مدیریت تفاش‌های آب آبیاری: کاربرد روش مطلوبیت چند میتیاری

چکیده
هدف اصلی این مطالعه تجزیه و تحلیل اثر سیاست کیفیت‌گذاری آب آبیاری بر میزان تفاش‌های آبیاری و همچنین تکنیک شبیه‌سازی استفاده گردد. آمار و اطلاعات لازم به دو صورت اسنادی و پیامدی در اسناد فارس جمع‌آوری شده است. نتایج حاصل نشان می‌دهد که روش‌های همگن شاکورانگ (گروهی فراغت متناوب) نسبت به آب آبیاری نشان می‌دهد. در این رابطه، صرف آب شاکورانگ را به‌طور قابل ملاحظه‌ای کمتر از میزان آبی است که به عنوان دسترسی ارائه می‌شود. همچنین، این کشاورزان در ترویج بهتر آب‌پزشکی باید تلاش نمایند. این مطالعه می‌تواند به سمت توسعه معاونت‌های با روش‌های کم آبیاری و همچنین محقق‌ها کل تفاش‌های آب و همچنین متوسط مصرف آب در مهارت را به‌طور قابل ملاحظه‌ای کاهش می‌دهد. لذا کشاورزان کیفیت تفاش‌های آب در سطح بالای آب‌پزشک‌ها برای این کشاورزان، نسبت به دیگر کشاورزان، بیشتر می‌باشد.

واژه‌های کلیدی: تفاش‌های آب آبیاری، کیفیت‌گذاری آب، روش مطلوبیت چند میتیاری، شبیه‌سازی

مقدمه
مدیریت ضعیف آبیاری در ایران منجر به افزایش تفاش‌ها برای این نهاد حیاتی و همچنین هدف رفتن مقدار قابل ملاحظه‌ای از آن کردیده است (۱، ۲، ۳). به‌همراه داده‌های کشاورزی در ایران نهایی به کوشیدن از هزینه‌های نیاز آب و همچنین تعمیر و نگهداری تاسیسات مربوطه را به‌عنوان قبیله‌ای آب دارد.

در حین حضور این انواع تفاش‌ها، باید به‌ویژه در حوزه‌های آب‌پزشکی و مدیریت شبکه‌های آبی از نظر جامع مدل‌سازی و تحلیل اهمیت بسزایی داشته باشند (۱، ۲ و ۳). لذا، هزینه‌های مالی استفاده مربوط به تاسیسات کشاورزی، سد و غیره از این بحث‌ها بحث دوستی از این می‌باشد که این در واقع برای پنهانی است که به‌همراه داده‌های آب‌پزشکی

1. به ترتیب دانشجو دکتری اقتصاد کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز
2. مسئول مکاتبات، پست الکترونیک: Torkmanijavad@yahoo.com
حمله وزن دهن موانع به اهداف مورد نظر کشاورزان با توجه به ترجیحات واقعی آنها را در دارد. (20، 21، 22، 23) در این مقاله برای تکثیر این محدودیت از روش استخراج تابع مطلوبیت بر اساس ترجیحات اکثریت (Multi-attribute utility theory) که ترکیب واقعی مجموعات کشت شده توسط کشاورزان مورد مطالعه، به منظور تعیین وزن دهی نسبی به معیارهای مورد نظر کشاورزان استفاده شده است. این روش بر با پارامترهایی هدف وزنی (Weighted goal programming) استوار است.

هدف تدوین مطلوبیت چند مبایر ارائه ایجاد مختلف پیکر مسیرهای معیارهای چندگانه در قالب یک تابع کمی با عویضی است که توانایی اثرات معیارهای مرتبط با یک انتقاد افرادی را بیشتر بپذیرد کند. لذا، مطلوبیت‌های حاصل از آنتروپی‌های متفاوت در یک تابع مطلوبیت به صورت زیر مشخص می‌شود:

\[ U_1 = U(x_1, x_2, ..., x_n) \]

که تابع مطلوبیت چند مشخصه (Multi-attribute Utility) که تابع مطلوبیت کشاورزان نیاز به وسیله سود تعیین نمی‌شود و عوامل دیگری از جمله ریسک و پیچیدگی‌های مدیریت در فرآیند تصمیم‌گیری بهره برداران دخالت دارد (24 و 25). در این رابطه، کشاورزان تصمیمات را در حالت انتخاز می‌کنند که این حرکات را به مدلی انتخاب می‌دهند. لذا، تضریب مطلوبیت چند مبایر (Multi-attribute utility theory) به عنوان چارچوب نظری مناسب برای ارائه نوع تحلیلی که بهبود شده است (5، 6، 14، 15، 16، 17، 18، 22، 23، 26، 27، 28، 29، 30 و 31). این نظریه توسط کین و رافا (32) توسعه داده شده است و به عقیده بسیاری از محققین از جمله باسل و رومرو (8) کومیلیون و برل (21) کومیلیون و رایگو (23) و کومیلیون و مارتینز (24) به عنوان مناسبی برای چند مبایری در فرآیند تصمیم‌گیری و انتخاب مجموعه‌ای از اهداف متمایق و شناخته شده است. با این حال، استفاده از این روش نیاز به استخراج و استنباط تابع مطلوبیت دارد که این امر مشکلاتی از

\[ U = f(u_1(x_1), u_2(x_2), ..., u_n(x_n)) \]

که شکل ریاضی جمعی (Additive) آن به صورت زیر است:

\[ U(x_1, x_2, ..., x_n) = \sum w_i u_i(x_i) \quad i = 1, 2, ..., n \]

که شکل ریاضی ضریبی (Multiplicative) به صورت زیر مشخص می‌شود:

\[ U(x_1, x_2, ..., x_n) = \prod (K^{w_i}u_i(x_i) + 1) - 1) / K, \quad i = 1, 2, ..., n \]

که می‌باشد. اگر \( w_i = 0 \) که \( k = f(w_i) \) نتایج مطلوبیت به صورت جمعی است. در حالی که اگر \( w_i \neq 1 \) باشد، آنگاه \( k \neq 0 \) و نتایج مطلوبیت به صورت ضریبی می‌باشد. اگر \( k = 1 \) نتایج مطلوبیت به صورت جمعی است. در حالی که اگر \( k \neq 1 \) می‌باشد. اگر \( k = 1 \) باشد، آنگاه \( k = 0 \) نتایج مطلوبیت به صورت ضریبی می‌باشد.
خواهد بود (19, 23 و 33).

آماده و همکاران (6)، ادوردز (16)، فارمر (17) و هیبرین و هارداکر (28) نشان داده کرده که اگرچه این مطلوبیت جمعی یک ترمیناسیون شده باشد از تابع مطلوبیت واقعی است اما عملاً آن نسبت به شکل صحیح تابع مفروض بیشتر تبدیل است. یک سهیلی، این نتایج حاصل از مطالعه فیشرن (18) و هارداکر و همکاران (24) نشان داد که حتی اگر شرایط استقلال مطلوبیت هم برورده نشد، با استفاده از روش جمعی تابع مطلوبیت تقسیم‌بندی برای تابع مطلوبیت واقع به‌دست خواهد آمد.

به پارو هوانگ و پیون (29)، روش جمعی از یکی طرف تقسیم بیشتر تبدیل برای شکل‌های غیرخطی تابع مطلوبیت است و از سوی دیگر نسبت به آنها بیشتر تبدیل بوده و به راحتی قابل تخمین می‌باشد. لذا، بپروی از مطالعات گازی‌بی‌پن و رایسگو (21) گازی‌بی‌پن و رایسگو (21) و گازی‌بی‌پن و مارتینز (22) در این مقاله از رابطه زیر که مشابه رابطه 3 است برای تخمین تابع مطلوبیت به‌دست‌آورده استفاده شده است:

\[ U_j = \sum_{i=1}^{n} w_i f_{ij} \quad i = 1, ..., n \]

که \( f_{ij} \) اجزای ویژگی مورد استفاده برای آنتن‌تانژیو زاست. رابطه (Linear Uncertainty Curves) ممکن می‌باشد تابع تقریبی مناسب برای تابع مطلوبیت واقع به‌دست‌آورده استفاده نمود.

لزوست که عناصر ماتریس از طریق به‌هینه‌سازی یک هدف در هر ریفی محاسبه شود. ناباران چنانچه هدف از طرف زارع دنبال شود. \( f_{ij} \) ارزش ویژگی زمانی که هدف از به‌هینه \( q \) شده است. پس از تعمیص ماتریس باید به سیستم معادله‌ای زیر را می‌توان حل نمود.

\[ \sum_{i=1}^{q} w_i f_{ij} = f_i \quad i = 1, 2, ..., q \]

\[ \sum_{i=1}^{q} w_i = 1 \]
توجه شود که این مجموعه‌ای از وظایف‌های مختلف قیمت‌گذاری آب‌اتنابانی، محاسبه نهایی قیمت آب به شکل 


که ذکر شده است که نهایی قیمت‌گذاری به صورت تقریبی به آب‌اتنابان وارد می‌شود.


زیر محصولات (است) که در انتخاب زراعات قرار دارد (xp (x1, x2, x3, ... xN)) در گروه فرکنسهای (x1, x2, x3, ... xN) و بررسی این اعداد می‌باشد.


بر اساس داده های میدانی فرض شده که بازیابی اهداف زیر


که منطوق انحراف می‌باشد.


ام نسبت به یک هدف معین (n) این مقدار انحرافی متفاوت است که تفاوت بین ارزش واقعی و گزارنده را به دست آمده‌گرگی می‌کند. دایر (۱۱) معتقد است که این که وزن‌های هر هدف از مدل یا است استcoverage و یا نتایج مطلوب تقریباً قابل تکنیک زیر می‌باشد:


در فرمول ۸ k یک عامل هم‌رزالی است. گوامنی و راوشک (۲۳) نشان داده که رابطه ۸ معادل با رابطه زیر


حذافک (TGM) کل بازده برناهمای


این هدف در واقع تقریبی برای حذافک سازی سود کوتاه مدت است. در این رابطه، بازده برناهمای حاصل از تولید هر محصول از میان برناهمای سری زمانی ۵ ساله (دوره زمانی ۱۳۸۲-۱۳۷۸) بر حسب قیمت ثابت ۱۳۸۲ به دست آمد.


(GM1)


به طوری که k نرخ بهره وام دریافتی و را عبرات از اخذ یک واحد وام از معاین اهداف قابل دسترسی می‌باشد.


(B) حذافک کردن ریپک


در این مطالعه پیک آب اهداف مدل حذافک کردن ریپک 


که ذکر شده در این مطالعه به پروری از رویکد کلاسیکی مارکوویچ (۲۳) گوامنی و راوشک (۲۳) و 


و کمر ریپک از رابطه (TGM) در نظر گرفته شد. لذا، ریپک از رابطه 


برناهمای (GM1) محاسبه می‌شود که در آن (۱) کمر ریپک و ریپک- 


کوواریانس بازده برناهمای محصولات در طول دوره ۵ سال 


در دامنه صفر تا ۱۰۰ برای هر قیمت برداشتی فعالی بهره برداران
که کل آب قابل دسترس در هر دوره می‌باشد. در این رابطه با اندازه‌گیری دقیق آب در هر دوره بر حسب مترمکعب بر ثانیه و مدت زمان آب قابل دسترس در مرحله، کل آب قابل دسترس در هر دوره محاسبه گردد است.

۳. محدودیت سرماهه

با توجه به عرضه و فروش محصولات در دو مقطع از سال و در نتیجه، تأمین بخشهای هر مرتبه به کشت محققانی بعد از فروش آنها، دو محدودیت برابر سرماهه به نحو زیر در مدل لحظه‌گیرد:

\[ \begin{align*}
\Sigma C_i X_i - R_i & \leq K_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2 \\
R_j & = G M_X, \quad i = 1, 2, \ldots, n, \quad j = 1, 2 
\end{align*} \]  

که \( C_i \) به هر سال یک هکتار محصول، \( K_j \) نامیانگر انتقال \( R_j \) به تابعی از دمای محصولات در هر یک از دو مقطع عرضه محصول به بار در تأمین هر هزینهٔ ارزیابی تولید در طول سال، \( K_j \) نیز سرماهه موجودی در هر یک از دو مقطع عرضه محصول در طول سال و \( R_j \) به تابعی از دمای محصولات در دو مقطع محصولات موجود در هر دوره است.

۴. محدودیت ناوبند و ملاحظات زراعی

برای رعایت این محدودیت و عدم کشت پیره‌پر کشت‌های محصولات زراعی از قبل محصولات کروی غلات در یک فضای زمین از مزرعه محدودیت زیر لحاظ شد:

\[ \Sigma (X_i - X_j) \leq 0 \quad i = 1, 2, \ldots, n, \quad j = 1, 2 \ldots m \]  

که \( X_i \) به ترتیب، نامیانگر محصولاتی است که به طور مناسب کشت می‌شوند.

۵. محدودیت‌های بازار

در این مطالعه برای هر یک از محصولات گروه فرنگی، سیب، کلم، هوریج و چغندر برابر بخش بیانی بزار محدودیت‌هایی به نحو زیر در مدل لحاظ شد:

\[ X_i \leq M_j, \quad i = 1, 2, \ldots, 5 \]  

ج) حداقل کردن تیرهی کار (TL)

محمولات کاری نیاز به نظارت بیشتری توسط مدیر مزرعه دارد. افزون بر آن در بعضی از ماه‌های سال نیاز به دوی تراکم فعالیت‌های زراعی ثابت برای نیروی کار افزایش یافته و عدم دسترسی به موقع به نیروی کار برای انجام عملیات زراعی مانند کشت نشان برینگ، و چغندر قطع، آبیاری محاصرات مختلف و مبارزه با آفات و بیماری‌ها نیز می‌تواند تأثیر منفی بر عملکرد محاصرات داشته باشد. لذا، یکی از اهداف زراعی این می‌تواند انتخاب ترکیبی از محصولات با حداقل نیاز به نیروی کار بهصورت زیر می‌باشد:

\[ \text{Min: } TL = \sum TL_i, \quad i = 1, 2, \ldots, n \]  

محدودیت‌های مدل شامل موارد زیر است:

۱. محدودیت زمان

در این رابطه، با توجه به تقویم زمینی عملیات دوره کاشت تا برداشت هر یک از محصولات در طول سال سه دوره مشخص گردید. دوره اول از ابتدا آبان تا آخر بهمن ماه، دوره دوم؛ از اول اسفند تا آخر خرداد ماه و دوره سوم؛ از ابتدا تیر تا آخر مهر ماه است. برای هر دوره بهصورت زیر یک محدودیت زمین در نظر گرفته شد:

\[ \Sigma X_i \leq A_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3 \]  

نیاز دهندگان مقدار زمین قابل کشت در هر دوره و \( n \) نامیانگر \( A_j \) تعداد محصولات موجود در هر دوره است.

۲. محدودیت آب

با توجه به سه دوره منظر شده برای محدودیت زمین باید محدودیت برابر برقرار بزار محدودیت‌هایی به نحو زیر در مدل لحاظ شد:

\[ \Sigma \text{REQ}_j, X_i \leq W_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3 \]  

در مدل لحاظ شد:

\[ \Sigma \text{REQ}_j, X_i \leq W_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3 \]  

در مدل لحاظ شد:
که به ترتیب اهمیت نسبی هر یک از اهداف حداکثر سازی پایان‌برداری، حداکثر سازی شرکت و کل به کل به کل
KTL و KVAR که ترتیب عامل ترمال سازی هر یک از اهداف مدادر می‌باشد.

(2) شماره‌ی پیشنهادی در قابل رشته‌های جدید
(متولی و ایجاد) محدودسی جلوگیری از محدودسی جلوگیری از محدودسی
(Xi) i = 1, 2
با توجه به مقررات و آینده‌ی حساسیت و همچنین در یکی از سال‌ها
محدودسی که محدودسی در ورود نظر می‌باشد.
TGM = 𝜎(GMi – Cwi,REQi, Xi) [22]

(3) محدودسی که محدودسی در ورود نظر می‌باشد.

X_{i} \leq L_{i}, \quad i = 1, 2

(4) محدودسی که محدودسی در ورود نظر می‌باشد.

X_{i} > 0.05 A_{i}

(5) محدودسی که محدودسی در ورود نظر می‌باشد.

\text{Max} \quad U(X) = W_{TGM} \cdot K_{TGM} \cdot TGM(X) - W_{VAR} \cdot K_{VAR} \cdot VAR(X) - W_{TL} \cdot K_{TL} \cdot TL(X) \quad [21]
مطابقه برای انجام آنالیز خورشی از نرم افزار 11.5 استفاده SPSS گردد.

داده‌ها و منطقه مورد مطالعه

این مطالعه در دشت زرقان در استان فارس انجام شده است. آب مورد نیاز آبیاری در این دشت از طریق رودخانه‌کرک که منشعب از شکه تلفیقی سد درودزن است تغذیه می‌شود. هوضه آبخور زیر سد درودزن دارای توده درونی در تلفیقی کریال (زرقان و خرامه) می‌باشد. در این رابطه، در سال زراعی 1386-87 هکتار، هوضه آبخور زیر سد درودزن شامل 486 هکتار و 991 هکتار بوده است. این مقادیر 1386 هکتار و 1420 هکتار (مجمع‌یا 1785 هکتار شویندگی و 1656 هکتار بهره‌برداری شده) اختصاص داشته است. ترکیب محسوبات کشت در این منطقه در سال 1386 دندان، جو، گل‌زار، چاه و پلوک، ذرت، گندم، گوجه فرنگی و کلم و هویج بوده است.

آماده‌سازی جمع آوری شده است در این رابطه، به منظور اخذ اطلاعات در مورد نرخ آب‌ها برای ارائه محسوبات مختلف و اطلاعات مربوط به روش و سطح زیر پوشش شیب‌های و حوضه تحت پوشش سد درودزن به ویژه برای آب‌های سطحی (استان فارس، شهرستان درودزن و بخش زرقان) مراجعه شد. آمار و اطلاعات مورد نیاز در سطح مزرعه علاوه بر محصولات تولیدی و تکمیل جمع‌آوری شده در این مطالعه به منظور تجزیه و تحلیل بهره‌برداری در زمینه‌های زیست‌محیطی و محیط زیستی از روش وارد (Wards method) با استفاده از نرم‌افزار LINDO و LINGO از روش‌های مدل‌سازی و مقدادی واقعی با کاهش در بررسی مدل‌های بازی‌سازی بررسی کرده‌شده است. با توجه به اینکه از آن برای مقادیر عمده آب‌زایی نمی‌باشد، روش محاسبه‌ای مناسب‌ترهای سطحی شده و سپس ترکیب محسوبات کشت در این منطقه در زرقان انجام و با آنها مصاحبه شده است.

مقدار تابع هدف را با استفاده از روش‌های مقدادی واقعی و مقدادی مغزه‌ای تجربی در روش تجزیه‌خوشه‌ای اجرا کرده‌است که در آن بردارهای توزیع‌دهنده کشاورزان را با بررسی طبقه‌بندی کشاورزان روی تجربه خوشه‌ای است که به طوری که بهترین روستایی کشاورزان توزیع‌دهنده کشاورزان (ترکیب واقعی محصولات) به‌عنوان معاوی طبقه‌بندی استفاده می‌شود. این مطالعه به منظور تجزیه و تحلیل بهره‌برداری خوشه‌ای روستایی که بین اساس انتخاب ترکیب محسوبات کشت شده کشاورزان گروه‌های همگانی طبقه‌بندی و منابعی منگر این مدل‌های مورد نظر از جمله آن‌ها مزرعه، میزان سود، سن، جنسیت کشاورزان و درجه مکانیزاسیون در داخل هر خوشه محاسبه گردد. با استفاده از این روش سه گروه همگان از کشاورزان طبقه‌بندی و مشاهدات با موارد در هر خوشه نیز مشخص گردیدند. در این
نتایج

جدول 1 ویژگی‌های مسواک و کشاورزان در هر خوش‌های را نشان می‌دهد. در این رابطه، گروه کشاورزان محصولاتی در خوش‌های اول شامل کند، جو، هریج، کلم، شنل‌کک، ذرت، پان، کندو و گوجه فرنگی است. در خوش‌های دوم، کتاک کشت محصولات با حذف شنل‌کک شیب به خوش‌های اول است. در خوش‌های سوم، کتاک کشت محصولات گندم بود. در این رابطه، گوجه فرنگی، کلم و هریج می‌باشد.

خوش‌های اول

مقادیر وزنه‌ای در هر آب‌بار اهداف مختلف حداکثر کردن کل بارهای برنامه‌ای. حداکثر کردن ریسک و نیروی کار مورد نیاز به تربیت به‌صورت w1 = 95.0، w2 = 0.0 و w3 = 1.0 از مدل استخراج شد. با استفاده از مقادیر وزنه‌ای اهداف مکانک کشاورزان در خوش‌های اول نتایج مطلوبی برای را حداکثر کنند.

Max: MAUF1 = 69.4 (TGM) - 0.00000142 (VAR) [32]

خوش‌های دوم

مقادیر وزنه‌ای در هر آب‌بار اهداف مورد نظر در این گروه همگن از کشاورزان به‌صورت w1 = 95.0، w2 = 0.0 و w3 = 1.0 از مدل استخراج شد. با استفاده از مقادیر وزنه‌ای اهداف مکانک کشاورزان در خوش‌های دوم نتایج مطلوبی زیر را حداکثر کنند:

Max: MAUF2 = 12.45 (TGM) - 0.000003587 (VAR) [33]

خوش‌های سوم

مقادیر وزنه‌ای در هر آب‌بار اهداف مورد نظر در این گروه همگن از کشاورزان به‌صورت w1 = 95.0، w2 = 0.0 و w3 = 1.0 استخراج گردید. با توجه به مقادیر وزنه‌ای به دست آمده برای اهداف مکانک، کشاورزان در خوش‌های سوم نتایج مطلوبی زیر را حداکثر می‌کنند:

Max: MAUF3 = 36.688 (TGM) - 0.000008475 (VAR) [34]
جدول 1. مشخصات خونه‌ها (گروه‌های همبگن کشاورزی)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>حداقل</th>
<th>حداکثر</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد بره بهتران دوم</td>
<td>14</td>
<td>59</td>
<td>26</td>
</tr>
<tr>
<td>تعداد بره بهتران اول</td>
<td>9</td>
<td>50</td>
<td>24</td>
</tr>
<tr>
<td>تعداد بره بهتران سوم</td>
<td>22</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>اندازه موزعه‌ی (هکتار)</td>
<td>1/39</td>
<td>4/93</td>
<td>0/16</td>
</tr>
<tr>
<td>امتیاز تحقیقات</td>
<td>8</td>
<td>12</td>
<td>5/64</td>
</tr>
<tr>
<td>سن کشاورز (سال)</td>
<td>51/36</td>
<td>51/36</td>
<td>26</td>
</tr>
<tr>
<td>ترجمه کشاورز</td>
<td>35</td>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>درجه مکانیزاسیون</td>
<td>75</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>عملیات زراعی با مانگین آلات</td>
<td>87/3</td>
<td>87/3</td>
<td>90</td>
</tr>
<tr>
<td>کنده، جو، هویج، گل، شلوک،</td>
<td>25</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>چندنفرنده و گوجه فرنگی</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>هریج</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>فرنگی</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

متأسفم، امکان جمع‌آوری نتایج و پایان‌های تحقیق به‌طور کامل وجود ندارد. با افزایش نرخ آب‌بی‌های موجود تغییر تیمی کننده یا افزایش نرخ آب‌بی‌ها از 15 برای نرخ تحقیق میزان متوسط سن آب‌باری در این پژوهش به 0.1 می‌رسد. مقدار متوسط ملاحظاتی که با توجه به مقدار متوسطی آب‌باری تخمینی در جدول 3، نتایج تراکم که به‌شکلی شده حاصل از اجرای سناریوهای مختلف در هکتارهای بیشتر است که در اخبار ذکر می‌شود مقدار متوسط مصرف آب در هر هکتار در خونه‌های اول. این موضوع می‌تواند ناشی از رفتار ریسک‌گریزی این دو گروه از

می دوست که خوشه‌ها تا پایان مسئله باعث شد و به این ترتیب تحقیق را تکمیل کند. اما با افزایش نرخ آب‌بی‌ها از 15 برای نرخ خونه‌های میزان متوسط مصرف آب در هر هکتار در خونه‌های دوم و سوم در نرخ‌های مختلف آب‌باری به‌طور قابل ملاحظه‌ای کمتر از مقدار آبی است که در اخبار ذکر می‌شود مقدار متوسط مصرف آب در هر هکتار در خونه‌های مختلف محاسبه شد که نتایج آن در جدول 4 آمده است. نتایج نشان
جدول ۲: بررسی اعتبار مدل‌های شبیه‌سازی شده در خوشه‌های مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>شده</th>
<th>مقدار مشاهده</th>
<th>مقدار مشاهده</th>
<th>اهداف</th>
<th>مقدار مشاهده</th>
<th>مقدار مشاهده</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیانده بررسی‌های کل (۲۰۰۰)</td>
<td>۱۳۳</td>
<td>۱۳۳</td>
<td>۱۳۳</td>
<td>۱۳۳</td>
<td>۱۳۳</td>
</tr>
<tr>
<td>توان</td>
<td>۰۵۹</td>
<td>۰۵۹</td>
<td>۰۵۹</td>
<td>۰۵۹</td>
<td>۰۵۹</td>
</tr>
<tr>
<td>ریسک</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
</tr>
<tr>
<td>کل نریزی کار (گر-وزکار)</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
</tr>
<tr>
<td>متمرکزی یا تصمیم (گهواره)</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
<td>۴۳</td>
</tr>
<tr>
<td>شفاف و کارایی</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>ردیابی</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>کنترل یا پیش‌بینی</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td>دقت</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
<td>۴</td>
</tr>
</tbody>
</table>

نکته: محاسبات تعیین
جدول ۳. مقدار تفاوت‌های آب آبیاری در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزان)

| تفاوت‌های آب | نرخ موجود | نرخ نشرخ ۱۵ | نرخ نشرخ ۲۰ | نرخ نشرخ ۲۵ | نرخ نشرخ ۳۰ | نرخ نشرخ ۳۵ | نرخ نشرخ ۴۰ | نرخ نشرخ ۴۵ | نرخ نشرخ ۵۰ | نرخ نشرخ ۵۵ | نرخ نشرخ ۶۰ | نرخ نشرخ ۶۵ | نرخ نشرخ ۷۰ | نرخ نشرخ ۷۵ | نرخ نشرخ ۸۰ | نرخ نشرخ ۸۵ | نرخ نشرخ ۹۰ | نرخ نشرخ ۹۵ | نرخ نشرخ ۱۰۰ |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| خوش‌های اول (م³) | ۲۲۲۶/۸۴ | ۲۳۳۵/۱۶ | ۲۳۵۱/۸۳ | ۲۳۴۸/۴۴ | ۲۴۶۱/۲۸ | ۲۲۳۵/۸۴ | ۲۳۳۵/۸۴ | ۲۲۳۵/۸۴ | ۲۳۳۵/۸۴ | ۲۳۳۵/۸۴ | ۲۳۳۵/۸۴ | ۲۳۳۵/۸۴ | ۲۳۳۵/۸۴ | ۲۳۳۵/۸۴ |
| خوش‌های دوم (م³) | ۲۸۵/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ | ۱۵۸/۵۰ |
| خوش‌های سوم (م³) | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ | ۲۷۵۰/۸۵ |

مأخوذ: محاسبات تحقیق

جدول ۴. مقدار متوسط تفاوت‌های آب آبیاری در هکتار در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>هکتار</th>
<th>نرخ صفر</th>
<th>نرخ فعلي</th>
<th>نرخ صفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>خوش‌های اول (م³)</td>
<td>۱۳۸۸/۷۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های دوم (م³)</td>
<td>۱۲۴۴/۷۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های سوم (م³)</td>
<td>۱۱۲۷/۷۷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مأخوذ: محاسبات تحقیق
کشاورزان باشند، بنا برای این، کشاورزان در خوشه‌های دوم و سوم تمایل به کشت ترکیبی از محصولات متفاوت (با میزان تغییر پذیری کمتر) بارزند به برابه‌ای کلی) با نیازهای آبی کمتر
دارند.

افزون بر آن، همان‌گونه که نشان داده شده، در طول منحیه‌های مختلف آب‌پذیری در خوشه‌های مختلف تغییر می‌کند. در این رابطه، قسمت‌های مختلف ناخت‌نایر منحیه‌های نواحی مختلف آب‌پذیری این
شیب زایی منطقی با نرخ آبی بالا بهبود می‌بخشد که کشاورز
نیست به افرادی می‌پردازند با حساسیت
کمی در رابطه با تغییر اگرگی کشت و کاهش میزان متوسط
مصرف آب در هکتار نشان می‌دهند. قسمت‌های کشت پذیر
منحیه‌های تغییر (با شیب کمتر) مربوط به نرخ‌های بالاتر
آبی‌های است که کشاورزان از طریق تغییر اگرگی کشت (از
طریق جایگذاری محصولات با نیاز آبی بالا به کم‌وکم
محصولات با نیاز آبی کمتر) و همچنین گرایش به سمت
تولید محصولات با استفاده از روش‌های کم آب‌پذیر
و محصولات دم آبی می‌یابند.

مصرف آب در هکتار را کاهش می‌دهند.

بحث
نتایج حاصل از این مطالعه نشان داد که گروه‌های متفاوت
کشاورزان در خوشه‌های مختلف حساسیت‌های مختلفی نسبت
به افزایش نرخ آبی داشتند. همچنین، استناد تأثیرگذاری
افزایش نرخ آبی در خوشه‌ها اول نسبت به خوشه‌های دوم و سوم
متفاوت است. در مطالعاتی که تاکنون در زمینه‌های مختلف
آبی‌های در کشاورزی انجام شده است، بطور معمول، کشاورزان
با وجود شیب و زیستگی ها مختلف و متفاوت بودند اندکی مزرع
آنها، در قبال یک مدل برناهه ریزی ریاضی مطالعه شده و
تغییر آبی آبی‌ها در قبال یک مدل برناهه ریزی ریاضی مطالعه شده
گرفته است (21 و 22). این در حالی است که، نتایج حاصل از
مطالعه حاضر نشان داد که در صورت یک‌سانی نیبردن رفتار
نمودار 1. منحنی‌های تشکیل‌دهنده آب آبیاری در خوشه‌های مختلف

این گونه نرخ گزاری افزایش مصرف، به منافع بسیار باربر است. به این ترتیب که میزان قابل ملاحظه‌ای افزایش یافته‌ای که در روز کاهش می‌یابد، باعث نیاز به افزایش مصرف آب از درون بود. این نتیجه نشان می‌دهد که در بحثی به مراتب بیشتر، میزان آب به‌عنوان یکی از شرایط اصلی برای تولید مصرف آب باید افزایش یابد.

در نتیجه، برای تصمیم‌گیری در مورد مصرف آب، باید جزئیات و مشخصات محلی و سطحی مصرف آب در نظر گرفته شوند. تحقیقاتی که انجام شده‌اند نشان می‌دهند که مصرف آب در مناطق مختلف به‌طور متوسط بیشتر است. بنابراین، برنامه‌هایی برای کاهش مصرف آب در مناطق مختلف باید اجرا شود.

1- اصلاح قوانین آب از جمله ارائه گویی مناسب تعیین نرخ آب به‌طور مداوم.
2- تلاش در جستجوی تعريفات جامعه‌ای و سازمانی مناسب برای اجرای مصرف آب بین مصارف مختلف و بهبود بارداری بحث را.
3- ایجاد ترویج مکانیسم بازار به منظور مبادله آب بین مشتریان مصرف آب باید انجام شود.
4- اصلاح مدیریت و برنامه‌ریزی توزیع منابع آب (از اراهنگی به‌ینگی)
5- تلاش در جستجوی نیاز ابزاری و راهنماهای انتقال و مصرف افزایش مصرف آب باید انجام شود.
1. ترکمانی‌جغ. سلطناتی و ه. اسدي. ۱۳۷۷. تعیین آبیابی و بررسی ارزش زراعی نهایی آب کشاورزی. آب و توزیع. فصلنامه امور آب، وزارت نیرو. (۱): ۵-۱۳.
2. سلطناتی، غ. و. زیبا. ۱۳۷۵. ترکیب‌گذاری آب کشاورزی. آب و توزیع. فصلنامه امور آب وزارت نیرو. ۵: ۲۴-۱۲.
3. سلطنایی، غ. ۱۳۷۵. ترکیب‌گذاری آب کشاورزی. آب و توزیع. فصلنامه امور آب وزارت نیرو. ۵: ۲۴-۱۲.
4. صدر س. ک. ۱۳۷۵. مبانی ترکیب‌گذاری کارآماده و عادلانه آب، آب و توزیع. فصلنامه امور آب وزارت نیرو. ۵: ۲۴-۱۲.