برآورد توده زنده و تولید ثانویه ماکرووینتوژ های خورموسی

سیدمحمدباقر نیوی، احمد سواری *, غلامحسین ونکی و علیرضا نیکویان

چکیده

به منظور بررسی و برآورد توده زنده و تولید ثانویه ماکرووینتوژ های خورموسی، در خلال سال های ۱۳۷۵ و ۱۳۷۶، تعداد ۲۰۰ نمونه رسم بار آهن چاه خوراکی در مجموعه پردازی گردید. نمونه هایی از هر دو ماه یک بار از بخش های اصلی و ستاره های سطح و انتهای مرز خوراکی برداشت گردید. این نمونات از چگونگی بررسی با سطح ۲۰ متر مربع انداخته و برای گرفتن برای توزیع محصولات تولید ثانویه ماکرووینتوژ های خورموسی، میزان توده زنده گروه های Apseudes sp. متنوع و توده زنده گروه های مختلف ماکرووینتوژ برای وسائط خشک و وسائط محاسباتی گردید. محاسبات تولید ثانویه ماکرووینتوژها با استفاده از گروه (یک گروه سخت پوست پیچک) که در کلیه حیاتی و نمونه برداشته ها حضور داشت، صورت گرفت.

نتایج بررسی نشان می دهد که از نظر ماکرووینتوژ، خورموسی از توده زنده کلیه محصولات برخوردار است (18/0/0 گرم در متر مربع). که بیشترین وکثریت نمونه به ترتیب در نمونه 73/23 گرم وزن خشک در متر مربع، و آن‌درمانه (21/73 وزن خشک در متر مربع) به دست آمده است. در همین زمانی، خورما در میان گرم در متر مربع وزن خشک بیشترین نمونه توده زنده، و خورما در میان وزن خشک بیشترین نمونه توده زنده، را داشته است.

در طول دوره پرورش 1380 عده از گرونه، Apseudes sp. با استفاده از روش تامپیونی در تمام کلاسه طولی (سن) گروه‌بندی، نتایج به دست آمده نشان می دهد که تولید ثانویه سالانه این گونه (برابر با 10000) گرم در متر مربع و روش پیچکی بوده است.

نتیجه های پایانی نشان دهنده تولید ثانویه گزارش شده (23300 گرم در متر مربع) که برای کل میزان تولید سالانه ماکرووینتوژها، با توجه به مکانیسم تشکیلی و سطح نقش دیگرها و زنجیره غذایی دروازه، و میزان انتقال انرژی از یک سطح تغذیه‌ای به سطح دیگر، که برای 10 درصد یا بالاتر، رقم 22000 تولید سالانه خورموسی قابل پیش‌بینی است.

واژه های کلیدی: توده زنده، تولید ثانویه، ماکرووینتوژ، نسبت تولید به توده زنده

1. استادیار بیولوژی دریا و اقیانوس شناسی، دانشگاه علوم دریایی، دانشگاه شهید چمران
2. دانشیار اکولوژی و آبیاتورشناسی، دانشگاه علوم دریایی، دانشگاه شهید چمران
3. دانشیار ماهی شناسی، دانشگاه طزهک، دانشگاه تهران
4. استادیار بیولوژی دریا، سازمان تحقیقات شیلات ایران

137
مقامه

پیام بروزتاریفی مورد تازه خوراکی را با طریقت پیدا دقنیزت و تولید مواد آلوی به سمتی آورده که به آن تولید اولیه می‌گویند. بر عکس، جانوران نازی مورد تازه خوراکی را با طریقت تغذیه از گیاهان و یا جانوران دیگر به سمت‌ی آورده. به تولید به سمت‌ی آمده توسط جانوران تولید ثانویه می‌گویند. برای درک و شناخت نقش اکولوژیک بیان‌های در هر منطقه، نیاز به دانستن میزان تولید آنها در یک مقطع زمانی معین می‌باشد. این میزان تولید به طریقت خوراکی به میزان رشد و سوگ‌گیری می‌باشد که در تدوین پردازش شده و محیط بستگی دارد. پژوهشگران با بررسی توده تازه و تولید ثانویه میزان‌ها را در اجتماعات بین‌زیستی ارزیابی نموده و اکوسیستم‌های گوناگون را با همه مقایسه نمایند.

ماکروبیوتوزی یکی از مهم‌ترین منابع غذایی آبزیان محصول می‌شود. و در هر قاچاق آب‌های از جایگاه و رودخانه‌های بارندگی برپا می‌شود.

برای محاسبات آبوم (18) و اکسار (18) میزان آنزیم منتقش شده از حلقه زیستی سازه‌های تولید می‌باشد. به حلقه تولید می‌باشد و 10 درصد می‌باشد. تولید سالانه میکروب‌تریا می‌باشد، می‌باشد. می‌باشد. تولید سالانه میکرو‌تریا می‌باشد و اکوسیستم‌های تولید می‌باشد و اکوسیستم‌های تولید می‌باشد.

میزان تولید سالانه میکرو‌تریا می‌باشد. می‌باشد. می‌باشد.

 الوقا متین تولید می‌باشد. می‌باشد. می‌باشد.

یکی از منابع تولید می‌باشد. می‌باشد. می‌باشد.

کارگردانی روش آنالیز کوچوری است که توسط تری‌باری، از پژوهشگران در یک دانش‌های مختلف (2) و (3) برای بررسی همگراکی (12) و کربس (5) مورد تأکید گرفته است. با توجه به این که این روش در ایران توانا توسط نیکیوان (3) در خلیج چابهار به کار رفته، پژوهشگران می‌باشند. ثانویه در خوراکی ماهشهر، با استفاده از روش آنالیز کوچوری و با توجه به اکثریت بودن آن در مقایسه با روش‌های دیگر، می‌تواند منابع خوبی برای پژوهش‌های آینده و مقایسه آن با روش‌های دیگری باشد که در ارزیابی ذخایر آبزیان مورد استفاده

برآورد توده زنده و تولید ثانویه ماکروویتوژهای خوروموسی

شکل 1. موقعیت استاندارداری نمونه‌برداری در خوروموسی

باشندن، تا بتوان به تفکیک کلاس‌های طولی گونه مورد نظر و تعیین میزان رشد هر یک از کلاس‌های طولی در فاصله دو نمونه‌برداری پایایی و نهادیاً در طول گروه یا نمونه‌برداری مقدار افزایش تولید همان گونه را محاسبه نمود. با توجه به این ویژگی‌ها، در طی شش دوره نمونه‌برداری تنها یک گونه از سخت‌برسانان کَکریزی به نام Apseudes sp. این‌گونه محاسبه شد.

در ادامه این روش و تحلیل زون خشک و خشک بدن خاتم‌کننده از کلاس‌های طولی در دوره‌های نمونه‌برداری، با استفاده از توزیع حساس اندازه‌گیری و ثبت گردیدن سپس برای کلیه کلاس‌های طولی در دوره‌های نمونه‌برداری میانگین وزن (W) خشک بدن خاتم‌کننده محاسبه می‌شود. همچنین افزایش میانگین وزن (AW) برای هر یک از کلاس‌های طولی (سنی) در فاصله دوره نمونه‌برداری پایایی محاسبه گردید. در ادامه این محاسبات، افزایش تولید (NDW) برحسب گرم در مترا مربع برای هر یک از کلاس‌های طولی در کلیه دوره‌های نمونه‌برداری اندازه‌گیری شد. این افزایش تولید، با توجه به روش کیسپ 1. Apseudidae

139
سالیانه ماکروپتیوزیا استفاده‌گردد.

در این پژوهش برای تعیین کلاس‌های طولی (ستنی) گونه‌
با استفاده از روش بتاناتوریا (به تقلی از 22) در
Apseludae sp. برنامه کامپیوتری ELEFAN، توئیز فراوانی تمام کلاس‌های
طولی به تفکیک دوره‌های نمونه‌برداری تعیین گردید. همچنین،
کلیه محاسبات آماری و آزمون ضریب همبستگی با استفاده از
زمره‌ساز مشهود است.

نتایج

بررسی بافت رسوب در ایستگاه‌های نمونه‌برداری، که میانگین
سالیانه آن در جدول 1 نشان داده شده است، بیانگر آن است که
تعداد عمده رسوب از جنس دارای سیلیکا-رستی است، که از
ویژگی‌های جورگ محسوب می‌شود (11) (13). در باور
میزان رسوب سیلیکا-رستی در منطقه مورد بررسی با
98/8 درصد به دست آورده خور با در آزمایش و حاصل آن با
8/5/1 درصد در نتیجه خور غنام در محصولات ثبت شده است. از این
نظر میزان رسوب سیلیکا-رستی به عنوان ترکیب اصلی
ماکروفونیا منطقه با ذرات رسوبی ژرگی 26/5 میلی متر
در حفره بی‌خاطر استفاده از آزمون ضریب همبستگی در جدید
95/4 میلی متر و با ذرات رسوبی
63/5 میلی متر در حفره غنام معنی‌دار مثبت (1-0) با
125/7 میلی متر و با ذرات رسوبی
4/0 میلی متر در حفره غنام معنی‌دار منفی (1-0) و با
96/2 میلی متر در حفره غنام معنی‌دار منفی (1-0).

توضیح

طبق نظر سانرز (22)، میزان تولید سالیانه ماکروپتیوزیا در
مجموع حدود دو تا بهتر زنده آنها می‌باشد، بنابراین ضریب
2 را برای پروپارژ تولید سالیانه ماکروپتیوزیا به میزان
توże زنده آنها تئوری می‌نماید. ضریب فوق تاکنون در
بررسی‌های که در همه زمینه‌های جریان‌های آب‌های اقیانوس‌های به
عمل آمده از جمله نوورده مایوپولکا و همکاران (13)
و هاکسکارن (11) مورد استفاده قرار گرفته است (این ضریب
همچنین برای تبدیل ون خیک به وزن نیز به کار رفته
است). در بررسی حاضر نیز ضریب فوق برای تئوری

1. Predation rate 2. Bhattacharya
جدول ۱. مقایسه میانگین سالیانه مواد آلی موجود در رسوب و ذرات سیالی-رسی در استخراج خوراک‌های مورد بررسی ماهشهر

<table>
<thead>
<tr>
<th>شماره استخراج</th>
<th>مواد آلی درصد ذرات رسوبی کوچک‌تر از ۳۴ میکرون</th>
<th>عمق آب (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱</td>
<td>۲۲</td>
</tr>
<tr>
<td>۲</td>
<td>۲</td>
<td>۲۸</td>
</tr>
<tr>
<td>۳</td>
<td>۳</td>
<td>۱۸</td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td>۱۶</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۱۰</td>
</tr>
<tr>
<td>۷</td>
<td>۷</td>
<td>۱۰</td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td>۲۰</td>
</tr>
<tr>
<td>۹</td>
<td>۹</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۱</td>
</tr>
</tbody>
</table>

تبدیل به نیاز به برای تبدیل وزن خشک به وزن تر (۲۱) میزان توده زندگ در تهیه به مقدار ۳۳/۲۷۳۳ کیلوگرم در متر مربع (وزن خشک) و حداقل میزان آن با وزن ۲/۱۹۵۳ کیلوگرم در متر مربع (وزن خشک) از ادمای لیث شده است. محاسبه میزان توده زندگ به تفکیک برای خوراک مورد بررسی نیاز انجام گرفته که نتایج آن در جدول ۳ آشکار است. همانطور که این جدول مشخص است، حداکثر میزان توده زندگی ۲۴/۹۳ کیلوگرم در متر مربع وزن خشک در سطح دو قطعه و حداقل میزان آن با ۲/۱۴ کیلوگرم در متر مربع وزن خشک در سطح دریا و حداقل میزان آن با ۲/۱۳ کیلوگرم در متر مربع وزن خشک در سطح دریا و حداقل میزان آن با ۲/۱۳ کیلوگرم در متر مربع وزن خشک در سطح دریا است.

نتایج آنالیزهای در جدول ۳ نشان دهنده نتایج ویژه می‌باشند. مقدار میانگین توده زندگی در ماهشهر نماینده می‌باشد. مقدار میانگین توده زندگی در ماهشهر مورد بررسی در طول یک سال و برآمار وزن خشک برای (۵/۲۷) کیلوگرم در متر مربع محاسبه گردیده. این مقدار با توجه به رقم ۲/۳ ضریب...
جدول ۲. میانگین توده زنده ماکروپتوئزا در ماه‌های نمونه‌برداری در خور‌های مورد بررسی ماه‌های مورد بررسی

<table>
<thead>
<tr>
<th>ماه‌های نمونه‌برداری</th>
<th>توده زنده (گرم در متر مربع)</th>
<th>وزن خشک</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرداد-شهریور</td>
<td>۷/۱/۴۴۴</td>
<td>۰/۱۲۳۱</td>
<td>۳/۶۶۲۱</td>
</tr>
<tr>
<td>مهر-آبان</td>
<td>۷/۱/۴۵۰</td>
<td>۰/۱۰۲۸</td>
<td>۳/۷۲۷۵</td>
</tr>
<tr>
<td>آذر-دی تیر</td>
<td>۷/۱/۳۷۴۲</td>
<td>۰/۱۰۲۷</td>
<td>۲/۱۸۷۱</td>
</tr>
<tr>
<td>پرورش-اسفند</td>
<td>۷/۱/۲۸۸۸</td>
<td>۰/۱۰۲۶</td>
<td>۰/۲۴۴۲</td>
</tr>
<tr>
<td>خرداد-مرداد</td>
<td>۷/۱/۶۲۲۷</td>
<td>۰/۲۳۷۷</td>
<td>۵/۸۱۱۲</td>
</tr>
<tr>
<td>خرداد-تری</td>
<td>۷/۱/۸۸۸۸</td>
<td>۰/۲۷۸۳</td>
<td>۳۳/۵۳۹۲</td>
</tr>
<tr>
<td>جمع کل</td>
<td>۱۰/۸/۲۶۲۷</td>
<td>۰/۰۷۳۵</td>
<td>۴۲/۱۲۸</td>
</tr>
<tr>
<td>میانگین</td>
<td>۱۸/۱/۰۴۰۴</td>
<td>۰/۰۵۵۵</td>
<td>۹/۰۲</td>
</tr>
</tbody>
</table>

جدول ۳. میانگین توده زنده ماکروپتوئزا در استخگاه‌های خور های مورد بررسی ماه‌های مورد بررسی

<table>
<thead>
<tr>
<th>نام</th>
<th>توده زنده (گرم در متر مربع)</th>
<th>وزن خشک</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>خور</td>
<td>۷/۱/۴۴۴۰</td>
<td>۰/۲۳۷۲</td>
<td>۲/۲۷۷۲</td>
</tr>
<tr>
<td>بی‌هد</td>
<td>۷/۱/۴۷۶۰</td>
<td>۰/۰۷۹۸</td>
<td>۴۲/۹۲۰۷</td>
</tr>
<tr>
<td>دووق</td>
<td>۷/۱/۶۲۲۷</td>
<td>۰/۲۳۷۵</td>
<td>۲۴/۳۱۷۷</td>
</tr>
<tr>
<td>غزاله</td>
<td>۷/۱/۸۸۸۸</td>
<td>۰/۱۲۲۱</td>
<td>۸/۱۲۳۵</td>
</tr>
<tr>
<td>غنام</td>
<td>۷/۱/۲۶۲۷</td>
<td>۰/۱۲۲۷</td>
<td>۱۸/۱۲۱۷</td>
</tr>
<tr>
<td>جمع کل</td>
<td>۱۰/۸/۲۶۵۶</td>
<td>۰/۰۸۵۵</td>
<td>۴۲/۱۲۸</td>
</tr>
</tbody>
</table>

شکل ۲. گونه شناسایی شده ایتودوس (Aposeudes sp.) جنگل‌های ناپیوسته در منطقه مورد بررسی ماه‌های (حدود ۱۱ میلی‌متر)
شکل ۳. نمودار توزیع نواحی طول گونه Apseudes sp. در سه‌گونه نموه‌برداری در خورهاي‌ماهشهر
جدول 2: میانگین توده زندگی گونه Apsenodes sp. در ماه‌های نمونه‌برداری در خوره‌های مورد بررسی ماهشهر

<table>
<thead>
<tr>
<th>ماه‌های نمونه‌برداری</th>
<th>میانگین توده زندگی (گرم در متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(AFDW)</td>
</tr>
<tr>
<td></td>
<td>وزن شکست (SE)</td>
</tr>
<tr>
<td>مهر-آبان</td>
<td>0/12345</td>
</tr>
<tr>
<td>آذر-بهار</td>
<td>0/45678</td>
</tr>
<tr>
<td>دی-بهمن</td>
<td>0/78901</td>
</tr>
<tr>
<td>بهمن-اسفند</td>
<td>0/12345</td>
</tr>
<tr>
<td>فروردین-اردیبهشت</td>
<td>0/45678</td>
</tr>
<tr>
<td>خرداد-تیر</td>
<td>0/78901</td>
</tr>
<tr>
<td>میانگین توده زندگی</td>
<td>0/12345</td>
</tr>
</tbody>
</table>

نتایج مربوط به بیوماس گونه ایستوس در ماه‌های نمونه‌برداری، و بر پایه وزن تر وزن شکست و وزن خشک بدن خاستگاه، در جدول 1 ارائه شده است. بر این پایه، نسبت تولید به بیوماس (P/B ratio) برای گونه ایستوس، با توجه به میانگین بیوماس وزن شکست بدن خاستگاه (1/8) گرم در متر مربع) و کل انرژی تولید گونه (گرم) = 0/80/8 = 80/80 80/80 میلی گرم (P) به قاره زیر می‌باشد.

P/B = 80/80 + 80/80 + 80/80 + 80/80 + 80/80 + 80/80 + 80/80 = 80/80
پژوهش‌های زنده و تولید ثانویه ماکروپتئوزهای خوروموسي

جدول 5: محاسبه تولید تانیه‌گونه Apseudes sp. بالی گونه بالی

<table>
<thead>
<tr>
<th>NDM (mg/l)</th>
<th>Δt (m)</th>
<th>W (mg)</th>
<th>N (m⁻³)</th>
<th>Δw (mg)</th>
<th>SE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9/5</td>
<td>0</td>
<td>1/22</td>
<td>0/24</td>
<td>12</td>
<td>1/69</td>
<td>0</td>
</tr>
<tr>
<td>1/05</td>
<td>0/24</td>
<td>1/34</td>
<td>0/36</td>
<td>11</td>
<td>1/66</td>
<td>0</td>
</tr>
<tr>
<td>4/0</td>
<td>0/52</td>
<td>2/21</td>
<td>0/21</td>
<td>10</td>
<td>1/76</td>
<td>0</td>
</tr>
<tr>
<td>7/25</td>
<td>0/36</td>
<td>2/24</td>
<td>0/24</td>
<td>10</td>
<td>1/76</td>
<td>0</td>
</tr>
<tr>
<td>7/15</td>
<td>0/50</td>
<td>2/27</td>
<td>0/27</td>
<td>8</td>
<td>1/77</td>
<td>0</td>
</tr>
</tbody>
</table>

میزان تولید کلاس سنی صفر در طول دوره پروسسی

<table>
<thead>
<tr>
<th>NDW</th>
<th>15/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
</tbody>
</table>

میزان تولید کلاس سنی 1 در طول دوره پروسسی

<table>
<thead>
<tr>
<th>NDW</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
</tbody>
</table>

میزان تولید کلاس سنی 2 در طول دوره پروسسی

<table>
<thead>
<tr>
<th>NDW</th>
<th>20/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
</tbody>
</table>

میزان تولید کلاس سنی 3 در طول دوره پروسسی

<table>
<thead>
<tr>
<th>NDW</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
</tbody>
</table>

میزان تولید کلاس سنی 4 در طول دوره پروسسی

<table>
<thead>
<tr>
<th>NDW</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDW</td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td></td>
</tr>
</tbody>
</table>

وزن خشک بدن باشگیر 0.88 گرم = 80 میلی‌گرم = جمع کل

145
نتایج آنالیز ترکیبی همبستگی نشان داد که یک همبستگی معنی‌دار مثبت (value = 0.4) بین تراکم و فراوانی سخت‌پوشی پوستان به عنوان ترکیب اصلی موجودات کشفی منطه‌گردانه و ذرات رسوب 0.6 و 0.3 میلی‌متر و 0.05 تا 0.1 میلی‌متر (سیلیت-ری) با رابطه منفی معنی‌دار را نشان داد. نتایج فوق گویایی این است که هر گروه از موجودات کشفی ترکیب خاصی از رسوب سبتر به عنوان زیستگاه خود برگزیند.

غالب بودن ذرات رسوبی دانه ریز در خورشیدنی‌ها تأثیر بسیاری از موجودات حیاتی و پوستان کرده‌ها دارد. نتایج آنالیز ترکیبی نشان داده است که همگان دارند و توانایی خاصی از رسوب سبتر به عنوان زیستگاه خود برگزیند.

این نظریه را تایید می‌کند.

از نظر همبستگی میان تراکم و کشفیات موجود در خورشیدنی‌های مایل به رسوب سبتر، میانگین تراکم به دست آمده است. نتایج آن نشان می‌دهد که گروه آپسیوداس (Apsaeodes sp.) به عنوان یکی از اندام‌های اصلی و مهم در ساختار این گروه به‌کارگرفته شده‌است. نتایج آن نشان می‌دهد که گروه آپسیوداس به عنوان یکی از اندام‌های اصلی و مهم در ساختار این گروه به‌کارگرفته شده‌است.
جدول 6 تولید سالانه ماکروپتئوزها بر حسب وزن خشک در مناطق گوانگون جهان (15)

<table>
<thead>
<tr>
<th>محل</th>
<th>P/B</th>
<th>گونه</th>
<th>(مترا صفر در سال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Island Sound</td>
<td>2/16</td>
<td>Nephys incisa</td>
<td>9/243g</td>
</tr>
<tr>
<td>انگلستان</td>
<td>5</td>
<td>Glyceria rouxi</td>
<td>19/9mg</td>
</tr>
<tr>
<td>Northumberland</td>
<td>1/34</td>
<td>Luminereis fragilis</td>
<td>7/4mg</td>
</tr>
<tr>
<td>انگلستان</td>
<td>3</td>
<td>Nephys hombergii</td>
<td>7/187g</td>
</tr>
<tr>
<td>Lynher Estuary</td>
<td>1/9</td>
<td>Arenicola mairna</td>
<td>3/97g</td>
</tr>
<tr>
<td>Melld</td>
<td>1/14</td>
<td></td>
<td>1/16g</td>
</tr>
<tr>
<td>Carmarthen Bay, South Wales</td>
<td>0/18</td>
<td>Glyceria alba</td>
<td>0/298g</td>
</tr>
<tr>
<td>آمریکا</td>
<td>7/2</td>
<td>Tellina martinicensis</td>
<td>1/22g</td>
</tr>
<tr>
<td>Biscayne Bay, Florida</td>
<td>1/25</td>
<td>Dosinia elegans</td>
<td>1/10g</td>
</tr>
<tr>
<td>آمریکا</td>
<td>1/11</td>
<td>Abra nitida</td>
<td>1/10g</td>
</tr>
<tr>
<td>Northumberland</td>
<td>1/07</td>
<td>Macoma balthica</td>
<td>1/40g</td>
</tr>
<tr>
<td>انگلستان</td>
<td>6</td>
<td></td>
<td>1/0/173g</td>
</tr>
<tr>
<td>Ythan Estuary</td>
<td>1/41</td>
<td>Venus striatula</td>
<td>0/173g</td>
</tr>
<tr>
<td>Carmarthen Bay, South Wales</td>
<td>0/95</td>
<td>Tellina fabula</td>
<td>1/199g</td>
</tr>
<tr>
<td>انگلستان</td>
<td>6</td>
<td>Mercenaria mercenaria</td>
<td>1/199g</td>
</tr>
<tr>
<td>Southampton water</td>
<td>0/15</td>
<td>Apeanuses sp.</td>
<td>1/25g</td>
</tr>
</tbody>
</table>

پراورد توهم ساله و تولید ثانویه ماکروپتئوزهای خورمось

آزمایش حاضری خورمось ایران

برای نمونه محاسبه شده است. مقایسه نسبت P/B برای گونه Apeanuses sp. در این پژوهش با نسبت به دست آمده برای Apeanuses sp. برخی از گونه‌ها در پژوهش‌های مشابه در مناطق گوانگون جهان (جدول 4) نشان داده که این طولانی این گونه (8-9 سال)

پراورد شد که در خورمیت ماهاه می‌باشد.

پژوهش نیکوکان (23) در خلیج خیابان، رقم 15200 تتن در سال را برای کل تولید ماکروپتئوزها به دست آورده است. با توجه به مدل‌های انتقال ارزی در زنجیره‌های غذایی درباری (10 و 11)، نشان دهنده الانتقال 10 رصد از تولید ماکروپتئوزها به مرحله تولید ماهاه می‌باشد. تولید سالانه ماهاه با استفاده از روش‌آریود (18) و گیری (10) برای 15300 تتن محاسبه شده است. نظر به روشهای قابل قبول انتقال و نتایج ثانویه، به عنوان یک نمونه قابل برداشت در نظر می‌گردد که رقمی
سپاسگزاری

از مدیریت محتوم مؤسسه تحقیقات و آموزش شیلات ایران که هزینه‌های مالی پروژه را تقبل و تسهیلات لازم را فراهم کرده‌اند تشكر و قدردانی می‌گردد. همچنین، از مدیریت محتوم مرکز مونیف مورد استفاده

1. نویی، س. م. ب. ا. سواری و ن. سنامی. 1371. بررسی های بنیونیکی خلیج فارس، آب‌های منطقه خوزستان. معاونت پژوهشی دانشگاه شهید چمران اهواز.

2. نویی، س. م. ب. و ن. سنامی. 1377. ارزیابی تأثیراتی انسان بر ساختار اجتماعات ماکروبتیک خورشی. خلاصه مقالات همایش چهارم، اسلامشهر.

3. نیکویی، ع. 1375. بررسی تراکم، پراکنش، تنوع و توالید ناحیه بی همرگان کف‌زین (ماکروبتیتوس) در خلیج چابهار. رسانه دکتری پیلویزی دریا، دانشگاه آزاد اسلامی، واحد علم و تحقیقات، نهاران.

