مدیریت تفاضلات آب آبیاری: کاربرد روش مدل‌سازی جند معمایی

جواد ترمکانی* و شاهرخ شجری

(تاریخ دریافت: ۹۸/۲/۹، تاریخ پذیرش: ۸/۶/۱۶)

چکیده
هدف اصلی این مقاله تجزیه و تحلیل اثر سیاست قیمت‌گذاری آب آبیاری بر میزان تفاوت آب در دو صورت استانی و پیمانی در استان فارس جمع‌آوری شده است. نتایج حاصل نشان می‌دهد که قیمت‌گذاری کارکردی قابل ملاحظه‌ای کمتر از میزان آبی است که به آن دسترسی دارند. همچنین، این کشاورزان در تغییرات بالاتر آب‌های عسلی با تغییرات کشاورزان، بهسیست تولید محصولات با روش‌های کم‌آب و همچنین محسوسه دیم میزان کل تفاوت‌ها آب و همچنین مجموع معنی معکوس آب در کنار را به‌طور قابل ملاحظه‌ای کاهش می‌دهد. لذا، کشاورزی احادیثی آب در سطح بالای آب‌های عسلی برای این کشاورزان، نسبت به دیگر کشاورزان، بیشتر می‌باشد.

واژه‌های کلیدی: تفاوت‌های آب آبیاری، قیمت‌گذاری آب، روش مدل‌سازی جند معمایی، سیاست‌های تفاوت‌های آبی‌ایاری

مقدمه
مدیریت ضعیف آب‌های در ایران منجر به افزایش تفاوت‌های آبی‌ایاری این تهاده حاصل و همچنین مهر رنگ منگر بالاتر کارکردی از آن قرار دهید است (۹/۳ و ۱/۷). به‌همراه سیاست‌های کشاورزی که آب‌های عسلی و همچنین کشاورزان دیم میزان کل تفاوت‌ها آب و همچنین مجموع معکوس آب در کنار را به‌طور قابل ملاحظه‌ای کاهش می‌دهد. لذا، کشاورزی احادیثی آب در سطح بالای آب‌های عسلی برای این کشاورزان، نسبت به دیگر کشاورزان، بیشتر می‌باشد.

در بخش کشاورزی تعلق می‌گیرد. از این رو اقتصاددانان سیاست‌های مدیریت تفاوت‌های آب را به‌عنوان یک راه حل اجتناب‌پذیر برای این مسئله مطرح نموده‌اند. ازجمله این سیاست‌ها می‌توان به تصمیم‌گیری و همچنین اشتراک‌آوری آب اشاره نمود (۱۲، ۱۳، ۱۴ و ۳۸).

فی‌مدیریت آب آبیاری اقتصادی است. به این منظور که، کشاورزان با افزایش قیمت آب را به‌عنوان یک منحنی تفاوت (با شبیه منفی) واکنش نشان داده و مصرف آب ایثاری را کاهش می‌دهند. از این رو، آب ذخیره شده می‌تواند بین مصرف‌دهندگان از جمله استاندارد تولید محصولات با آرزش‌تر و همچنین

* به ترتیب نام‌های و نام‌های دانشجویی ادکلن که در ادامه در کتاب‌خانه کارکرد کشاورزی، دانشگاه شیراز

Torkmanijavad@yahoo.com *

* حال کنونی: دانشگاه شیراز
جمله ورز دهم مناسب به اهداف مورد نظر کشاورزان با توجه به ترجیحات واقعی آنها را در دارو (02، 21، 13 و 27) در این مقاله برای فائده امند بر این محدودیت از روش استخراج نتایب مطلوبیت بر اساس ترجیحات اشکال‌شده در ارزش‌های ریزابی متغیرهای تصمیم (Revealed preferences) ترکیب واقعی محصولات کشته شده توسط کشاورزان مورد مطالعه به مظهر تخمین وزن دهی نسبی به معیارهای مورد نظر کشاورزان استفاده شده است. این روش بر پایه برنامه‌ریزی هدف وزنی (Weighted goal programming) استوری است.

هدف توری مطلوبیت چند معاصر از ابعاد مختلف یک مسئله تصمیم با معیارهای کلی است که به بلوغ آن ترتیبی که با یک عددی است که به‌یاد آنالیتیکهای مربوط با یک افرادی را رتی‌بندی کند. لذا، مطلوبیت‌هایی حاصل از آنالیتیکهای متقارن در یک نتایج مطلوبیت به‌صورت زیری می‌شوند:

\[U_1 = U(x_1, x_2, ..., x_n) \]

(Multi-attribute Utility function, MAUF)

که به تعداد مطلوبیت چند مشخصه‌ای که فرض می‌شود که سطح مطلوبیت کشاورزان تنها به‌وسیله سود تعیین نمی‌شود و عوامل دیگری از جمله ریسک و پیچیدگی های مدیریت نیز در فرآیند تصمیم‌گیری به‌روز برداران دخالت دارد (24 و 33). در این رابطه، کشاورزان تصمیمات را در حالی اتخاذ می‌کنند که به‌طور همزمان با مسئله انتخاب بین مجموعه‌ای از اهداف متفاوت روی‌هود هستند. لذا، نظریه مطلوبیت چند مشخصه‌ای (Multi-attribute utility theory) در برنامه‌ریزی چند معاصری برخلاف رویکرد‌های کلاسیک، فرض می‌شود که سطح مطلوبیت کشاورزان تنها به‌وسیله سود تعیین نمی‌شود و عوامل دیگری از جمله ریسک و پیچیدگی های مدیریت نیز در فرآیند تصمیم‌گیری به‌روز برداران دخالت دارد (24 و 33). این نظریه توسط کینی و راپا (31) توهیه داده شده است و به عقیده بسیاری از محققین از جمله باسلو و رومرو (8)، کومریو و بریل (21)، کومریو و رایسگو (41) و کومریو و مارتریز (22) به‌عنوان مشخصه‌ای مناسب روز در میان مدل‌های جدید معاصری در فرآیند تصمیم‌گیری و انتخاب بین مجموعه‌ای از اهداف متفاوت شناخته شده است. این حال، استفاده از این روش نیاز به استخراج و استنباط توابع مطلوبیت دارد که این امر ممکن است.
تکنیک استخراج تابع مطلوبیت چند معبعد

MAUF سامسی و همکاران (27) روشنی را برای تخمین جمعیت پیشنهاد کردن که توسط آمادور و همکاران (5) توسعه داده شد و توسط بیلب و زود بیکار (9) کوژلیمون و بریل
الف) حداکثر کردن کل باده برنامه‌ای

این هدف در واقع تقریب برای حداکثر سازی سود کوتاه مدت است. در این رابطه، باده برنامه‌ای حاصل از تولید محصول از متوسط باده برنامه‌ای سری زمانی 5 ساله (دوره زمانی 1382-1387) بر حسب قیمت ثابت 1382 به دست آمد.

\[
\text{Max: TGM} = \sum x_i (GM_i - x_i)
\]

به طوری که \(x \) تارخ بهام در برابر قیمت از اخذ یک واحد وام از مابین اعتباری قابل دسترس می‌باشد.

(4) حداکثر کردن ریسک

در این مطالعه یکی از اهداف مدل حداکثر کردن ریسک می‌باشد. در این مطالعه به برای‌ها روزک \(N \) کلاسیکی مارکوفی (32) کاربرد دارد. کاربردهای رویکرد کلاسیکی مارکوفی (32) و کاربردهای رویکرد کلاسیکی مارکوفی (32) کاربردهای رویکرد کلاسیکی مارکوفی (32) و کاربردهای رویکرد کلاسیکی مارکوفی (32) کاربردهای رویکرد کلاسیکی مارکوفی (32) و کاربردهای رویکرد کلاسیکی مارکوفی (32) کاربردهای رویکرد کلاسیکی مارکوفی (32)

\[
\text{U} = \sum_{i=1}^{n} \left(\frac{w_i f_i(x)}{f_i(x)} - f_i(x) \right)
\]

در فرمول \#8 که به‌طور کلی یک عامل نرم‌سازی است. کامیلو و رادوگ(33) نشان داده‌اند که رابطه 8 معادل با رابطه زیر می‌باشد:

\[
\text{U} = \sum_{i=1}^{n} \left(\frac{w_i f_i(x)}{f_i(x)} - f_{i} \right)
\]

عامل نرم‌سازی در رابطه 9 عبارت از تفاوت بین مقادیر حداکثر \(f_i(x) \) و حداکثر \(f_i \) هدف می‌باشد. در ماتریس باده توسیع یافته برای هر یک از معیارهای مورد بررسی است. به‌طور کلی، شیب‌های سری‌های دیگر و بررسی تأثیر افزایش قیمت آپ بر میزان آپ مصرفی سازارهای مختلفی برای قیمت آپ در دامنه‌ی صفر تا 100 برابر قیمت مورد انتخاب قرار گرفته‌اند.

کامیلو و رادوگ(33) نشان داده‌اند که رابطه 8 معادل با رابطه زیر می‌باشد:

\[
\text{U} = \sum_{i=1}^{n} \left(\frac{w_i f_i(x)}{f_i(x)} - f_{i} \right)
\]
که یک عدد قابل دسترس در هر دوره می‌باشد. در این رابطه با اندازه‌گیری دی‌آب در هر دوره بر حسب مترمکعب بر ثانیه و مدت زمان آب قابل دسترس در زمان، یک آب قابل دسترس در هر دوره محاسبه گردیده است.

<table>
<thead>
<tr>
<th>$\Sigma C_i = \sum_{i=1}^{n} C_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma R_j = \sum_{j=1}^{m} R_j$</td>
</tr>
</tbody>
</table>

رتبه پرداخته شده که به‌طور مشابه مدل مارکزی است.

1. محدودیت زمین در این رابطه با توجه به تقویم زمانی عملیات دوره کاشت تا برداشت هر یک از محصولات در طول سال هر دوره مشخص گردید. دوره اول از ابتدا آبان تا آخر بهمن ماه، دوره دوم از اول اسفند تا آخر خرداد ماه و دوره سوم از ابتدا تیر تا آخر مهر ماه است. برای هر دوره به‌صورت زیر یک محدودیت زمین در نظر گرفته شد:

\[\Sigma X_i \leq A_{ij} \quad i = 1, 2, \ldots, n, \quad j = 1, 2, \ldots, m \]

نامه‌های مقدار زمین کاشت در هر دوره در نمایانگر A_{ij} تعداد محصولات موجود در هر دوره است.

2. محدودیت آب

با توجه به هر دوره منشور شده برای محدودیت زمین، سه محدودیت برای آب به‌صورت زیر با توجه به نیاز آبی هکتار از محصولات مختلف (REQ) در هر دوره مورد نظر است:

\[\Sigma \text{REQ}_i X_i \leq W_j \quad \text{für} \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3 \]
که به ترتیب اهمیت نسبی هر یک از اهداف حداکثرسازی پایه برناهای، حداکثر حساسیت ریسک و کل به کل می‌باشد.

(۶) محدودیت قانونی

با توجه به مقررات و آیین‌نامه‌های سازمان آب در ارتباط با محدودیت کشت شلوک و مهم‌ترین در بضعی از سال‌ها محدودیت کشت مفحول در توزیع محدودیت کشت مفحول ذرت محدودیت کشت به صورت زیر در مدل لازم شد:

\[
X_i \leq L_i, \quad i = 1, 2
\]

(۷) محدودیت آب

هر ساله به موفقیت رعایت ملاحظات مربوط به توشیع نیازدار از توزیع به‌سبب از مصرف خشکی و توزیع به‌سبب از آب مصرفی در این ۵ دارم از کل زمان‌های قابل کشت در هر دوره (\(A_i\)) به‌عنوان آیش (\(A_i\)) به‌طور دوپادیده و نحو زیر در مدل توزیع شد.

\[
X_{10} \geq 0.05 A_i
\]

در نهایت مجموعاً تعداد ۱۸ محدودیت در مدل مفهومی گردد.

(۸) محدودیت غیر

شیب‌سازی مدل‌های مناسب دارد. در این رابطه، موارد زیر باید مورد توجه باشند:

الف) تابع هدف شمای حداکثرسازی تابع مطلوبیت برای هر یک از گروه‌های هم‌گون کشاورزان به شکل زیر می‌باشد:

\[
\text{Max } U(X) = W_{\text{TGM}} - K_{\text{TGM}} \cdot \text{TGM}(X) - W_{\text{VAR}} \
\]

\[
K_{\text{VAR}} \cdot \text{VAR}(X) - W_{\text{TL}} - K_{\text{TL}} \cdot \text{TL}(X)
\]
مدیریت نقاط اب آبیاری: کاربرد روش مطلوبیت چند معاوری

قابل ملاحظه بین تُنای مرحله‌های سازمانی و مقدار واقعی فراوریند. معمولاً شدن مدل‌های تا مزای حصول اطمینان کافی در مدل برای استفاده از آن برای مقدار عملی ادامه می‌پذیرد. برای این که این مقایسه‌ها معتبر باشد، تابع مدل سیستمی شده و سیستم واقعی باید تحت سیاست‌های مدیریتی مشابه و در شرایط یکسانی از نظر ریسک و عدم حجمت مورد بررسی قرار گیرند (11, 19, 25, 32 و 37).

در رابطه با موضوع اریب کلی (Aggregation bias) لازم به توضیح است که تجزیه خوش‌نامه، Cluster Analysis (کلاستر) مدل‌سازی نمی‌کند که باید مقدار مختلف در یک دست گسترده در یک مدل برنامه‌ریزی رضایتی واحد، تحرک میان واحدهایی تولید را به انتزاع و اجرای مرکز ترکیب از ماده‌های مختلف در نظر گیرد. بنابراین این گونه مدل‌ها این هست که مقدار تابع هدف را مست نموده و در نتیجه مقدار معنی‌داری تصمیم در شرایط واقعی قابل دسترسی نخواهد بود (77).

برای انجام از اریب کلی ناشی از قرار دادن کشاورزی با توابع هدف‌مند در کل مدل برنامه‌ریزی رضایتی، طبقه‌بندی کشاورزی منطقه در گروه‌های همگن با رفتار تصمیم گیری مشابه (توابع هدف) ضروری است. بریل و روشهوس (9) معتقدند که کاراکترین روش برای طبقه‌بندی کشاورزی روش تجزیه خوش‌نامه است که در آن بردارهای تصمیم واقعی کشاورز (ترکب واقعی محصولات) به‌عنوان میزان طبقه‌بندی استفاده می‌شود. این مطالعه به منظور تجزیه خوش‌نامه از روش وارد (Wards method) به‌طوری که اتیک بر اساس ترکیب محصولات کشت شده کشاورزان گروه‌های همگن شناسایی و میانگین معنی‌داری مورد نظر از جمله آن‌ها مزیت سختی است. بنابراین کشاورزان و درجه مناسبی رفتار در داخل هر گروه محاسبه گردد. بنابراین استفاده از این روش سه گروه همگن از کشاورزان شناسایی و مشاهدات با مزارع در هر خوشه نیز مشخص گردید. در این
نتایج

جدول ۱ یوزگی مراعات و کشاورزان در هر خوشه را نشان می‌دهد. در این زبانه اگر کثیف مراحل در خوشه اول شامل کنند، جو، هنیج، کلم، شلوک، ذرت، یاک، چغندر، و گوجه فرنگی است. در خوشه دوم، ترکیب کتئش محصولات با حفظ شلوک شیب به خوشه اول است. در خوشه سوم، ترکیب کتئش محصولات کنند، ذرت، گوجه فرنگی، کلم، و هنیج می‌باشد.

خوشه اول

مقایسه وزن‌ها برای اهداف مختلف حیاتی کننده کل زبانه برنامه‌ای، حداقل کردن ریسک و نیروی کار ورد نیاز به ترکیب به‌صورت w_1=0/917, w_2=0/069 و w_3=0/091 از مدل استحصال شد. با استفاده از مقایسه وزن‌ها برای اهداف مذکور کشاورزان در خوشه اول تابع مطلوبیت را حاکم کنند:

\[
\text{Max: MAUF_1 = 69.4 (TGM) - 0.000000142 (VAR)} \quad [\text{23}]
\]

خوشه دوم

مقایسه وزن‌ها برای اهداف مورد نظر در این گروه همگن از کشاورزان به‌صورت w_1=0/83, w_2=0/917, w_3=0/069 از مدل استحصال شد. با استفاده از مقایسه وزن‌ها برای اهداف مذکور کشاورزان در خوشه دوم تابع مطلوبیت زیر را حاکم کنند:

\[
\text{Max: MAUF_2 = 12.45 (TGM) - 0.0000003587 (VAR)} \quad [\text{24}]
\]

خوشه سوم

مقایسه وزن‌ها برای اهداف مورد نظر در این گروه همگن از کشاورزان به‌صورت w_1=0/83, w_2=0/917, w_3=0/069 استحصال گردید. با توجه به مقایسه وزن‌های به‌عنوان آمده خوشه ای در این اهداف مذکور، کشاورزان در خوشه سوم تابع مطلوبیت زیر را حاکم کنند:

\[
\text{Max: MAUF_3 = 36.688 (TGM) - 0.0000008475 (VAR)} \quad [\text{25}]
\]

به منظور بررسی اعتبار مدل‌های ساخته شده، وضعیت موجود (مقادیر مشاهده‌شده) با داده‌های شبیه‌سازی شده حاصل از مدل‌ها در ساراپیشی شرایط موجود (ترک آب‌های فلی) مورد مقایسه قرار گرفت و نتایج آن برای خوش‌های مختلف در جدول ۲ ارائه شده است.

پایین بودن نسبی شاخص اگراکی (۲۰/۰-۳۰) در جدول مذکور نشان می‌دهد که ترکیب به‌هنه محصولات در هر یک از خوش‌های با اندازه کافی به ترکیب واقع محصولات نزدیک می‌باشد. در این رابطه گومولیموون و رایگوس (۳۳) درصد اگراکی را در دامنه ۱۲ تا ۲۴ درصد محاسبه و آن را به عنوان یک دامن قابل قبول برای شبیه‌سازی رفتار کشاورزان معرفی کردند. نتایج این می‌توان کشف که مدل‌های طراحی شده در این مطالعه تیز تقریب‌های مناسبی برای فرآیند تصفیه گیاهی کشاورزان محصولات می‌شود.

جدول ۳ مقدار تفاضل آب آبیاری به‌دست آمده از مدل‌های شبیه‌سازی را در هر یک از خوشه‌ها در نرخ های منفی آب‌های نشان می‌دهد. نتایج این جدول نشان می‌دهد که مقدار آب آبیاری تغییر شده به‌طور قابل ملاحظه‌ای از یک خوشه به خوشه دیگر متفاوت است. در نرخ آب‌های صفر (هزنده نهایی صفر) خوشه اول به میزان ۲۲۳۵۰ مندر مکعب آب صفر می‌کند که از بین ۱۲/۷ برای مصرف آب در خوشه دوم ۴۸۳۲۰ متر مکعب (می‌باشد. کمترین مصرف آب در نرخ آب‌های صفر مربوط به خوشه سوم برای با ۷۵۰۵۰/۵ متر مکعب می‌باشد که حدود ۱۲/۳ درصد مصرف آب در خوشه اول می‌باشد.

هنام طور که نتایج جدول ۳ نشان می‌دهد، با افزایش نرخ آب‌های تا مرز ۲۰ برای نرخ آب‌های فلی میزان تفاضل آب آبیاری در خوشه اول تغییر نمی‌کند. با این حال، اکثر نرخ آب‌های تا مرز ۲۰ برای نرخ آب‌های فلی افزایش یابد میزان تفاضل آب آبیاری به مقدار قابل ملاحظه‌ای در این خوشه کاهش می‌یابد. در خوشه‌های دوم و سوم، میزان تفاضل آب آبیاری
جدول 1. مشخصات خوشه‌ها (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>خوشه سوم</th>
<th>خوشه دوم</th>
<th>خوشه اول</th>
<th>تعداد بهره برداران</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>حداقل</td>
<td>حداکتر</td>
<td>میانگین</td>
<td>حداقل</td>
</tr>
<tr>
<td>اندازه مزرعه (هکتار)</td>
<td>18/39</td>
<td>56</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>سطح تحقیقات</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>کشاورز (تعداد سال‌های آموزشی)</td>
<td>45/17</td>
<td>9</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>سن کشاورز (سال)</td>
<td>57/6</td>
<td>10</td>
<td>45</td>
<td>57/6</td>
</tr>
<tr>
<td>تجربه کشاورز (سال)</td>
<td>64/4</td>
<td>18</td>
<td>44</td>
<td>64/4</td>
</tr>
<tr>
<td>درجه مکانیزاسیون عملیات زراعی (بایانات آتی)</td>
<td>77/7</td>
<td>11</td>
<td>77</td>
<td>77/7</td>
</tr>
<tr>
<td>اگلو کشت</td>
<td>35</td>
<td>2</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>کندم، چندم، چندم، چندم، چندم</td>
<td>35</td>
<td>2</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>چندم، چندم، چندم، چندم، چندم</td>
<td>35</td>
<td>2</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>فرینگی</td>
<td>35</td>
<td>2</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

متأخر: آمار جمع‌آوری شده و پایه‌های تحقیق

با افزایش نرخ آب‌بریها از 20 برای نرخ تغییر بسمک. اما با افزایش نرخ آب‌بریها از 15 برای نرخ

فیلی میزان تفاوت‌های آب آبیاری در این دو خوشه نیاز به

مقدار مناسب ملاحظه‌ای کاشت می‌باشد.

با توجه به مقادیر تفاوت‌های آب آبیاری تخمینی در جدول

3 و نتایج تراکم کشت پیش‌بینی شده حاصل از اجرای

سناریوهای مختلف در مدل‌های شبیه‌سازی، مقادیر متوسط

مصرف آب به ازای هر هکتار در خوشه‌های مختلف

محاسبه شد که نتایج آن در جدول 4 آمده است. نتایج نشان

395
جدول ۲: بررسی اعتبار مدل‌های شیمی‌سازی شده در خوش‌های مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>اهداف</th>
<th>مقادیر مشاهده (عدد)</th>
<th>مقادیر مشاهده (میزان)</th>
<th>احراز برای (عدد)</th>
<th>احراز برای (میزان)</th>
<th>درصد مشاهده</th>
<th>درصد مشاهده</th>
<th>درصد مشاهده</th>
<th>درصد مشاهده</th>
<th>درصد مشاهده</th>
<th>درصد مشاهده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵۳۴۷/۵</td>
<td>۶/۴</td>
<td>۸/۹</td>
<td>۸۸۲/۳</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
</tr>
<tr>
<td>۱۳۷۹/۱</td>
<td>۱/۱</td>
<td>۸/۹</td>
<td>۲/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
<td>۷/۸</td>
</tr>
<tr>
<td>۲۴۲۳/۴</td>
<td>۲/۲</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۲۲۸/۳</td>
<td>۳/۳</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۱۴۸/۲۳۷</td>
<td>۴/۴</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۹/۸۳</td>
<td>۵/۵</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۱۹/۸۶</td>
<td>۶/۶</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۱۴۹/۲۷</td>
<td>۷/۷</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۹/۷</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۱۲/۳۲</td>
<td>۹/۹</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
<tr>
<td>۱۵۸/۲۳</td>
<td>۱۰/۱۰</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
<td>۸/۸</td>
</tr>
</tbody>
</table>

ملاحظه: محاسبات تحقیق
جدول ۳: مقدار تفاوت آب آبیاری در نرخ‌های مختلف آب‌های در خوش‌هایی مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>نرخ آب‌های</th>
<th>تفاوت آب</th>
<th>نرخ موجود</th>
<th>نرخ صفر</th>
<th>نرخ تعیین</th>
<th>نرخ تعیین</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرخ 100</td>
<td>سفر 15</td>
<td>برابر نرخ</td>
<td>233580</td>
<td>223580</td>
<td>223080</td>
</tr>
<tr>
<td>برابر نرخ</td>
<td>فعلي 20</td>
<td>برابر نرخ</td>
<td>159944</td>
<td>164844</td>
<td>202478</td>
</tr>
<tr>
<td>فعلي 30</td>
<td>برابر نرخ</td>
<td>243580</td>
<td>223580</td>
<td>223080</td>
<td></td>
</tr>
<tr>
<td>فعلي 50</td>
<td>برابر نرخ</td>
<td>320749/16</td>
<td>159944</td>
<td>164844</td>
<td>202478</td>
</tr>
<tr>
<td>فعلي 70</td>
<td>برابر نرخ</td>
<td>320749/16</td>
<td>159944</td>
<td>164844</td>
<td>202478</td>
</tr>
<tr>
<td>فعال 100</td>
<td>برابر نرخ</td>
<td>320749/16</td>
<td>159944</td>
<td>164844</td>
<td>202478</td>
</tr>
</tbody>
</table>

مأخوذ: محاسبات تحقیق

جدول ۲: مقدار متوسط تفاوت آب آبیاری در هر هکتار در نرخ‌های مختلف آب‌های در خوش‌هایی مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>نرخ آب‌های</th>
<th>متوسط تفاوت آب در هکتار</th>
<th>نرخ صفر</th>
<th>نرخ تعیین</th>
<th>نرخ تعیین</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرخ 100</td>
<td>سفر 15</td>
<td>برابر نرخ</td>
<td>13828/5</td>
<td>13828/5</td>
</tr>
<tr>
<td>برابر نرخ</td>
<td>فعلي 20</td>
<td>برابر نرخ</td>
<td>14244/5</td>
<td>14244/5</td>
</tr>
<tr>
<td>برابر نرخ</td>
<td>فعلي 30</td>
<td>برابر نرخ</td>
<td>14244/5</td>
<td>14244/5</td>
</tr>
<tr>
<td>فعال 100</td>
<td>برابر نرخ</td>
<td>14244/5</td>
<td>14244/5</td>
<td>14244/5</td>
</tr>
</tbody>
</table>

مأخوذ: محاسبات تحقیق
کشاورزان باشند. بنابراین، کشاورزان در خوشه‌های دوم و
سوم تمایل به کشت رئیکی از مجموعه‌های متفاوت (با میزان
تغییر پذیری کمتر) بارزند. در نهایت، نتایج همبستگی
میان
تغییر رئیکی کمتر بارزند. برگردانی کل) با نیازهای آبی کمتر
دارند.

ازون بر این، همان‌گونه که نشان داده شده است،
الگوریت مصرف آب در طول مدت محصولات ارزی اب آبی در
حرکت به وسیله مصرف‌های مختلف تغییر می‌کند. در این رابطه،
قسمت‌های کشاورزی دسترسی به مصرف ارزی آب ابیاری با
شیب زیاد منطقه با نرخ بالای آب است که کشاورزان
نسبت به افزایش آب به نیاز سرمایشی می‌دهند. قسمت‌های کشاورزی از طریق تغییر کمکی کشت (از
طریق جایگزین مصرف کردن با نیاز آبی بالا به وسیله
محصولات با نیاز آبی کمتر) به گونه‌ای است که
توجه و تغییر منطقه از روش‌های کم ابیاری و
محصولات دیم میزان کلی فناوری آب و میزان متوسط
در حفظ آب در هکتار را کاهش می‌دهند.

بحث
نتایج حاصل از این مطالعه نشان داد که کروپتومه‌های
کروپتومه‌های خوشه‌های مختلف محصولات مختلفی تغییر
به افزایش نرخ آبی نشان می‌دهند. همچنین، آستانه‌گیری
افزایش نرخ آبی در خوشه‌های اول نسبت به خوشه دوم و سوم
متفاوت است. در مطالعاتی که تاکنون در زمینه فناوری آب
ابیاری انجام شده است، به تمرکز معیار، کشاورزان
با وجود ساختار و چگالی مختلف و متفاوت بودن اندامی مزروع
آنها، در حالی که تاکنون رژیم رئیکی محصولات و
تقاضای آب ابیاری آنها در قابل پیک انگور بررسی قرار
گرفته است (۲۱ و ۳۳) این در حالی است که نتایج حاصل از
مطالعه حاضر نشان داد که در صورت پیدا نبودن رئیکی

398
مدیریت نقاشی آب آبیاری: کاربرد روش مطلوبیت چند میلیارد

نمودار 1. محتویات نقاشی آب آبیاری در خوش‌های مختلف

این گونه نرخ‌گذاری فراشش مصرف، که مناطق با سیاست‌های پایدار مانع آبی است. به این جهت که میزان نرخ مصرف‌های آب آبیاری به صورت تبخر و تعرق و جاری شدن در سطح خاک هدر می‌روید. اگر چه تابع مطالعات انجام شده نشان می‌دهد که در بهترین حالت، میزان آب‌های تغییر شده به این روش فقط می‌تواند تا حدودی هزینه‌های هدراداری و به‌همراه مصرف‌های آب را تأمین کند و ممکن است تا حدودی به معنای مالی مستقل شده‌باشد. این اعضای باید از برداشت‌های زمین‌نما برداشت‌های چند منفی بر تحلیل دنبال نمود که در این رابطه می‌توان به موارد زیر اشاره نمود:

1. - صلاح قوانین آب از جمله ارائه نگهداری مسئول مسئولیت نرخ

2. - تاثیر درجه تداخل تغییر نرخ‌های سیاسی مناسب بازار آب

3. - ایجاد و ترویج سیاست‌های برای مصرف‌های آب مصرف‌های مختلف و بهبود برداشت

4. - صلاح مدیریت و برنامه‌ریزی توزیع منابع آب (ارایه پک

5. - تاثیر مسئولیت توزیع آب

با توجه به نتایج تحقیق پیش‌بینی می‌گردد که از طریق روش

نرخ‌گذاری علمی و منطقه‌ای به‌کمک استفاده از

کلیالوژی‌های آب انرژی فعال و بکر انجام داده شود که

کشاورزان آب مصرف‌ها را نیز در کشت‌های اضافی و

فعالیت‌های اقتصادی یا ارزش‌بردار بکر منابع آب

در مقایسه، آب مصرف‌ها بر مصرف‌های فعال و بکر انجام داده شود که

منظره‌های باید تغییر نماید. از این نتایج باید

ضروری است اما با توجه به نتایج به‌دست آمده از این تحقیق

399
منابع مورد استفاده

