6</td>
<td>0/127</td>
</tr>
<tr>
<td>0/2</td>
<td>0/102</td>
</tr>
<tr>
<td>0/75</td>
<td>0/044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک بدن خاکستر 68/5 گرم = 80 میلی گرم</th>
<th>جمع‌گل</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>
اندازه‌ی ذرات رسوبی و تعداد رسوب مواد غیرگرمسیری دیگر

خواص چربی و شیمیایی بستر شده، که به نوبه خود بر

ساختار اجتماعات جانوری و گیاهی تأثیر می‌گذارد. نتایج این

بررسی نشان می‌دهد که بافت اصلی رسوب دانه ریز و گلی

است، که حداکثر مقدار آن ۹۸/۸ درصد در اندماج خور بید در

آذربایجان و حداقل مقدار آن با ۱۸/۵ درصد در آنها به بید در

مردادماه ثبت شده است. به رغم تغییرات ذرات رسوبی

کوچکتر از ۷۵ میکرون (سیالی-ریسی) و ۸۳/۰۰-۰/۵ میلی‌متر (ماسا خیلی نرم)، که بر پایه انالیز واریانس

در طول سال مورد دانسته بوده (۵۰/۵۰، پ) تغییرات

آن‌گونهی چیزی پیشی‌نشی می‌کند.

نتایج آنالیز مواردی هستند که می‌تواند

معنی‌دار باشد:

۱) میان متوسط تراکم و تراکم اصلی

پوستان به عنوان تکیب اصلی موجودات کشفیه‌ای منطقه و

ذرات رسوب ۴۶-۱۵۰ میلی‌متر و ۰/۵ میلی‌متر و ۱۵ میلی‌متر.

در پس‌بازی هی برخورد خوری‌های نیز گزارش شده است

۱۲ و ۲۰. در موارد دیگر، این ارتباط میان موجودات کشفیه و

ذرات رسوبی یا گردگر، بیشتر از ۱۲/۵ میلی‌متر و ۰/۵۰ میلی‌متر (سیالی-ریسی)

بوده و یا بافت ریسی می‌باشد.

میان متوسط تراکم و تراکم اصلی موجودات کشفیه، به

تونه هر فرد در گروه‌های مختلف در حاوی

آزمایش مواد آزمایش گزینه از مقادیر

دیگر. مواد محلی است که به عنوان یک عامل

آلوده و کاهش دهنده تون به کمک کنن. این آزمایش مواد آزمایش‌های چربی، بنابراین میان آن

پیوند/۰/۸۰ گرم در متر مربع مواد محلی گردن. بیشترین چربی آن

پیوند/۰/۴۰ گرم در متر مربع مواد محلی گردن. بیشترین چربی آن

پیوند/۰/۱۵ گرم در متر مربع مواد محلی گردن. بیشترین چربی آن

EN ۱۴۶
جدول 6 تولید سالیانه ماکروپانیزها (برحسب وزن خشک در مناطق گوناگون جهان (15))

<table>
<thead>
<tr>
<th>محل</th>
<th>تولید (متر مربع در سال)</th>
<th>P/B</th>
<th>گونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Island Sound</td>
<td>3</td>
<td>2/16</td>
<td>Nephys incisa</td>
</tr>
<tr>
<td>انگلستان</td>
<td>3</td>
<td>0/37</td>
<td>Glyceria rouxi</td>
</tr>
<tr>
<td>انگلستان</td>
<td>3</td>
<td>0/34</td>
<td>Luminereis fragilis</td>
</tr>
<tr>
<td>Lynher Estuary</td>
<td>3</td>
<td>0/9</td>
<td>Nephys hombergii</td>
</tr>
<tr>
<td>Grevelingen Estuary</td>
<td>3</td>
<td>0/1</td>
<td>Arenicola maima</td>
</tr>
<tr>
<td>Carmarthen Bay, South Wales</td>
<td>3</td>
<td>0/97</td>
<td>Glyceria alba</td>
</tr>
<tr>
<td>Biscay Bay, Florida</td>
<td>3</td>
<td>0/84</td>
<td>Tellina martinkensis</td>
</tr>
<tr>
<td>Biscay Bay, Florida</td>
<td>3</td>
<td>0/75</td>
<td>Dosinia elegans</td>
</tr>
<tr>
<td>Northumberland</td>
<td>3</td>
<td>1/11</td>
<td>Abra nitida</td>
</tr>
<tr>
<td>Ythan Estuary</td>
<td>3</td>
<td>0/05</td>
<td>Macoma balthica</td>
</tr>
<tr>
<td>Carmarthen Bay, South Wales</td>
<td>3</td>
<td>0/21</td>
<td>Venus striatula</td>
</tr>
<tr>
<td>Carmarthen Bay, South Wales</td>
<td>3</td>
<td>0/01</td>
<td>Tellina baliana</td>
</tr>
<tr>
<td>Southampton water</td>
<td>3</td>
<td>0/24</td>
<td>Mercenaria mercenaria</td>
</tr>
<tr>
<td>آزمایش‌های خارجی، خوروموسی، ایران</td>
<td>3</td>
<td>0/02</td>
<td>Apsides sp.</td>
</tr>
</tbody>
</table>

برآورد توده، وزن و تولید ثانویه ماکروپانیزها

آزمایش‌های محاسبه‌شده است. مقایسه نسبت P/B برای گونه به در این پژوهش با نسبت به دست آمده برای Apsides sp. برخی از گونه‌ها در پژوهش‌های مشابه در مناطق گوناگون جهان (جدول 6)، نشان دهنده عمل طولانی این گونه (8-9 سال) براورد شد در خوروات ماهشهری می‌باشد.

پژوهش نیکویان (3) در خلیج چابهار، رقم 15400 تن در سال را برای کل تولید ماکروپانیزها به دست آورد است. با توجه به دمکرات انتقال انتقال در زنجیره‌ای غذایی ذرای (10 و 18)، که نشان دهنده انتقال 10 درصد از تولید ماکروپانیزها به مرحله تولید ماهیان می‌باشد، تولید سالیانه ماهیان با استفاده از زیر (18 و گری (10) برای

۱۵۳۶۰ تن محاسبه شده است. نظر به روش‌های قابل قبول به عنوان پتانسیل قابل برداشت در نظرگرفته می‌شود، که رقمی

پتانسیل قابل برداشت ماهی آگاه و پاره نماید.

147
تحقیقات شیلات استان خوزستان، و کارشناسان و همکاران
محمدرضا میرکرمی که در تمام مراحل کار سیدانی و آزمایشگاه همکاری نموده و سپسگازی می‌شود.

منابع مورد استفاده

1. بویوی، م. ب. ا. سواری و ن. سنما، 1371. بررسی‌های بنتونیکی خلیج فارس، آب‌های منطقه خوزستان. معاونت پژوهشی دانشگاه شهید چمران اهواز.

2. بویوی، م. ب. ا. سواری و ن. سنما، 1371. ارزیابی تأثیرگذاری استان بر بافت اجتماعات ماکروبتینیک خوروماسی، خلاصه مقالات همایش "دل‌ای"، انسان توسعه، مركز ملی اقیانوس شناسی، بالیاک.

3. تیکویی، ع. 1377. بررسی تراکم گیاهی در کنار و توپیازه رشد در دریاچه چابهار، رساله دکتری بیولوژی دریا، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران.


