مدیریت تقاضای آپ آی‌بی: کاربرد روش مطلوبیت چند میزبانی

جواد ترکمانی و شاهرخ شجری

(تاریخ دریافت: ۲۴/۱۰/۱۴/۸۶؛ تاریخ پذیرش: ۸۶/۸/۳)

چکیده
هدف اصلی این مقاله تجزیه و تحلیل اثر سیاست قیمت‌گذاری آپ آپ آی‌بی بر میزان تقاضای بهره‌برداران آپ‌های سطحی است. بیدین منظور، از روش برنامه‌ریزی رضایت مطلوبیت چند میزبانی و همچنین تکنیک شیپسازی استفاده گردید. آمار و اطلاعات لازم به دو صورت استنادی و پیمایشی در استان فارس جمع‌آوری شده است. نتایج حاصل نشان می‌دهد که گروه‌های مهگان شکاروران اغلب رفتاری متفاوتی نسبت به آپ آپ آپ آپ‌های نهایی می‌دهند. در نهایت، مصرف آپ شکاروران را به‌طور قابل ملاحظه‌ای کمتر از میزان آپ آپ است که به‌نوعی دسترسی دارند. همچنین، این شکاروران در تراکم‌های بازیاب آب‌ها با تغییر گروهی کشت و گرایش به سمت تولید محصولات با روش‌های کم آپ آپ و همچنین محصولات دیم میزان کل تقاضای آپ آپ و همچنین میزان مصرف آپ در حکایت را به‌طور قابل ملاحظه‌ای کاهش می‌دهند. لذا، کشف قسمت تقاضای آپ در سطح بالای آپ‌ها برای این شکاروران نسبت به دیگر شکاروران، بیشتر می‌باشد.

واژه‌های کلیدی: تقاضای آپ آپ آپ، قیمت‌گذاری آپ، روش مطلوبیت چند میزبانی، شیپسازی

مقدمه
مدیریت ضعیف آپ آپ آپ در ایران منجر به افزایش تقاضا برای این نهاده جدید و همچنین هدر رفت مقدار قابل ملاحظه‌ای از آن گردیده است (۱). به‌همان‌دردان کشاورزی در ایران تنها در حد کوچکی از هزینه‌های تأمین آپ آپ و همچنین تعیین و تهیه‌داری تأمینات مربوطه را به‌عنوان قیمت آپ پرداخت می‌کند. در حقیقت، قیمت پرداختی آنها حتی فادر به پوشش‌دنده‌های عمیکلی و مدیریت شکل‌های آپ آپ آپ نیز نمی‌باشد (۲) و (۳). لذا، هزینه‌های مالی استحلاک مربوط به تأمینات، کانال‌ها، سد و غیره از طریق بودجه دولتی تأمین می‌شود که این در واکنش به‌مانند سیره‌ای که به‌همان‌دردان آپ‌های سطحی

1. به ترتیب دانشجوی دکتری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز
2. Torkmanijavad@yahoo.com
3. مسئول مکاتبات، پست الکترونیکی: *
هدف مربوط به حفظ معنای واقعی و احتمالاً جامعه، مجدداً توزیع شود. تخصیص مجدد ممکن آب می‌تواند موجب افزایش کارایی انتخاب از آن شود (20 و 27).

در این مقاله، برای تجزیه و تحلیل اثربخشی

قلم‌داری ابزار کودکان بر تفسیرهای مختلف

به‌پردازهای مرفی، توسعه و کاربرد آن ارایه شده است. در این

روش، شبیه‌سازی (Simulation) برای اجرای مدل‌های برنامه‌ریزی ریاضی در قالب روش

(Multi-Criteria Decision Making) تصمیم‌گیری به‌بینی مطرح شده است. این مطالعه در دست زرتشتیان از طریق انجام شده است.

مواد و روش‌ها

رویکرد برنامه‌ریزی چند معايیری

(Multi-criteria programming approach)

در برنامه‌ریزی چند معايیری، برخلاف ریکت‌های کلاسیک، فرض می‌شود که را کمولیت کش‌رازی بر روی می‌تواند سود معنی‌دار و نمایانگر از جمله ریسک و پیچیده‌های مدیریت نیز در قرارگیری یک به یک داده‌های (22) و (23) از این راه‌های کش‌رزنی تصمیم‌گیری، راه حل می‌باشد که به‌طور همزمان با مسئله انتخاب ممکن است. نظیر مطلب‌های چند مناسبی (Multi-attribute utility theory) نظریه مناسبی برای نوع تصمیم‌گیری به‌بینی مطرح شده است (5).

نظریه تئوری کشتی و رافا (21) توسعه داده‌است و به عقیده بسیاری از محققین از جمله پاسکال و تامسرو (8) کومولیون و

برل (21) کومولیون و راسکو (9) و کومولیون و مارلینز (22) به عنوان مناسب‌ترین روش در میان مدل‌های چند معايیری

در فراوان تصمیم‌گیری و انتخاب بین مجموعه از اهداف مضاد

شناسایی شده است. با این حال، استفاده از این روش نیاز به

استخراج و استنباط توانایی مطلوبیت دارد که این امر مشکلاتی از

۳۸۸
آماردان و همکاران (5)، اداره (16)، دانشگاه (17) و هیپرهای (82) نامه‌هایی که ارائه‌شده‌اند جمعیت یک
نمونه‌سازی خامه‌ای از تایب مطابق واقعی است اما عملکرد آن
نتیجه به شکل صفحه‌ای به‌طور مختصری کردیک است. همچنین
تأثیر تحقیق از مطالعه فیشر (18) و همکاران (22) نشان داد که
حتی اگر شرایط مطالعه هم برآورد نشود،
با استفاده از روش جمعیت تایب مطابق تایب کردیکی برای
تایب مطابق واقعی به‌طور خواهد آمد.

به پاور هوانگ و بیون (29)، روش جمعیت از یکی طرف
تایب به‌طور نزدیکی برای شکل‌های غیرخطی تایب مطابق
است و از سوی دیگر نتیجه به آنها بسیار متفاوت بود.
به راحتی قابل تقدم، می‌باشد. به‌طوری که
گام‌ها و روشگاه (21) گام‌ها و روشگاه (21) و
گام‌ها و روشگاه (21) در این مقاله از رابطه زیر که مشابه
رابطه 3 است برای تخمین تایب مطابق به‌طور برادران استفاده
شده است:

\[U_j = \sum_{i=1}^{n} w_{ij} f_i \]

که \(f_i \) رشته‌ای مربوط مطابقت‌های برای آنتی‌تانطوی زاست. رابطه

مقدمه‌نگاری مقدمه‌نگاری (Utility-indifference Curves)

تایب (Constant partial marginal utility) (23) ارائه داده که این نظریه در

تکنیک استخراج تایب مطابق جدید یادی

MAUF سامسون و همکاران (7) و رضوی‌ی را برای تخمین
جمعی پیشنهاد کردن که توسط آماردان و همکاران (5) توصیه
داده شد و توسط بریل و رودرزیکوز (9) گام‌ها و روشگاه

398
الف) حداکثر کردن کلاژن بزده پرنداماه (TGM)
این هدف در واقع تقریبی برای حداکثر سازی سود کوتاه مدت است. در این رابطه، بزده پرنداماه حاصل از تولید هر محصول از متوسط بزده پرنداماه (GM) زمانی (1382-1384) بر حسب قیمت ثابت 1382 بهبود آمد.
Max: $TGM = \sum w_i (GM_i - X_i) [10]$

بعضی از یک نتیجه غربی هم به درکی که از دریافت و از عبارات از این پیک واحده و از منابع اعتباری قابل دسترسی می‌باشد.

(2) حداقل کردن رپسک (VAR)
در این مطالعه یکی از اهداف مدل حداکثر کردن رپسک می‌باشد. در این مطالعه به بیویر از ریزک‌های کلاژن کارکردن (23). (گومول‌کو و پروسک) و (22) رپسک به‌طور داخلی یا خارجی کارکردن (TGM) در نظر گرفته شد. لذا، رپسک از رابطه بزده پرنداماه (22) محاسبه می‌شود که در آن τ ماتریس وارون $-X^t$ محاسبه می‌شود که در آن τ ماتریس امکانات کارکردن (22)

$U = \sum_{i=1}^{n} \frac{w_i (f_i^*(x) - f_i)}{f_i^*} [9]$

عامل نرمال‌سازی در رابطه 9 عبارات از تفاوت‌های مقدار حداکثر (f_i^*) و حداقل (f_i) هدف ام در ماتریس بزده توسیع یافته برای هر یک از معیارهای مورد بررسی است.

پیوسته نشانی سازمانی و برشی تأثیر افزایش قیمت آب بر میان آم عرضی سیمونهای مختلفی برای قیمت آب در دامنه صفر تا 100 برابر قیمت برداختی فعلي به‌ه‌ره برداران
مدیریت نقاشی آب آبیاری: کاربرد روش مطلوبیت چند معیاری

dکه $$W_j$$ کل آب قابل دسترس در هر دوره می‌باشد. در این رابطه نتایج اندازه‌گیری دیگر آب در هر دوره به حساب می‌رماند. همچنین مدت زمان آب قابل دسترس در مزرعه، کل آب قابل دسترس در هر دوره محاسبه گردیده است.

3. محدودیت سرمایه

پایه‌گذاری محدودیت یک سطح به بررسی و فروش محصولات در دو مقطع از سال و در نتیجه، تمامی پیش‌بینی‌های هزینه‌های مربوط به کار محصولات بعد از فروش آنها، در محدودیت برای سرمایه‌ی به نحو زیر در مدل لحاظ گردیده:

$$\Sigma C_i - R_j - I_j \leq K_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2$$ \[15\]

$$R_j = \Sigma GM_i X_i, \quad i = 1, 2, \ldots, n, \quad j = 1, 2$$ \[16\]

همهٔ هزینه‌های تولید یک هکتار محصول در رنگین‌پوشانی انتقال $$R_j$$ هزینه‌های خرید محصولات در هر یک از دو مقطع به بررسی محصول به بازار برای یک‌سانی هزینه‌های تولید در طول سال $$K_j$$ باید سرمایه موجود مزرعه در هر یک از دو مقطع به بررسی محصول در طول سال و این یک به ای که از ارتفاع زارعی می‌تواند انتخاب ترکیبی از محصولات با حداکثر نیاز به نیروی کار بهصورت زیر می‌باشد:

$$\text{Min: } T = \Sigma T_{ij}, \quad i = 1, 2, \ldots, n$$ \[17\]

محصولات یک مدل شامل موارد زیر است:

1. محدودیت زمین

در این رابطه، با توجه به تقویم زمینی عمليات دوره کاشت تا بردانتش هر یک از محصولات در طول سال به مراحل مشخص گردیده. دو دوره: اول از ابتدا آبان تا آخر بهمن ماه، دوره دوم: اول اسفند تا آخر خرداد ماه و دوره سوم: از ابتدای تیر تا آخر مهر ماه است. برای هر دوره بهصورت زیر یک محدودیت زمین در نظر گرفته شده:

$$\Sigma X_i \leq A_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3$$ \[18\]

نتایج دهنده مقدار زمین قابل کاشت در هر دوره $$A_j$$ تعداد محصولات موجود در هر دوره است.

2. محدودیت آب

با توجه به سه دوره منظره شده برای محدودیت زمین، سه محصولات برای آب بهصورت زیر با توجه به نیاز آن‌ها در نگهداری از محصولات مختلف ($$A_j$$) در نظر گرفته شده:

$$\Sigma R_{ij} X_i \leq W_j, \quad i = 1, 2, \ldots, n, \quad j = 1, 2, 3$$ \[19\]
پنج‌محدودیت قانونی

به توجه به مقررات و آوین‌نامه‌های سازمان آب به ارتباط با محدودیت کشت شلوکو و همچنین در بعضی از سال‌ها محدودیت کشت مصرفی ذرت، محدودیت کشت به صورت زیر در محلات شد:

\[x_i \leq L_i, \quad i = 1, 2 \]

که میزان سطح زیر کشت هر یک از محقولات است که میزان سطح کشت هر یک از محقولات است که

به مسیله پژوه تعداد سال‌های سازمان آب در ارتباط با محدودیت کشت شلوکو و همچنین در بعضی از سال‌ها

محدودیت کشت مصرفی ذرت در مطلوبیت کشت به صورت زیر در محلات شد:

\[x_{10} \geq 0.05 A_i \]

در نهایت مجموعاً تعداد 18 محدودیت در مدل منظر گردید.

۷. محدودیت آبش

هر انتساب به منظور رعایت ملاحظات مربوط به توصیع پایدار در

به‌پردازی از به‌شناسی‌های ذخیره‌سازی در يصلی، در این راهپیمایی، موارد مزایا مورد توجه‌باید

الکس افزایش شاخص حداکثری تابع مطلوبیت برای هر یک از گروه‌های همگن کشاورزان به شکل زیر می‌باشد:

\[\text{Max} \quad U(X) = W_{\text{TGM}} \cdot K_{\text{TGM}} \cdot TGM(X) - W_{\text{VAR}} \cdot K_{\text{VAR}} \cdot VAR(X) - W_{\text{TL}} \cdot K_{\text{TL}} \cdot TL(X) \]

که میزان سطح زیر کشت هر یک از محقولات است که

به مسیله پژوه تعداد سال‌های سازمان آب در ارتباط با محدودیت کشت سری زمانی 5 ساله برای محقولات مذکور به‌عنوان

جداک‌کردن مکانیج (M_i) مورد مصرفی ذرت.

(1) سازنده‌ی پیشنهادی در قالب رشته فعالیت‌های جدید

محلول (از جمله تولید محقولات با روش کم آبیاری (x_i1), (x_i2), (x_i3), (x_i4), (x_i5), (x_i6), (x_i7), (x_i8)) و محصولات دیگر (کم‌مدت (x_i9)) و جو (x_i10) در مدل معرفی می‌شوند.

برای بررسی اعتبار مدل شیب‌سازی شده از لار به ذکر است

که اعتبار مدل شاهد بر طراحی صحیح مدل در به‌طوری که

این مدل به سطح قابل قبولی از دقیقت در پیش‌بینی‌های

ناب شده است (۳۴). در عمل برای تلاش‌ها در مورد بررسی

اعتبار مدل به‌طور مقدار مثبت شاید می‌باشد و

سنتیم پاکی به منظور تعیین درجه سازگاری با نتایج پیشنهادی

محاسبه از مدل با آنچه که در پیش‌بینی وجود دارد می‌باشد (۰۱،

۰۳، ۰۴، ۰۵، ۰۶، ۰۷، ۰۸، ۰۹، ۱۰، ۱۱، ۱۲، ۱۳، ۱۴، ۱۵، ۱۶، ۱۷، ۱۸، ۱۹، ۲۰، ۲۱، ۲۲، ۲۳، ۲۴، ۲۵، ۲۶، ۲۷، ۲۸، ۲۹، ۳۰، ۳۱، ۳۲، ۳۳، ۳۴، ۳۵، ۳۶، ۳۷) در این مطالعه به‌پیروی از

مطالعات گذشته (۰۱، ۰۲، ۰۳، ۰۴، ۰۵، ۰۶، ۰۷، ۰۸، ۰۹، ۱۰، ۱۱، ۱۲، ۱۳، ۱۴، ۱۵، ۱۶، ۱۷، ۱۸، ۱۹، ۲۰، ۲۱، ۲۲، ۲۳، ۲۴، ۲۵، ۲۶، ۲۷، ۲۸، ۲۹، ۳۰، ۳۱، ۳۲، ۳۳، ۳۴، ۳۵، ۳۶، ۳۷) در این مطالعه به‌پیروی از

معدل شیب‌سازی شده با استفاده از شاخص و درصد واقعی، بررسی

میزان اثرات مقداری از اثربخشی و متغیرهای تعطیل در شرایط

وجود با مقدار پیش‌بینی شده برای مدل‌های شیب‌سازی محاسبه

شده است. شاخص واقعی از مجموع فرد مطلق انحرافات

متغیرهای تعطیل به‌صورت می‌آید.

تاکنون نتایج محدودیت با مقدار آستانه‌ای برای اعتبار مدل‌ها

توصیه محکم شده است. در صورت مشاهده اختلاف
مقایسه برای انجام آنالیز خوشه از نرم افزار 11.5 استفاده SPSS یافته می‌گردد.

داده‌ها و منطقه مورد مطالعه

این مطالعه در دشت زرقان در استان فارس انجام شده است. آب مورد نیاز ایلات در این دشت از طریق رودخانه که منشعب از شکاف تلفیقی سد درودزن است تغذیه می‌شود. حوضه آب‌ nguồn زیر سد درودزن دارای درجه مدرن درودزن و تلفیقی کریال (زرقان و خرما) می‌باشد. در این رابطه، در حال حاضر از 82 هکتار و 28 هکتار (مجموعاً 100 هکتار) و با 957 هکتار (بوده است. این مقادیر، یک هکتار و تعداد 125 هکتر و 64 هکتار) به شبکه تلفیقی کریال (زرقان) اختصاص داشته است. ترکیب محصولات کشت شده در این منطقه در سال 1382 گندم، جو، کلزا، چغندر، شنکور، ذرت، یپاز، گوجه فرنگی، کلم و هویج بوده است.

آمار و اطلاعات لازم در این مطالعه به دو شکل استادی و پیش‌ساخت جمع‌آوری شده است. در این رابطه، به منظور اخذ اطلاعات در مورد نرخ آب‌بزی برای محصولات مختلف و اطلاعات مربوط به تخریب و سطح زیر پوشش شرکه‌های حوضه تحت پوشش سد درودزن به مروری شبکه بهره‌برداری آب‌های سطحی (استان فارس، شهرستان درودزن و خیابان زرقان) مراجعه شد. آمار و اطلاعات مورد نیاز در سطح مزرعه از طریق مصاحبه حضوری با زارعین و تکمیل پرسشنامه جمع‌آوری گردید. برای این منظور ابتدا با استفاده از روش نمونه‌گیری خوشه‌ای در مرحله یکو درصد از روستاهای منطقه انتخاب و سپس با همین لیست از کشاورزان روستاهای منطبق 10 درصد از انها به تصادفی انتخاب شدند. در نهایت تعداد 35 کشاورز در منطقه زرقان انتخاب و با آنها مصاحبه شد. به منظور اجرای مدل‌های شیب‌سازی شده از نرم افزار LINDO و LINGO استفاده شد.

قابل ملاحظه است نتایج مدل شبیه‌سازی و مقادیر واقعی، فرآیند معترض شدن مدل تا زمان حصول اطمینان کافی در مدل برای استفاده از آن برای مقادیر عملی ادامه می‌یابد. برای این که این مقایسه معترض باشد، نتایج مدل شبیه‌سازی شده و سیستم واقعی باید تحت سیاست‌های مدیریتی مستقل و در شرایط یکسانی از نظر ریسک و عدم حجمیت وارد بررسی قرار گیرند.

(11، 15، 20، 23 و 27) در رابطه با موضوع ارتب کلی تجزیه خوشه (Cluster Analysis) لازم به توضیح است که تجزیه خوشه (Clustering) مدل‌های کلاسیکی برای مجموعه‌ای از مراحل شایع گردیده در یک مدل برآم‌برشی ریاضی واحد. تحرک شدن میان واحدهای تولید را بیش از اندازه یافته را و در نهایت واقعی یک روش می‌گیرد. نتیجه این که هست که این روش مدل‌های این منطقه که مقدار تابع هدف را به ممت بالا ارتب تخمین می‌نماید و در نتیجه مقادیر ممون‌های تعداد در شرایط واقعی قابل دسترس نخواهد بود.

(27) برای انجام از ارتب کلی ناشی از قرار دادن کشاورزان با توانایی منفی‌افزایش در یک مدل برنامه‌ریزی ریاضی، طبقه‌بندی کشاورزان منطقه در گروه‌های هم‌گون به طوری صورتی است. این و رودیگر (9) معکوس‌های کلیت‌ایندی کشاورزان روش تجزیه خوشه‌ای است که در آن بردارهای کشاورزان روش تجزیه خوشه‌ای است که در آن بردارهای تصمیم واقعی کشاورزان (ترکیب واقعی محصولات) به‌معنای معیار طبقه‌بندی استفاده می‌شود. در این مطالعه به منظور تجزیه خوشه از روش وارد (Wards method) استفاده شد. به‌طوری که ابتدا براساس ترکیب محصولات کشت شده کشاورزان گروه‌های هم‌گون شناسایی و منابع مモノ‌های موجود از جمله اندازه مزرعه، سیستم ساکن و تجهیز کشاورزان و درجه مکانیاسیون در داخل هر خوشه محاسبه گردید. با استفاده از این روش سه گروه هم‌گون از کشاورزان شناسایی و مشاهدات با مراحل در هر خوشه نیز مشخص گردیدند. در این
توجه

جدول ۱ ویژگی‌های مرارس و کشاورزان در هر خوش‌شته را نشان می‌دهد. در این رابطه الگوی کشت محصولات در خوش‌شته اول شامل کندم، جو، هنیه، کلم، شستک، ذرت، پیاز، چغندر، و گوجه فرنگی است. در خوش‌شته دوم، ترکیب کشت محصولات با حذف شستک شیب به خوش‌شته اول اضافه شد. در خوش‌شته سوم، ترکیب کشت محصولات گندم، ذرت، گوجه فرنگی، کلم و هنیه بیان شد.

خوش‌شته اول

مقدار وزن‌ها برای اهداف مختلف حداکثر کننده کل باراده برنامائی، حداقل کننده ریسک و نیروی کار مورد نیاز به تریب به‌صورت w1=0.917 و w2=0.083 از مدل استخراج شد. با استفاده از مقدار وزن‌ها اهداف مزارک کشاورزان در خوش‌شته اول تابع مطلوبیت زیر را حداکثر می‌کند:

\[\text{Max: } \text{MAUF}_1 = 69.4 \text{ (TGM) - 0.00000142 (VAR)} \] [۲۳]

خوش‌شته دوم

مقدار وزن‌ها برای اهداف مورد نظر در این گروه همگن از کشاورزان به‌صورت w1=0.827 و w2=0.173 از مدل استخراج شد. با استفاده از مقدار وزن‌ها برای اهداف مزارک کشاورزان در خوش‌شته دوم تابع مطلوبیت زیر را حداکثر می‌کند:

\[\text{Max: } \text{MAUF}_2 = 12.45 \text{ (TGM) - 0.000003587 (VAR)} \] [۲۴]

خوش‌شته سوم

مقدار وزن‌ها برای اهداف مورد نظر در این گروه همگن از کشاورزان به‌صورت w1=0.427 و w2=0.573 استخراج گردید. با توجه به مقدار وزن‌ها بدست آمده برای اهداف مزارک، کشاورزان در خوش‌شته سوم تابع مطلوبیت زیر را حداکثر می‌کنند:

\[\text{Max: } \text{MAUF}_3 = 36.688 \text{ (TGM) - 0.000008475 (VAR)} \] [۲۵]
جدول 1. مشخصات خوشه‌ها (گروه‌های همگن گشتارزان)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>خوشه سوم</th>
<th>خوشه دوم</th>
<th>خوشه اول</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد بره بردان</td>
<td>23</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>حداکثر میانگین</td>
<td>169/7</td>
<td>169/7</td>
<td>169/7</td>
</tr>
<tr>
<td>تعداد بره بردان</td>
<td>3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>حداکثر میانگین</td>
<td>169/7</td>
<td>169/7</td>
<td>169/7</td>
</tr>
</tbody>
</table>

**می‌دهد که اولاً، با افزایش نرخ آب‌ها به از 20 برای نرخ تعلیفی در خوشه اول و از 15 برای نرخ تعلیفی در خوشه‌های دوم و سوم، میزان متوسط صفر آب در هکتار به مقدار قابل ملاحظه‌ای کاهش می‌یابد. همچنین، مقدار متوسط صفر آب آبیاری در هر هکتار در خوشه‌های دوم و سوم در نرخ‌های مختلف آب‌ها به طور قابل ملاحظه‌ای کمتر از مقدار آبی است که در اختیار دارند (مقدار متوسط صفر آب در هر هکتار در خوشه اول). این موضوع می‌تواند ناشی از رفتار بیشتری این دو گروه از با آفتاب شرخ آب‌ها با مرز 15 برای نرخ آب‌های موجود تغییر نماید. اما با افزایش نرخ آب‌ها از 15 برای نرخ فعلي میزان نقاط آب آبیاری در این دو خوشه نیز به مقدار قابل ملاحظه‌ای کاهش می‌یابد.

با توجه به مقادیر نقاط آب آبیاری تخمینی در جدول 3 و نتایج تاکم کشت پیش‌بینی شده حاصل از اجرای سناریوهای مختلف در مدل‌های هیپر‌سای، مقدار متوسط صفر آب به‌طور هشت‌گانه در خوشه‌های مختلف محاسبه شد که نتایج آن در جدول 4 آمده است. نتایج نشان

395
جدول 2: بررسی اعتبار مدل‌های شیمی‌سازی شده در خوشه‌های مختلف (گروه‌های همگن کشاورزان)

<table>
<thead>
<tr>
<th>اهداف</th>
<th>مقدار مشاهده بینی شده (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پیش‌بازی بررسی‌های کل (1000)</td>
<td>12.32</td>
<td>7/9</td>
<td>8/6</td>
<td>15.22</td>
<td>5/4</td>
</tr>
<tr>
<td>میزان ریسک کل نیروی کار (در-روز)</td>
<td>94/22</td>
<td>196/5</td>
<td>31/12</td>
<td>248/4</td>
<td>242/5</td>
</tr>
<tr>
<td>میزان انحراف کنید (پر)</td>
<td>23/1</td>
<td>42/7</td>
<td>6/5</td>
<td>23/5</td>
<td>32/5</td>
</tr>
<tr>
<td>میزان انحراف جر (پر)</td>
<td>2/1</td>
<td>8/5</td>
<td>5/7</td>
<td>5/1</td>
<td>5/7</td>
</tr>
<tr>
<td>میزان انحراف شنل‌ویک (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف ذرت (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف کوه‌های فرنگی (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف باد (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف باد (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف مراجعه‌گر (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف مراجعه‌گر (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>میزان انحراف درصد واقعی (پر)</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

شامل: محاسبات تحقیق
جدول ۳. مقادیر تفاوت‌های آب آبیاری در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزی)

| نرخ آب‌های | صفر | ۱۰ برابر نرخ | ۱۵ برابر نرخ | ۲۰ برابر نرخ | فعلي | مجموع
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تفاوت‌های آب</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نرخ موجود</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ۱۰۰ برابر نرخ | ۱۵۹۹۳۴ | ۱۶۴۸۴۰۰ | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۲۲۳۰۰۸۰۰ | ۲۳۳۵۸۰۰ | ۴۵۷۱۶۰۰۰
| ۵۰ برابر نرخ | ۵۴۷۱۶۰۰ | ۲۴۲۵۶۰۰ | ۱۵۶۲۴۰۰ | ۲۳۳۵۸۰۰ | ۳۴۵۸۴۰۰ | ۲۳۳۵۸۰۰ | ۶۸۱۴۴۰۰۰
| ۲۰ برابر نرخ | ۱۶۸۱۶۰۰ | ۲۲۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۴۵۷۱۶۰۰ | ۲۳۳۵۸۰۰ | ۹۰۷۵۲۴۰۰
| فعلي | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۴۵۷۱۶۰۰ | ۲۳۳۵۸۰۰ | ۹۰۷۵۲۴۰۰
| خوش‌های اول (m³) | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۲۳۳۵۸۰۰ | ۴۵۷۱۶۰۰ | ۲۳۳۵۸۰۰ | ۹۰۷۵۲۴۰۰
| خوش‌های دوم (m³) | ۱۰۸۳۶۰ | ۱۰۸۳۶۰ | ۱۰۸۳۶۰ | ۱۰۸۳۶۰ | ۱۱۲۶۷۰ | ۱۱۲۶۷۰ | ۲۲۵۳۴۰
| خوش‌های سوم (m³) | ۲۷۵۰۶۵۵ | ۲۷۵۰۶۵۵ | ۲۷۵۰۶۵۵ | ۲۷۵۰۶۵۵ | ۴۵۷۱۶۰۰ | ۲۲۵۰۷۴۰ | ۸۸۷۷۳۴۰

متأسفانه محاسبات تحقیق

جدول ۴. مقادیر متوسط تفاوت‌های آب آبیاری در هکتار در نرخ‌های مختلف آب‌های در خوش‌های مختلف (گروه‌های همگن کشاورزی)

| نرخ آب‌های | صفر | ۱۰ برابر نرخ | ۱۵ برابر نرخ | ۲۰ برابر نرخ | فعلي | مجموع
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تفاوت‌های آب</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نرخ فعلي</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ۱۰۰ برابر نرخ | ۱۹۹۲ | ۲۲۰۴۵ | ۲۳۸۷۵ | | | ۷۲۷۶۲/۵
| ۵۰ برابر نرخ | ۷۰۲ | ۴۵۰۶ | ۸۵۱۱/۹ | | | ۱۲۴۲۴/۵
| ۲۰ برابر نرخ | ۶۰۲ | ۷۱۲۵ | ۸۷۷۵ | | | ۱۲۴۲۴/۵
| فعلي | ۷۲۷۶۲/۵ | ۱۲۴۲۴/۵ | ۱۲۴۲۴/۵ | | | ۲۴۸۴۸۴/۵
| هکتار | | | | | | |
| خوش‌های اول (m³) | ۱۳۸۸۸/۵ | ۱۳۸۸۸/۵ | ۱۳۸۸۸/۵ | | | ۲۷۳۸۴/۵
| خوش‌های دوم (m³) | ۱۱۰۶۷/۷ | ۱۱۰۶۷/۷ | ۱۱۰۶۷/۷ | | | ۲۲۱۳۴/۵
| خوش‌های سوم (m³) | ۱۱۲۶۷۰ | ۱۱۲۶۷۰ | ۱۱۲۶۷۰ | | | ۲۲۵۳۴۰

متأسفانه محاسبات تحقیق
بحث
نتایج حاصل از این مطالعه نشان داد که گروه‌های مکمل کشاورزان در خوشه‌های دوم و سوم تمایل به یک کشت رنگینی از محصولات مطمئن (با میزان تغییر وسیله‌ای کمتر) بهتر است. می‌تواند این نتایج را با توجه به خطای‌های آماری بپذیرد.

یک دسته بزرگی زارعین، تجدید و تحلیل رفتار و توانایی مطلوبیت آنها در یک مدل، تنها ایراد را در این حدداشت نشان داد که با افزایش نرخ آبی‌سیاهی ضربه‌های مختلف بر رفتار کشاورزان، آنها را در کالج گروه‌ها همک طبقه‌نندی نموده و عکس‌العمل آنها بطور عاطفی بررسی گردد.

برای این منظور کوئی رنگ‌آمیزی گروه‌های مهم کشاورزان را می‌توان به‌وسیله نتایج خوراکی ما تجربه نمود. این تحقیق از آن خواهد گردد که روش‌های تحقیق به‌کار رفته بر اساس تدوین مطلوبیت جدید (MAUF) معیاری که تکنیک بازاری شیب‌سازی را برای آن استفاده می‌کند. با نتایج مختلف کشاورزان مختلف و ناب‌مطلوبیت آنها فرموله گردد. این تحقیق به‌عنوان توانایی و هدف در مدلهای شیب‌سازی در کاهش درآمد. در این رابطه مدارگاه که روش تحقیق به‌کار رفته بر اساس تدوین مطلوبیت جدید (MAUF) معیاری یک کاربردی با آن‌ها شیب‌سازی رنگ‌آمیزی گروه‌های مختلف کشاورزان به واسطه یک سیستم گزارش‌های مختلف از جمله سیستم قیمت‌گذاری آب و میزان مقدار کشاورزان که می‌تواند به‌عنوان یک راهکار کارآمدی می‌باشد.

بنا به نتایج تحقیق می‌توان گفت که چون آب‌های دریافتی از آب بسیار پایین و از ارزش واقعی آب بسیار پایین‌تر است و طرفینی از روی نرخ کشاورز (بر اساس سطح یک‌کشت) هیچ منابع علمی نداشته و امیت‌الزام را برای بهبود را ایجاد نمی‌کند که این باید تا زمان از منافع حاصل از شخصیت و کاهش مصرف آب بتواند به‌فهمی شود. در نتیجه روش‌های مختلف مدل‌های وسیله‌ای از افزایش کارایی از طریق ایجاد انگیزه استفاده از تکنولوژی‌های آب انداز شده است با این دلیل که اگر کشاورز از طریق کاهش مصرف آب (سطح مختلف کم‌آبی‌سیاهی) به‌خود مقدار آب دریافتی را به‌جای استفاده در یک هکتار به بخش از یک مقدار انتخابی دیده بیستم نرخ یک‌کشت موجود، آب‌هایی را مناسب از افزایش سطح یک‌کشت و نه مقدار حجم آب مورد استفاده از دریافتی می‌کند. نتیجه‌گیری‌ها این است که، نتایج حاصل از مطالعه حاضر نشان داد که در صورت پیش‌بینی نبودن رفتار
نمودار ۱. منحنی‌های تقاضای آب آبیاری در خوشه‌های مختلف

به مصرف مندرج و کاهش مؤثر تقاضای آب آبیاری افزایش قابل ملاحظه‌ای در قسمت آب نیاز می‌باشد که طرح این مسئله قطعاً با اکتشاف های جدیدی از طرف بهره برداران آب‌های سطحی و به دنبال آن سیاست‌گذاران و مستندین اجرایی مرتبط با موضوع آب روبرو خواهد شد. با توجه به این مسئله به نظر می‌رسد به مصرف مندرج و کاهش قابل ملاحظه‌ای تقاضای آب آبیاری بایستی همراه با برنامه‌ریزی و زمان‌بندی آفزایش قسمت آب (به گونه‌ای که متوسط قسمت آب همگام با اصلاح ساختار اقتصادی کشور به سمت هزینه‌های بند مدت بهداشت شود) سیاست‌های تلفیقی دنبال نمود که در این رابطه می‌توان به موارد زیر اشاره نمود:

۱- اصلاح قوانین آب از جمله اصلاح‌کننده‌های مناسب به‌عنوان نرخ آب‌های دریا
۲- تلاش در جهت تعیین کارواشی سازمانی مناسب بازار آب
۳- ایجاد و ترویج ماکنیزم بازار به‌منظور مبادله آب بین مصارف مختلف و بهره برداران
۴- اصلاح مدیریت و برنامه‌ریزی توسعه منابع آب (ازایه یکی از اهمیت‌های کلی و کارکرده‌پذیران آب‌بستگی از طریق بهبود سطحی افزایش قسمت آب ضروری است اما با توجه به نتایج بدست‌آمده از این تحقیق

اینگونه نرخ‌گذاری افزایش مصرف، که منطبق با سیاست‌های پایدار منابع آب است، به این جهت که میزان قابل ملاحظه‌ای از آب آبیاری به‌صورت تبخر و ترکیب و جریان شدن در سطح خاک، هدف می‌رسد. اگر همین مطالعاتی انجام شده نیز نشان می‌دهد که در بهترین حالت، میزان آب‌های تعین شده به این روش فقط تواند تا حدودی هزینه‌های نگهداری و بهره‌برداری شبکه‌های آب را از این و ممکن است تا حدودی به نفع عملکرد مالی دستگاه غیربهره‌برداری آب باشد اما چنین مکانی برای بازگشت به بهره‌برداری جویی آب فراهم نمی‌کند. در نتیجه عملکرد اقتصادی آن رضایت‌بخش نیست (۳ و ۴).
