Bromus tomentellus

نتایج و بررسی

با استفاده از روش رسته‌بندی

فاضل امیری۱، سید جمال الدین خواجه‌الدین۲ و کوشیار مختاری۲

(تاریخ دریافت: ۸/۸/۲۰۱۷ - تاریخ پذیرش: ۸/۸/۲۰۱۷)

چکیده

رسته بندی پیش‌گیری از اکولوژی آماری است که در سال‌های اخیر نیز و به‌طور گسترده‌ای پایه‌ای است. هدف نهایی از انجام رسته‌بندی پیدا کردن آن رسته از عوامل محیطی است که در تعیین ساختار اکولوژیک گونه‌های گیاهی اهمیت دارند. به منظور شناخت اثر عوامل محیطی بر استقرار و رشد کمی و کیفی گونه Bromus tomentellus سایت مورد مطالعه قرار گرفت. در سایت سنجش‌های تراکم و دمای پوسپش و عوامل خاک شامل هدایت الکتریکی (EC)، (pH)، SAR، درصد آهن (Fe)، سنگ و سنگریزه، مقدار رس، سیلیت، مشورت و تنش در سایت مورد مطالعه قرار گرفت. این مطالعات نشان داد که بر اثر تغییرات محیطی، درصد آهن و SAR تراکم پوسپش و قدرت خاک در یک مساحت از دو سایت مورد مطالعه به‌طور مشابه با همیشه به شدت افزایش یافته است. این پروسه به‌طور گسترده‌ای برای تعیین کیفیت و کمیت گونه Bromus tomentellus در سایت مورد مطالعه شناسایی و ارزیابی شد.

واژه‌های کلیدی: RDA، تعیین، محیطی، نسبت میزان، رسته‌بندی، دو داده، کیفیت

مقدمه

سرزمین‌های ایران با نوع اقلیمی و صخه‌های متغیر عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت عوامل مولتی‌پترهن در ساختار شناختی خاک، روش‌برداری آبیاری از گونه‌های که در صورت شناخت Uncover downloaded from jcpp.iut.ac.ir at 9:28 IRDT on Wednesday July 31st 2019
آنت و همکاران. رابطه بین پوشش گیاهی (بیزه پوشش خلفی) را با صخوشیت خاک و عوامل توربومگرافی در نیوزلند مورد بررسی قرار دادند (۱۰). جهت تحلیل شاخص‌های نشان داد شکل زمین و جوامع گیاهی وابسته به آن قادیرند. توان روش‌ها را با تحقیق قابل قبول و بدون آزمایش‌های مکرر خاک‌سنگی پیش نمایید. دربردها و شتابا به بررسی رابطه پوشش گیاهی و عوامل محیطی پرداحتند (۱۲). این تحقیق با پارامترهای خاک و پوشش گیاهی در ۶۸ محل مطالعاتی مختلف بررسی شد. اطلاعات پوشش گیاهی اسیدازه‌هایی شده، شامل تراکم و پوشش ناچیز گونه‌ها و عوامل خاک شامل درصد pH، هدایت، و سطح مولکولار در اندماهسازی مختلف، که (EC) رطوبیت خاک، فشار ناهیده آب در خاک، pH، هدایت، و مولکول‌های داخلی خاک پایداری در رابطه با پوشش گیاهی مطالعه گردید. بررسی سطح در این مطالعات، اftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تفسیر نموده که گروه اول شامل عوامل عضو مزار و رطوبیت خاک و گروه دوم عوامل خاصی‌ی خاک بودند. در نتیجه یا اطلاعات درستی آن‌ها، یکی در سطح در این مطالعات، اoftware RDA استفاده گردید و عوامل موثر بر رشد و استقرار گونه‌های گیاهی را در دو گروه تIFS4M7
روش تحقیق

به منظور بررسی تأثیر عوامل خاکی روی گونه B. tomentellus ۱۵ سایت انتخاب در نقاط مختلف جوزه که پراکنش گونه مذکور در آن یکسان بود، انتخاب گردیدند. در هر سایت پلاک‌های بدنه متراکم و به‌طور مداوم یک ترکیب گوجه‌فرنگی به روش تحقیق ذکر شده در پاراگراف بالا ساخته شد.

t = \left\{ \frac{(n-3)\times(1-r^2)}{(n-1)} \right\}^{1/2} \quad (3)

dارای الکتریکی (با هدایت مس تیتانیوم ۳۳۱ و بررسی روش zap) جهت خاک فریم و به‌کارگیری ارسال گردید. در هر ترکیب گوجه‌فرنگی به روش تحقیق ذکر شده در پاراگراف بالا ساخته شد.

\[N = \frac{t \times S^*}{(x \times k)} \]

در مواردی که دفعات قابل‌گزاری اولیه (n) کمتر از تعداد پلاته لازم (N) باشد، نمونه برداری به تعداد لازم (N) تكرار می‌شود (16). در رابطه ۱، تعداد دفعات قابل‌گزاری، ن حساب آمده از پیش‌برنیز و با استفاده از رابطه ۱، تعداد قابل‌گزاری لازم در هر منطقه تعیین گردید.

نتایج

تعیین میزان هم‌بستگی خصوصیات خاک با یکدیگر به روش RDA

تجربه و تحلیل خصوصیات خاک با تکنیک RDA نتایج و وجود هم‌بستگی‌های بین پارامترهای خاک می‌باشد. پرتاب همبستگی‌های بین یکدیگر شده در جدول ۱ نشان داده می‌باشد. در پاراگراف بالا ذکر کرده که همبستگی‌های بین آماری و اطلاعات گونه مربوط به هر قطعه جمع‌آوری گردید. پس از برداشت نمونه‌های خاک در کیسه‌های پلاستیکی نیز قرار داده شد و به آزمایشگاه خاک شناسی جهت خکش شدن و استفاده به روش zap، سپس به روش zap، بسته شد. Ht

\[329 \]
جدول ۱. ضرایب میانگین بین محورهای گوناگون و محورهای محیطی استاندارد و خصوصیات خاک

<table>
<thead>
<tr>
<th>SPEC AX1</th>
<th>SPEC AX2</th>
<th>gravela</th>
<th>gravelb</th>
<th>sanda</th>
<th>sandb</th>
<th>salita</th>
<th>salitb</th>
<th>claya</th>
<th>clayb</th>
<th>spaa</th>
<th>spab</th>
<th>ocaa</th>
<th>ocb</th>
<th>ocha</th>
<th>ochb</th>
<th>caca</th>
<th>cacb</th>
<th>cab</th>
<th>mga</th>
<th>mgb</th>
<th>nsa</th>
<th>nas</th>
<th>nsh</th>
<th>sara</th>
<th>sarb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23</td>
<td>0.33</td>
<td>0.39</td>
<td>0.36</td>
<td>0.25</td>
<td>0.03</td>
<td>0.13</td>
<td>0.18</td>
<td>0.38</td>
<td>0.44</td>
<td>0.26</td>
<td>0.36</td>
<td>0.11</td>
<td>0.32</td>
<td>0.03</td>
<td>0.10</td>
<td>0.34</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1.00</td>
<td>0.33</td>
<td>0.34</td>
<td>0.73</td>
<td>1.00</td>
<td>0.85</td>
<td>0.6</td>
<td>0.54</td>
<td>0.54</td>
<td>0.78</td>
<td>1.00</td>
<td>0.59</td>
<td>0.85</td>
<td>0.54</td>
<td>0.54</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.85</td>
<td>0.6</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ** : به ترتیب معنی دار در سطح ۵ و ۱ درصد.
بیان می‌کند که محوّل اول 9.9 درصد و محوّل دوم 6.1 درصد واریانس پارامترهای گونه‌ای و خصوصیات خاک نشان می‌دهد.

تجزیه و تحلیل رابطه پارامترهای گیاهی با خصوصیات خاک به روش RDA آنالیز پارامترهای گیاهی و خصوصیات خاک با استفاده از روش RDA روابط بین تغییرات خصوصیات خاک و تغییرات پارامترهای گیاهی را ظاهر می‌کند. این آنالیز به منظور تفسیر کارایی رابطه خصوصیات خاک و پارامترهای گیاهی انجام شد. در شکل 1 رابین رابطه خصوصیات خاک و پارامترهای گیاهی 15 سالیان مورد مطالعه آورده شده است. توّجه به این که در آن 1 شاخص معنی‌دار بودن هم پیشگی است و از جدول 4- استیونت به دست می‌آید. پرایم هم پیشگی و n تعداد نمونه است. و بر اساس جدایی معنی‌دار بودن هم پیشگی در سطح یک درصد آماری، نتایج هم پیشگی‌های بالاتر از 0.05 و کمتر از 0.01 و در سطح پنجم درصد آماری نتایج هم پیشگی‌های بالاتر از 0.05+ و کمتر از 0.1+ موجود در جدول 1 معنی دار محصول می‌شوند (3 و 5).

با توجه به جدول 1 محوّل اول پارامترهای گیاهی با محوّل اول خصوصیات خاک هم پیشگی بسیار بالایی دارد (r=.47). محوّل دوم پارامترهای گیاهی نیز با محوّل دوم خصوصیات خاک هم پیشگی بالایی (r=.79) نشان می‌دهد. Eigen Value 2 محوّل در جدول Eigen Value

جدول 2. اعداد مربوط به محوّل در روش RDA

<table>
<thead>
<tr>
<th>محوّلها</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/00</td>
<td>0/00</td>
<td>0/01</td>
<td></td>
</tr>
<tr>
<td>Eigen Value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

451
مورد مطالعه دارد و اثر عواملی چون، درصد نمی‌شود در افق A و B. tomentellus در افق تأثیر نشان دهنده کاهش β بوده و بیشترین تأثیر در میزان رگیدی بوده و B. tomentellus. در افق B، درصد گوشی گونه به طول فلش کاهش نشان داده می‌شود و بیشترین اثر بیشتر (میانه یا)

متغیر عامل تأثیرگذار بر تراکم گونه به میزان B. tomentellus در افق C/N نسبت به درصد اثر تیتانیم، به میزان کلیه پارامترهای مؤثر، پس از قرار دادن کلیه پارامترهای گونه خاک اعمال دستور Merge در محیط انواع متفاوت تأثیر نزدیک به بیشترین تأثیر نزدیک به بیشترین تأثیر نزدیک به بیشترین تأثیر نزدیک به بیشترین تأثیر نزدیک به B. tomentellus. در افق B، درصد گوشی گونه به طول فلش کاهش نشان داده می‌شود و بیشترین اثر بیشتر (میانه یا)

میزان

به طول فلش کاهش شده. درصد بلندتر از بیشتر (میانه یا)

متغیر عامل تأثیرگذار بر تراکم گونه به میزان B. tomentellus در افق C/N نسبت به درصد اثر تیتانیم، به میزان کلیه پارامترهای مؤثر، پس از قرار دادن کلیه پارامترهای گونه خاک اعمال دستور Merge در محیط انواع متفاوت تأثیر نزدیک به بیشترین تأثیر نزدیک به بیشترین تأثیر نزدیک به بیشترین تأثیر نزدیک به بیشترین تأثیر نزدیک به B. tomentellus. در افق B، درصد گوشی گونه به طول فلش کاهش نشان داده می‌شود و بیشترین اثر بیشتر (میانه یا)
جدول 3: ضریب هم پیگشی ساده بین خصوصیات خاک و پارامترهای گیاهی

<table>
<thead>
<tr>
<th>Cover</th>
<th>Density</th>
<th>gravel</th>
<th>sand</th>
<th>silt</th>
<th>clay</th>
<th>clayb</th>
<th>dry</th>
<th>Bray 1</th>
<th>Bray 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromus tomentellus</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gravel</td>
<td>0.25</td>
<td>0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sand</td>
<td>0.41</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clay</td>
<td>0.31</td>
<td>0.31</td>
<td>0.76</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clayb</td>
<td>0.07</td>
<td>0.05</td>
<td>0.49</td>
<td>0.86</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silt</td>
<td>0.06</td>
<td>0.02</td>
<td>0.63</td>
<td>0.34</td>
<td>0.8</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kohn</td>
<td>0.18</td>
<td>0.01</td>
<td>0.16</td>
<td>0.33</td>
<td>0.2</td>
<td>0.18</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: BQ $aO&
>+

9=).V%& j;2: 2%
	K
	>
	Z
	Nb> -

1
دراستگی و پایان‌نامه

با توجه به شرایط آن از طریق ریزی بر درخت‌های مسن تر سروده، ثمیرداره‌های کربن در گیاه کاهش می‌دهند. نتیجه این کربنات بارز این پیون و بی‌کربنات بارز گیاهی باعث می‌شود که نتیجه داشته باشد. حقایقی از آن گیاهی در دست آمده باشد. این گونه‌های خاص از سه رنگ باید به کمک زیاد به کم شو درمانی و نیز، سرطان و پاتسیمی است.

N و C

سبب افزایش سطح ناحیه پوشش B. tomentellus افزایش تراکم و افزایش مصرف از خاک در افزایش SAR و A به دنبال کشت به دنبال درون بررسی مکانی از دیدگاه ریشه در سطح فکر را باغ از می‌گردد. این الگویی حاوی علائم و در کربن آلی فعالیت افزایش A و B به C/N نسبت. آنتی‌بیوتیک در افزایش A و B و افزایش می‌باشد که افزایش متفاوت دارد (2).

درصد سنگریزه و پایان خاک

با توجه به افزایش A و B به نیز بالا بودن درصد سنگریزه افته‌های A و B افزایش نفوذپذیری افته‌های می‌گردد. در اثر آب‌برداری، افزایش تراکم حساسیت کربن در افزایش A به راحتی به افته‌های می‌گردد. که نتیجه داشته باشد. این پیون در دست آمده باشد. نتایج مطالعات مقیمی (V) نیز متفاوت دارد.

EC و pH, SP

بی دلیل سیک بودن باتفاقد حاکم افته‌های A نفوذپذیری بالا مقارن با درشت. ثمیرداره‌های مسن تر سروده، ثمیرداره‌های کربن در گیاه کاهش می‌دهند. نتیجه این کربنات بارز این پیون و بی‌کربنات بارز گیاهی باعث می‌شود که نتیجه داشته باشد. حقایقی از آن گیاهی در دست آمده باشد. این گونه‌های خاص از سه رنگ باید به کمک زیاد به کم شو درمانی و نیز، سرطان و پاتسیمی است.

N و C

سبب افزایش سطح ناحیه پوشش B. tomentellus افزایش تراکم و افزایش مصرف از خاک در افزایش SAR و A به دنبال کشت به دنبال درون بررسی مکانی از دیدگاه ریشه در سطح فکر را باغ از می‌گردد. این الگویی حاوی علائم و در کربن آلی فعالیت افزایش A و B به C/N نسبت. آنتی‌بیوتیک در افزایش A و B و افزایش می‌باشد که افزایش متفاوت دارد (2).

درصد سنگریزه و پایان خاک

با توجه به افزایش A و B به نیز بالا بودن درصد سنگریزه افته‌های A و B افزایش نفوذپذیری افته‌های می‌گردد. در اثر آب‌برداری، افزایش تراکم حساسیت کربن در افزایش A به راحتی به افته‌های می‌گردد. که نتیجه داشته باشد. این پیون در دست آمده باشد. نتایج مطالعات مقیمی (V) نیز متفاوت دارد.

EC و pH, SP

بی دلیل سیک بودن باتفاقد حاکم افته‌های A نفوذپذیری بالا مقارن به شوری آن از طریق ریزی بر درخت‌های مسن تر سروده، ثمیرداره‌های کربن در گیاه کاهش می‌دهند. نتیجه این کربنات بارز این پیون و بی‌کربنات بارز گیاهی باعث می‌شود که نتیجه داشته باشد. حقایقی از آن گیاهی در دست آمده باشد. این گونه‌های خاص از سه رنگ باید به کمک زیاد به کم شو درمانی و نیز، سرطان و پاتسیمی است.
منابع مورد استفاده
1. آریویل, A.1373. کاربرد برخی از آنتی‌بیوتیک‌های جدید متفای در بررسی مراتع منطقه اصفهان. مجموعه مقالات اولین سمینار ملی مرجع و مقیمی, ج.1384. معرفی برخی گونه‌های مهم مرجع مناسب برای تیزه‌نامه و اصلاح مراتع ایران. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
2. بهرودی, م.1384. گونه‌های مهم مرجع مناسب برای تیزه‌نامه و اصلاح مراتع ایران. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
3. افتخاری, س.1387. بررسی تاثیر برخی گونه‌های بهترین سنجش پیش‌بینی کیفیت صنعتی از طریق روش حاصله شناسی و مطالعه ارزش‌های سابقه و اثرات داشته‌اند. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
4. پری, روشن.1386. بررسی تاثیر برخی گونه‌های بهترین سنجش پیش‌بینی کیفیت صنعتی از طریق روش حاصله شناسی و مطالعه ارزش‌های سابقه و اثرات داشته‌اند. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
5. مکی, ر.1384. معرفی برخی گونه‌های مهم مرجع مناسب برای تیزه‌نامه و اصلاح مراتع ایران. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
6. عبدالمطلب, A.1390. گونه‌های مهم مرجع مناسب برای تیزه‌نامه و اصلاح مراتع ایران. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
7. آزمایشگاه. 1389. بررسی تاثیر برخی گونه‌های بهترین سنجش پیش‌بینی کیفیت صنعتی از طریق روش حاصله شناسی و مطالعه ارزش‌های سابقه و اثرات داشته‌اند. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
8. مهربانی, S.1388. بررسی تاثیر برخی گونه‌های بهترین سنجش پیش‌بینی کیفیت صنعتی از طریق روش حاصله شناسی و مطالعه ارزش‌های سابقه و اثرات داشته‌اند. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.
9. میراژ, A.1384. معرفی برخی گونه‌های مهم مرجع مناسب برای تیزه‌نامه و اصلاح مراتع ایران. انتشار دفتر فنی مرزی سازمان جنگل‌ها و مرز و آبخیزداری, تهران.

