مدیریت تفاضلی آب آبیاری: کاربرد روش مطلوبیت چند معياري

جواد ترکمنی* و شاهرخ شجیری

(تاریخ دریافت: 24/10/08; تاریخ پذیرش: 26/10/08)

چکیده
هدف اصلی این مقاله تجزیه و تحلیل اثر سیاست قیمت‌گذاری آب آبیاری بر منابع آب و میزان تخصیص شیبیسازی است. به‌دین منظور، از روش برنامه‌ریزی رضایی مطلوبیت چند معياري بهره برداران آب‌های سطحی استفاده گردید. آمار و اطلاعات لازم به دو صورت استنادی و پیش‌بینی در اساس یافته وهمیشه و میزان نتایج متغیرهای مدنظرهای مختلف که میزان آب‌های سطحی که به آب آبیاری نیاز دارند. در این رابطه، مصرف آب کشاورزان را به‌طور قابل ملاحظه‌ای کمتر از میزان آبی است که به آن دسترسی دارند. همچنین، این کشاورزان در نظرهای بالاتر آب‌ها با تغییر الگوی کشت و گرایش به سمت توبلی دیده‌ها با روش‌های کم آبیاری و میزان متوسط مصرف آب در کشاورزان می‌باشد که هم‌اکنون، نتیجه دیگر کشاورزان، شبیه می‌باشد.

واژه‌های کلیدی: تفاضلی آب آبیاری، قیمت‌گذاری آب، روش مطلوبیت چند معياري، شیبیسازی

مقدمه
مدیریت ضعیف آبیاری در ایران منجر به انفراشب تفاوذا برای

ابن‌هاهی جهانی و میلیون هر رفت و فریاد را مناسب نموده‌اند. از جمله این

سیاست‌هایی که در این متن به‌خصوص محدود آب، قیمت‌گذاری

آب آبیاری، بهره برداری مهارت‌ها و معرفی آبیاری استفاده

(12, 15، 16 و 38).

فیلتری برای آبیاری الگویی، به استفاده از جمله میانه‌ای که،

کشاورزان با افزایش قیمت آب روی به منحنی تفاوذا (با شبیه

منفی) واکنش نشان داده و مصرف آب آبیاری را کاهش

می‌دهند. از این رو، آب ذخیره شده می‌تواند بین مصرف دیگر،

از جمله استفاده در توبلی محتوای با آب‌زی و همچنین

در حقیقت، قیمت‌برداری نیاز به فشارگیری هزینه‌های عملياتی و مدیریت شیبیسازی آب به نمایش (1، 2

و 3). البته، هزینه‌های مالی استهلاک مربوط به تأسیسات،

کنارها، سد و غیره از ارتفاع یوچه دولتی تأمین می‌شود که این

1. به ترتیب دانشگاه و دانشجوی دکتری انتقاد کشاورزی، دانشگاه کشاورزی، دانشگاه شیراز

Torkmanijavad@yahoo.com

* مشمول مکاتبات، پست الکترونیکی:

387
جمله وزن دهی مناسب به هدف مورد نظر کشاورزان با توجه به ترجیحات واقعی آنها را در دارد (۲۰، ۲۱، ۲۲، ۲۳، ۲۴ و ۲۵). در این مقاله برای این نظرات وجود یافته در این مطالعه دیدگاهی کشاورزان در ارزش‌های واقعی موردهایهای توصیفی (Revealed preferences) که موضوع تحقیق وزن دهی نسبی به معیارهای مورد مطالعه‌ها و یکی نکته تکنیک مناسب (Simulation) برای اجرای مدل‌های برنامه‌ریزی ریاضی در قالب روش تصمیم‌گیری چند معیاری (Multi-Criteria Decision Making) مطرح شده است. این مطالعه در دست واقعی از مناطق تحت پوشش آسی سد درودزن در استان فارس انجام شده است.

مواد و روش‌ها
رویکرد برنامه‌ریزی چند معیاری
(Multi criteria programming approach)
در برنامه‌ریزی چند معیاری بر خلاف رویکرد چند معیاری کلاسیک، فرض می‌شود که مجموعه کوشاورزان نتها به‌وسیله سود تغییر نمی‌شود و عوامل دیگری از جمله ریسک و پیچیدگی های مدیریت نیز در فرآیند تصمیم‌گیری به‌درو در دلخ شار دارد (۲۱ و ۲۲) در این رابطه، کشاورزان تصمیمات را در حالی اتخاذ می‌کنند که به‌طور همزمان با مسأله انتخاب بین مجموعه‌ای از اهداف متفاوت روش‌های محدود هستند. لذا، نظریه مطلوبیت چند معیاری (Multi-attribute utility theory) نظریه مناسب برای نوع تصمیم‌گیری پیشنهاد شده است (۵، ۶، ۷، ۸، ۹، ۱۰، ۱۱، ۱۲، ۱۳، ۱۴، ۱۵، ۱۶، ۱۷، ۱۸). این نظریه توسط کینی و راوف (۲۱) توسعه داده شده است و به عقلی بسیاری از محققین از جمله بلستر و رومرس (۸) کومولیمونو و بریل (۲۲) کومولیمونو و رایگوست (۲۳) و کومولیمونو و مارشیتز (۲۴) به‌عنوان مناسب ترین روش در سایه‌های محدودیتی در فرآیند تصمیم‌گیری و انتخاب بین مجموعه‌ای از اهداف متفاوت شناخته شده است. با این حال، استفاده از این روش نیاز به استخراج و استنباط توابع مطلوبیت دارد که این امر مسئله‌ای است.
مواد و همکاران (5)، ادواردز (16)، فارمر (17) و هیبرین و هارداکر (28) نشان دادند که اگرچه تابع مطلوبیت جمعی یک تیم مهندسی شده از تابع مطلوبیت واقعی است اما عملکرد آن نسبت به شکل صحیح انتخاب مثبت نیست. همچنین

تأیید حاصل از مطالعه فیشرن (18) و هارداکر و همکاران (24) نشان داد که حتی اگر شرایط استقلال مطلوبیت هم باوره دنیود، با استفاده از روش جمعی تابع مطلوبیت تقریبی نزدیکی برای

تابع مطلوبیت واقع بدست خواهد آمد.

به باور هوانگ و یون (29)، روشهای جمعی از یک طرف تقریب بسیار نزدیکی برای شکل‌های غیرخطی تابع مطلوبیت است و از سوی دیگر نسبت به آنها بسیار مفید و به

راهی قابل تهیه می‌باشد. لذا، به پردازه از مطالعات

گویلمون و رایگوس (30) (گویلمون و مارتنزی (22) در این مقاله از رابطه زیر که مشابه

راپته 3 است برای تخمین تابع مطلوبیت به‌بهردرادار استفاده شده است:

\[ U_j = \sum_{i=1}^{n} w_i f_i \quad i = 1, ..., n \]

که بر خلاف بررسی‌هایی که با دات لینار (Linear Utility-indifference Curves) یا تابع نیمه‌خطی (نیمه‌خطی) (Utility-indifference Curves)

فوق براساس می‌توان یاد کرد: (Constant partial marginal utility)

(این مقاله از امور ارزش و یک‌گز مطلوبیت تابع مطلوبیت جزئی در به افراد داده و به باور ادواردز (16) و هارداکر و همکاران (24) از آن می‌توان به عنوان

تقریبی مناسب برای تابع مطلوبیت واقع به‌رهادرادار استفاده

نمود.

**MAUF**

**MAUF** یک تکنیک استخراج تابع مطلوبیت جنگ مبایری سامسون و همکاران (37) روشی برای تخمین

جمعی بیشتر کردن که توسط ادواردز و همکاران (5) توصیه

داده شد و توسط بریئل و رودریگوز (9) گویلمون و بریل
منشور شد. پس از شبیه‌سازی اثرات سطوح‌های مختلف
قیمت‌گذاری آب آبیاری، منحنی‌های تقاضای آب تهیه شد که
نمایانگر عکس عمل کشاورزان در روابطی با افزایش قیمت
آب آبیاری است.

مگری‌ها تصمیم‌گیری از مجموعه‌ای از منگری‌ها (زیست
فعالیت‌ها یا مصوبات) است که در اختیار زراعین قرار دارد.
و عبارت از: گندم (x1), گوشت (x2), تندربند (x3), ماهی (x4),
پرورش (x5), درخت (x6), و کلم (x7).

در این سال، نتایج مطالعه نشان داد که نیازهای هر فرد یک
ام می‌تواند از ارزش واقعی جوایز مدل را به‌وجود آورد.

(W) که در فرمول

زبانهای هر فرد از دیدن بالا به‌دست آمده در این وسیله تابع

تغییرات کلی زات‌برنامه (TGM) این هدف در واقع تقابل این جدال‌های زیست
سازی سود که اندازه‌گیری می‌شود است. در این رابطه، بازده برنامه‌ها حاصل از تولید هر مصوبه
از متوسط بازده برنامه‌های سه‌ساله (GMi)
زمانی 1386-1388) بر حسب قسمت ثابت 1382 به‌دست آمد.

Max: TGM = Σ z(GMi x1 + fi) [10]

به طوری که xی نرخ بهره وام دریافتی و r عبارت از اخذ یک
واحد وام از مثابه اعتبار قابل دسترسی می‌باشد.

VB: حداقل کردن ریسک

در این مطالعه وضعی از اهداف مدل حداکثر کردن ریسک
می‌باشد. در این مطالعه به پرویز از رویکرد کلاسیک مارکوویچ
(23، 24) که حداکثر (f1) و حداقل (f0) هدف آن در ماتریس بازده توسیع
یافته پرای هر کی از معیارهای مورد بررسی است.

f0 + f1 = 1

 العام نمودار داده که رابطه 8 معادله‌ای با رابطه زیر

به منشور شبیه‌سازی ممکن و برای بازاریابی، قیمت
آب بر میابان آموزشی سطوح‌های مختلفی برای قیمت آب
در دامنه صفر تا ۱۰۰ برابر قیمت برداشتی فعلي به‌هر پردازان

\[ U = \sum_{i=1}^{n} \left( w_i f_i(x) - f_i^* \right) \]

\[ \text{Max}: TGM = \sum z(GMi x_i + f_i) \]

\[ \text{Min} \left( f_1 + f_0 \right) \]

\[ \text{Subject to:} \]

\[ w_1 f_1 + \ldots + w_i f_i + \ldots + w_n f_n + n_i - p_i = f_i \]

\[ w_1 + \ldots + w_i + \ldots + w_n + n_i - p_i = f_i \]

\[ w_1 = \ldots = w_i = 1 \]

\[ \text{subject to:} \]

\[ \text{Min} \left( n_1 + p_1 \right) f_1 + \ldots + \left( n_i + p_i \right) f_i + \ldots + \left( n_n + p_n \right) f_n \]

\[ \text{Subject to:} \]

\[ w_1 f_1 + \ldots + w_i f_i + \ldots + w_n f_n + n_i - p_i = f_i \]

\[ w_1 = \ldots = w_i = 1 \]
محدودیت‌های آب‌نیازی: کاربرد روش مطلوبیت چند معياري

در این رابطه با اندازه‌گیری دبی آب در هر دوره بر حسب مترمکعب بر ثانیه و مدت زمان آب قابل دسترس در مزرعه، کل آب قابل دسترس در هر دوره می‌باشد.

\[ \text{در هر دوره محسوسه گردیده است.} \]

\[ \text{که} \ W_j \]
که میزان سطح زیر کست هر یک از محصولات است که 
به وسیله بازار محدود گردیده است. در این رابطه متوسط سطح 
زیر کشت سری زمانی 5 ساله برای محصولات مذکور به عنوان 
جدافکت کشت مجاز (M1) محدودیت قانونی.

6 محدودیت قانونی 
با توجه به مقررات و آیین‌نامه‌های مصرف کننده و همچنین در بعضی از سال‌ها محدودیت کشت محصول ذرت، محدودیت کشت به‌صورت زیر در مدل لاحظ شد:

\[ X_i \leq L_i, \quad i = 1, 2, \ldots, n \]

که میزان سطح زیر کشت مجاز برای یک از محصولات 
مذکور می‌باشد و هر ساله توسط سازمان آب و شرکت 
به‌هم‌بازداری از آب‌های سطحی در استان به زارعین اعضا می 
شود.

7 محدودیت آبش 
هر ساله به منظور زراعی ملاحظات مربوط به توسعه پایدار در 
به‌هم‌بازداری از زمین‌های زراعی حداقل 5 درصد از کل 
زمین‌های قابل کشت در هر دوره (A_i) به‌عنوان آبش (X_{10}) 
که میزان زیر کشت مجاز برای آبش است.

\[ X_{10} \geq 0.05 \times A_i \]

در نهایت مجموعاً تعداد 18 محدودیت در مدل محدود انداخته 
شد. همچنین با بررسی شیب‌روی مدل‌های تابعی به به‌کار 
گیردن هنگام کشاورزان به شکل زیر می‌باشد:

\[ \text{Max } U(X) = W_{TGM} \cdot K_{TGM} \cdot \text{TGM}(X) - W_{VAR} \cdot K_{VAR} \cdot \text{VAR}(X) - W_{TL} \cdot K_{TL} \cdot \text{TL}(X) \]

\[ [71] \]
مقدمه
برای انجام آنالیز خوشه از نرم افزار SPSS استفاده گردید.

داده‌ها و منظن مورد مطالعه
این مطالعه در دشت زرقان در استان اصفهان انجام شده است. آب مورد نیاز ایثاری در این دشت از طریق رودخانه کرده که منبع از شکاف تلفیقی سد درودزن است. تغذیه می‌شود.

محور اخبار زیر سد درودزن دارای دو شکاف مدرن درودزن و تلفیقی کبیل (زرقان و خرامه) می‌باشد. در این راهبته، در سال 1382-1384 هـ 6874 گنجینه و 1341 هـ 5973 هکتار درودزن شاخص 1382-1384 هـ 6874 و 1341 هـ 5973 هکتار (مجمعی) است. این مقادیر، 1382-1384 هـ 6874 هکتار (مجمعی) و 1341 هـ 5973 هکتار (مجمعی) تعداد 125 هکتار بر حسب شکاف تلفیقی کبیل (زرقان) اختصاص داشته است. ترکیب محصولات کشت شده در این منطقه در سال 1382 مگدان، چای، برنج، شاکرک، شانودک، ذرت، پیاز، کوجه فرنگی، کلم و هویج بوده است.

آمار و اطلاعات لازم در این مطالعه بعده دور شکاف استادی و پیماشی جمع‌آوری شده است. در این راهبته، به منظور اخذ اطلاعات در مورد نرخ آب‌های براي محصولات مختلف و اشکال و مربوط به ظرفیت و سطح زیر بوش و کشاورزی محصولات کشتی‌کردن در این منطقه، در سال 1382 مگدان، چای، برنج، شاکرک، شانودک، ذرت، پیاز، کوجه فرنگی، کلم و هویج بوده است.

آب‌های سطحی (استان فارس، شهرستان مربودشت و بخش زرقان) مراجعه شد. آمار و اطلاعات مورد نیاز در سطح مزرعه از طریق مصاحبه حضوری با زارعین و تکمیل پرسشنامه جمع‌آوری گردید. برای این ضرورت این بود که استفاده از روش تولید کربن دی‌اکسید (Wards method) جهت تجزیه خوشه‌های استفاده کند. این روش جهت تجزیه خوشه‌های استفاده کننده کارا و خوب در این نظریه استفاده می‌شود. این روش جهت تجزیه

قبل ملاحظه بین نتایج مدل شبیه‌سازی و مقدار واقعی. فرآیند معیار شدن مدل تا زمان حصول اطمینان کافی در مدل برای استفاده از آن برای مقایسه عملی ادامه می‌باید. برای این که این مقایسه‌ها معیار باشد، تعیین مدل شبیه‌سازی شده و سیستم واقعی با تعداد سیستم به‌عنوان مدل و عدم حتمیت مورد بررسی قرار گرفت.

(11, 19, 26, 26 و 27)

در رایانه با موضوع ارتباط کلی (Aggregation bias) تجزیه خوشه‌های Cluster Analysis مدل‌ساده‌تری با یک مدل را در بهبود راه‌حلی ارائه شده است. بلکه از داده مقاله به‌عنوان راه‌حلی ارائه شده است.

بر اساس دست اگزیستانس و بررسی تعداد راه‌حلی که در شرایط واقعی ممکن نیست در نظر گرفت، نتیجه این گونه مدل‌ها این هست که مقدار تابع هدف را مطابق با ارتباط نموده و در نتیجه

مقدار معنی‌داری تجزیه در شرایط واقعی قابل دسترسی نخواهد بود.

(73)

برای انتخاب از ارتباط کلی ناچیز از قرار دادن کشاورزان با

تولید محصولات در یک مدل برنامه ریزی رضایی طبقه‌بندی کشاورزان منطقه در گروه‌های همگن با رفتار تجزیه‌گری‌ها (تولید هرگز) ضروری است. بریل و

روزگریک 9 (معکوسی) که کارآزمایی روش برای طبقه‌بندی کشاورزان روی تجزیه خوشه‌های است که در آن بردارهای تجزیه واقعی کشاورزان (ترکیب واقعی محصولات) به‌عنوان می‌توان طبقه‌بندی استفاده می‌شود. در این مطالعه به منظور تجزیه خوشه از روش را به‌طوری که این استفاده از این روش و گروه‌های همگن از کشاورزان طبقه‌بندی و

مشاهده با موارد در هر خوشه که مشخص گردیدند. در این

633
نتایج

جدول ۱ ویژگی‌های مصرف و کشاورزان در هر خوش‌های خود

xxx

خوش‌های اول

مقدار و وزن‌های اهداف مختلف حداکثر کردن کل بارزه

xxx

خوش‌های دوم

مقدار و وزن‌های اهداف مورد نظر در این گروه همگین از

xxx

خوش‌های سوم

مقدار و وزن‌های اهداف مورد نظر در این گروه همگین از

xxx
جدول 1. مشخصات خوشه‌ها (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>خوشه سوم</th>
<th>خوشه دوم</th>
<th>خوشه اول</th>
<th>متغیر</th>
<th>تعداد بهره برداران = 16</th>
<th>تعداد بهره برداران = 9</th>
<th>تعداد بهره برداران = 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>حداقل</td>
<td>حداکثر</td>
<td>میانگین</td>
<td>حداقل</td>
<td>حداکثر</td>
<td>میانگین</td>
<td>حداقل</td>
</tr>
<tr>
<td>اندازه مزرعه‌های هکتار</td>
<td>32</td>
<td>16</td>
<td>99/7</td>
<td>32</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>سطح تحقیقات</td>
<td>8</td>
<td>12</td>
<td>10/5</td>
<td>8</td>
<td>12</td>
<td>10/5</td>
</tr>
<tr>
<td>سن کشاورز (سال)</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>تجربه کشاورز (سال)</td>
<td>35</td>
<td>77</td>
<td>35</td>
<td>35</td>
<td>77</td>
<td>35</td>
</tr>
<tr>
<td>درجه مکانیزاسیون</td>
<td>35</td>
<td>77</td>
<td>35</td>
<td>35</td>
<td>77</td>
<td>35</td>
</tr>
<tr>
<td>عملیات زراعی با</td>
<td>ملایم آتی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کندم، جو، هویج، کلم، شلوک</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کندم، جو، هویج، کلم، درخت، چگدنده و کوه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هویج، چگدنده و کوه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کندم، جو، هویج، کلم، ساختار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| مأخوذ: آمار جمع‌آوری شده و یافته‌های تحقیق با افزایش نرخ آب‌ها تا متوسط 15 برای نرخ آب‌های موجود تغییر نمی‌کند. اما با افزایش نرخ آب‌ها از 15 برای نرخ فعال میزان نقاط آب آبیاری در این دو خوشه نیز به مقدار بالا مهاجرت کرده است. همچنین، مقدار متوسط مصرف آب آبیاری در هر هکتار در خوشه‌های مربنا و سوم در نرخ‌های مختلف آب‌های به طور قابل ملاحظه‌ای کمتر از مقدار آبی است که در انتخاب دارند (مقدار متوسط مصرف آب در هر هکتار در خوشه اول) این موضوع می‌تواند ناشی از رفتار ریسک‌گریزی این دو گروه از
جدول ۲: بررسی اعتبار مدل‌های شیمیاسی شده در خوشه‌های مختلف (گروه‌های همنگ کشاورزان)

<table>
<thead>
<tr>
<th>اهداف</th>
<th>مقدار مشاهده (هنگ)</th>
<th>مقدار مشاهده (هنگ)</th>
<th>مقدار مشاهده (هنگ)</th>
<th>مقدار مشاهده (هنگ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیان‌های برنامه‌ای کل (۱۰۰۰)</td>
<td>۲۳۱۸/۱/۲</td>
<td>۲۳۱۸/۱/۲</td>
<td>۲۳۱۸/۱/۲</td>
<td>۲۳۱۸/۱/۲</td>
</tr>
<tr>
<td>هنگ تومان</td>
<td>۵/۱۸۰۰</td>
<td>۵/۱۸۰۰</td>
<td>۵/۱۸۰۰</td>
<td>۵/۱۸۰۰</td>
</tr>
<tr>
<td>هنگ نرخ</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (نر-زنانه)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (کمی)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (پرای)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (پرای) (گزیده)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (پرای) (گزیده) (نر)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (پرای) (گزیده) (نر)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (پرای) (گزیده) (نر)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
<tr>
<td>هنگ نرخ (پرای) (گزیده) (نر)</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
</tr>
</tbody>
</table>

با ماهیت محاسبات تحقیق
جدول ۳. مقدار تفاوتی آب آبیاری در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزی)

<table>
<thead>
<tr>
<th>نرخ آب‌های</th>
<th>تفاوتی آب‌های</th>
<th>صفر</th>
<th>۱۰ بازپنشاده نرخ</th>
<th>۲۰ بازپنشاده نرخ</th>
<th>۵۰ بازپنشاده نرخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>فعلي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نرخ موجود</td>
<td>۱۵ بازپنشاده نرخ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فعلي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های اول (م³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های دوم (م³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های سوم (م³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مأخوذ، محاسبات تحقیق</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ماخوذ: محاسبات تحقیق

جدول ۴. مقدار متوسط تفاوتی آب آبیاری در هکتار در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزی)

<table>
<thead>
<tr>
<th>نرخ آب‌های</th>
<th>متوسط تفاوتی آب در هکتار</th>
<th>صفر</th>
<th>۱۰ بازپنشاده نرخ</th>
<th>۲۰ بازپنشاده نرخ</th>
<th>۵۰ بازپنشاده نرخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>فعلي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نرخ فعلي</td>
<td>۱۵ بازپنشاده نرخ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فعلي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های اول (م³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های دوم (م³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش‌های سوم (م³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مأخوذ، محاسبات تحقیق</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ماخوذ: محاسبات تحقیق
کشاورزان باشند، بنابراین، کشاورزان در خوزخه‌های دو و سوم تمامی به‌کمتکسی از محصولات مطمئن (با میزان تغییر پذیری کمتر، بر اساس کل) با نیازهای آبی کمتر دارند.

افزون بر این، همان‌گونه که نیم‌ساز (ب) می‌دهد، الگوهای مصرف آب در طول منحنی تغییر اقتصادی آب اقتصادی در خوزخه‌های مختلف تغییر می‌کند. در این رابطه، تغییرات محصولات بالنسبة به آب در هکتار را نشان می‌دهند. به‌طور مثال، کشاورزی های متفاوت اقتصادی (با شبکه کمتر) مربوط به نرخ‌های بالایتر آب‌های است که کشاورزان از طریق تغییر الگوهای کشت (از طریق چاپ گردشی محصولات) بدین ارتباط با نیاز آبی بالا به‌وسیله محصولات با نیاز آبی کمتر) و همچنین گرایش به سمت تولید محصولات با استفاده از روش‌های کم ابزاری و محصولات دم میزان کل تغییر اقتصادی آب و میزان متوسط مصرف آب در هکتار را کاهش می‌دهند.

بحث
نتایج حاصل از این مطالعه نشان داد که در کشورهای متفاوتی نسبت به افراش نرخ آبی بیش از، می‌دهند. همچنین، آسیب‌های تاثیرگذاری افزایش نرخ آبی در خوزخه اول نسبت به خوزخه دوم و سوم متفاوت است. در مطالعاتی که تاکنون در زمینه تغییرات آب اقتصادی در کشاورزی انجام شده است، به‌طور معمول، کشاورزان با وجود صفت و چرگی ها متفاوت از منابع مصرفی شده و تعادل صرف‌های اقتصادی (از طریق مختلف کم آبی) به‌خطر می‌رسد. در این رابطه، بایستی بر اساس اقتصادی بررسی می‌شود و نیازهای موجود، آب‌های مناسب از افراش سطح زیرکشت و نه مقدار حجم آب مورد استفاده از او دریافت می‌کنند. نتیجه
نمودار 1. منحنی های نقاشی آب آبیاری در خوشه‌های مختلف

این گونه نرخ گزاری زمانی مصرف، که متقابل با سیاست‌های پایدار منابع آب است، به این جهت که میزان قابل ملاحظه‌ای از آب آبیاری به‌صورت تبخیر و تعرق و جاری شدن در سطح خاک هدر می‌روید. اگر چه تناسب مطالعات انجام شده نیز نشان می‌دهد که در بهترین حالت، میزان آب‌های نمایش‌دهنده به‌طور کلی می‌تواند تا حدودی هزینه‌های نگهداری و بهره‌برداری شبکه‌های آب را تأمین کند و ممکن است تا حدودی به‌طور عملکرد مالی دستگاه مصرفی به‌طور کلی آب باشند. اما این منکش بر جبران عملاً به همراه با ریزش هزینه نامناسب حمله به سیستم مصرفی آب می‌گردد با اصلاح‌هایی اقتصادی کشور به‌سوی بهبود می‌رود. مدت زیادی که وقتی قانونی می‌توان به موارد زیر اشاره نمود:

1. اصلاح قوانین آب از جمله اEATURE گویی مناسب تعیین نرخ آب‌ها
2. تلاش در جهت تغییر چارچوب سازمانی مناسب بازار آب
3. ایجاد و ترویج شرکت‌های بازار به‌منظور مبارزه آب بین مصرف‌کننده مختلف و بهره‌برداری
4. اصلاح مدیریت و برنامه‌ریزی توزیع منابع آب (ازبایه‌ی کم‌کشوری زمانی مؤثر توزیع آب)
5. تلاش در جهت بالا بردن کارایی و روان‌های انتقال و مصرف