اثر بیخ‌دزدگی روی نشت الکترولیتی‌ها رقم بادام زراعی و یک گونه بادام وحشی در استان اصفهان

مقدمه

چکیده

بیخ‌دزدگی یکی از مهم‌ترین عوامل اقلیمی است که محصول بادام را در استان اصفهان تحت تأثیر قرار می‌دهد. بنابراین، استفاده از روش‌های مقاوم در برابر بیخ‌دزدگی اهمیت زیادی دارد. انتزاع‌گری میزان نشت الکترولیتهای A. scaparia در بادام روش مناسب برای اندازه‌گیری میزان نشت الکترولیت‌ها (A. scaparia) (Amygdalus communis cultivars) 10 رقم زراعی بادام (Brewis) میزان نشت الکترولیت‌های آن‌ها در بافت تغذیه‌ای و بافت شایلی در شرایط بیخ‌دزدگی طبیعی (در طبیعت) و تیمار بیخ‌دزدگی مصنوعی (در آزمایشگاه) بررسی شد. میزان نشت الکترولیت‌های مبنای آن‌ها، انتزاع‌گری شد و میانگین داده‌ها بدل درصد از میزان مصرف اقلیمی برای میزان نشت الکترولیت‌های در معرض بیخ‌دزدگی تیمار در افزایش میزان نشت الکترولیت‌های فیت‌عنصر (Tukey’s test) مقایسه شدند. در هر تیمار، در افزایش میزان نشت الکترولیت‌های در معرض بیخ‌دزدگی (Total Dissolved Solids = TDS) نسبت به میزان مصرف اقلیمی برای مقایسه در نظر گرفته شد. مقدار کل متابولیت‌های محلول (TDS) آزمون رگرسیون خطی نشان داد که بین مقدار کل متابولیت‌های محلول (TDS) و میزان نشت الکترولیت‌های در معرض بیخ‌دزدگی همیکثیسی وجود دارد. معمولاً با تغییر مقدار کل متابولیت‌های محلول (TDS) افزایش بکارگیری زیر پوشش و یا با تغییر مقدار میزان نشت الکترولیتی‌ها به شاهد می‌شود. از طرف جدید، یکی از روش‌های مقاومت بیخ‌دزدگی در بادام روش مناسب برای اندازه‌گیری میزان نشت الکترولیت‌های A. scaparia و یک گونه بادام وحشی در استان اصفهان است.
در فاصله گیاه‌ها، افزایش نشته محلول‌های سولولی (الکترولیت‌ها) در اثر تغییرات فنوظیکرده غشات. در این شرایط، الکترولیت‌ها و بیولوژی داخل سلول به دور فضای بین سلولی و از آنجا به بیرون از فاصله نشته می‌کند. (Electrolyte leakage = El) نشته بی‌دریغ غشای سلولی. مدیریت نشته باید با استفاده از فن‌های مناسب انجام شود.

Tel: 011-67890123
Fax: 011-67890112
Email: info@mywebsite.com
Address: 123 Main Street, Anytown, USA 12345

References:
| محل جمع‌آوری | علامت اختصاصی | رقم | کونه | ردين | مجيمل |
|---|---|---|---|---|---|---|---|---|
| نجف آباد، روستای ملک آباد، ارتقاء از سطح دریا: | 1695 متر | MOH | 1 | A. communis | مجيمل |
| موقتی جغرافیا: | SAF | 2 | A. communis | | |
| | YAR | 3 | A. communis | | |
| | RAB | 4 | A. communis | | |
| | MAM | 5 | A. communis | | |
| | TAL | 6 | A. communis | | |
| | HAG | 7 | A. communis | | |
| | KAB | 8 | A. communis | | |
| | TAG | 9 | A. communis | | |
| | AZA | 10 | A. communis | | |
| E| SCO | 11 | A. scoparia | | |

† | نجف آباد، ویلاشنده، 1653 متر |

| Total Dissolved Solids=TDS |

روز چهارم فروردین صورت گرفت. حداکثر دما 18 روز قبل از آن در حدود ۲۴ درجه سانتی‌گراد بود. علاوه بر این، درختی گیاهان غنی در آبی‌زین و بخش‌های ترشحimple می‌باشد.

در این مرحله گیاهان نوزدهم می‌گردد. سپس از هر چهارم به‌طور تصادفی بررسی شده و پس از این سه‌
| (E) |

اندازه‌گیری هدایت الکتریکی |

برای میزان نتیجه‌گیری، از هر نمونه یک گرم جودی کامل به‌عنوان شاهد و یک گرم کامل به‌عنوان نیمه‌تیمار بیhythm داده مورد آزمایش قرار گرفت. موقع جدا کردن گل‌ها سه‌

کمی‌ها نایابیانی قرار داده شده. "از پدرانمگی آنها جل‌گیری، شد و می‌بیند به آزمایشگاه اندازی یافته و بخاراصل مورد آزمایش قرار گرفت.
بودن اختلاف بین میانگین‌ها در هر تیمار محاسبه شد. آزمون هدیه جونی (Tukey’s HSD test) توكی (Double Distilled Water) منو نهایی با استفاده از آزمون (SPSS Version 11.1, 2004) (انجام شد.

نتایج

مقادیر کل متابولیتهای محلول در ارقام زراعی مورد بررسی به طور میانگین در حدود (329±8/9 میلی گرم در لیتر بود (جدول 2). درصد صرفی بیشترین (39±6 میلی گرم در لیتر) و درصد کبایی کمترین (35±7 میلی گرم در لیتر) را داشتند. غلظت متابولیتهای محلول در باذام و حشی (با میانگین (362±9 میلی گرم در لیتر) اندکی کمتر از غلظت متابولیتهای محلول در TDS مشاهده شد. نتایج آنالیز واریانس نشان داد که اختلاف بین میانگین های مربوط به کل متابولیتهای محلول (در TDS) 2 هریک از ارقام زراعی با گونه و حشی در سطح 1 درصد و 5 درصد معنی دار است. شکل 1 میانگین و انحراف استاندارد کل متابولیتهای محلول نمونه‌های مورد بررسی را به صورت نمودار نشان می‌دهد.

در نمونه‌های شاهد مقداری نشان داد که کل متابولیتهای نشت از این نمونه‌ها در حدود 24/5±5 میلی گرم در لیتر بود که همان مقدار تقیبی (6/3 درصد کل متابولیتهای محلول) را نشان می‌دهد (مقدار آب مقدار متوسط و اصلاح محلول آب (جدول 1) در ارزیابی شده است.

میلی گرم در لیتر اندازه‌گیری شد که قابل تشخیص باشد. آزمون رگرسیون خطی نشان داد که بین مقدار کل متابولیتهای محلول (TDS) و میزان نشت الکترولیتی نمونه‌های در معرض بی‌خودگی مصنوعی همبستگی وجود دارد (مقدار مندرج در جدول 2) نشان داد که بین میانگین‌ها نشت الکترولیتی شاهد و اشکال‌های بی‌خودگی مصنوعی و طبیعی اختلاف وجود دارد و براساس نتایج آنالیز واریانس این اختلاف‌ها نیز در سطح 1 درصد و 5 درصد

شده‌های آبی به تنهایی هستند. گل‌ها ابتدا به مدت 15 دقیقه با آب مقدار توقف شده شسته و سپس با استفاده از کاغذ صاف، آب اضافه آنها می‌گرفتند. نمونه‌های شاهد درون و بالای هر 30 میلی‌لیتر ریخته شدند و به هر ویل مقدار 20 میلی‌لیتر آب مقدار توقف شده اضافه شد (12 و 23). نمونه‌های تیمار، قبل از این مرحله، به مدت 2 ساعت در دمای (4°C) قرار داده شدند. سپس به هر یک از آنها مقدار 20 میلی‌لیتر آب مقدار توقف شده اضافه شد. و بالای هر عمارت نمونه به مدت 1 ساعت روی از آلانه و (شیکک) سا مرت 85 دور در دقیقه قرار گرفتند تا الکترولیتهای شاهد نمونه آنها به داخل آب مقدار نشته تا حداقل در دمای اندازه‌گیری شد. گل‌های جمع‌آوری شده نوت دوم (دوش از یکیدگی طبیعی) نیز به همان روش بررسی شدند. آنالیز گرافیکی با استفاده از نرم‌افزار جنواي (Log) نشان داد که مقدار کل متابولیتهای محلول و متابولیتهای نشت برای هر نمونه و نیز درصد افزایش میزان الکترولیتهای نشته بر اثر تیمار سرمای 27 درصد به شاهد طبق زیر محاسبه شد:

\[\% = \frac{C - T}{T} \times 100 \]

\[C = \text{درجیافته الکترولیت ظاهری} \]

\[T = \text{درجیافته الکترولیت ظاهری در بدون تیمار} \]

مقدار غلظت الکترولیتهای ظاهری در نمونه‌های شاهد و تیمار است.

انالیزهای آماری

در هر یک از تیمارها میانگین‌ها و انحراف استاندارد مقدار به‌دست آمده برای هر یک از ارقام و نمونه‌ها محاسبه شد و مورد مقایسه قرار گرفت. ابتدا بر اثر آزمون رگرسیون خطي، همبستگی بین مقدار کل متابولیتهای محلول (TDS) و الکترولیتهای نشته بر اثر تیمار بی‌خودگی ارزیابی گردید. همچنین از طریق آنالیز واریانس (ANOVA) سطح معنادار
سطح ۱ درصد و ۵ درصد معنی‌دار بود. اختلاف نشست الکترولیتی در نمونه‌های شاهد و تیمرار بی‌خ‌زدگی مصنوعی و نیز بین نمونه‌های شاهد و تیمار برای الکترولیت‌های طبیعی به صورت درصد در جدول ۲ نشان داده شده است.

معنی‌دار بوده‌اند. همچنین اختلاف میانگین‌های مربوط به متابولیت‌های نشست الکترولیتی در معرض تیمار بی‌خ‌زدگی مصنوعی (T1 در جدول ۲) و نیز اختلاف میانگین‌های مربوط به کل متابولیت‌های محلول در ارقام زراعی و بادام وحشی در
جدول ۲: میانگین متوسط اختلاف‌های کل (TDS) و اختلاف‌های میانگین در نمونه‌های مورد بررسی. غلظت متابولیت‌های محلول بر حسب میلی‌گرم در لیتر (mgL⁻¹) است. C=شاهد، T1=نمونه‌های در معرض بی خردگی مصنوعی، T2=نمونه‌های در معرض بی خردگی صرفی. اندازه‌گیری نسبت کلرپتیل‌های نشی برای نیمات ۱ نسبت به شاهد (برحسب درصد) و T2-C=افراش نسبت کلرپتیل‌های نشی برای نیمات ۲ نسبت به شاهد (برحسب درصد).

<table>
<thead>
<tr>
<th>T2-C %</th>
<th>T2 (mgL⁻¹)</th>
<th>T1-C %</th>
<th>T1 (mgL⁻¹)</th>
<th>C (mgL⁻¹)</th>
<th>TDS (mgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۳/۵</td>
<td>۵۰/۷±۲/۸</td>
<td>۷۹/۳</td>
<td>۱۰۰/۷±۱۵/۸</td>
<td>۲۸/۵±۲/۸</td>
<td>۱۲۷±۲/۴</td>
</tr>
<tr>
<td>۲۸/۶</td>
<td>۴۴/۴±۲/۸</td>
<td>۷۶/۴</td>
<td>۹۳/۸±۱۴/۱</td>
<td>۲۳±۲/۴</td>
<td>۳۳۹±۲۹۱</td>
</tr>
<tr>
<td>۵۵/۸</td>
<td>۴۴/۳±۲/۸</td>
<td>۸۲</td>
<td>۱۰۹/۲±۲۴/۴</td>
<td>۱۹/۵±۲/۶</td>
<td>۹۲۴±۱۵۲</td>
</tr>
<tr>
<td>۲۲</td>
<td>۵۰/۵±۲/۸</td>
<td>۶۰/۷</td>
<td>۷۸/۶±۷/۵</td>
<td>۷۴/۵±۳/۹</td>
<td>۷۸۷±۲۱/۹</td>
</tr>
<tr>
<td>۵۹/۶</td>
<td>۶۹/۶±۵/۲</td>
<td>۷۸/۴</td>
<td>۷۳/۴±۱۲/۷</td>
<td>۲۰/۴±۲/۹</td>
<td>۳۷۶±۱۲/۹</td>
</tr>
<tr>
<td>۵۶/۵</td>
<td>۶۱/۵±۲/۸</td>
<td>۷۵/۷</td>
<td>۸۴/۶±۱۲/۲</td>
<td>۳۰/۴±۵/۹</td>
<td>۳۹۹±۵۲/۷</td>
</tr>
<tr>
<td>۱۹/۷</td>
<td>۴۴/۸±۷/۴</td>
<td>۶۶/۸</td>
<td>۱۲۲/۲±۱/۰</td>
<td>۳۹/۸±۴/۳</td>
<td>۳۸۵±۴۷/۲</td>
</tr>
<tr>
<td>۴۲/۷</td>
<td>۴۴/۸±۷/۴</td>
<td>۶۶/۸</td>
<td>۱۲۲/۲±۱/۰</td>
<td>۳۹/۸±۴/۳</td>
<td>۳۸۵±۴۷/۲</td>
</tr>
<tr>
<td>۳۷/۵</td>
<td>۴۳/۸±۷/۸</td>
<td>۶۸/۹</td>
<td>۸۱/۷±۱۷/۶</td>
<td>۱۵/۱±۳/۸</td>
<td>۳۵۵±۲۳/۵</td>
</tr>
<tr>
<td>۴۸/۶</td>
<td>۴۴/۱±۲/۸</td>
<td>۷۱</td>
<td>۷۷/۹±۹/۶</td>
<td>۱۱/۵±۲/۱</td>
<td>۳۸۵±۲۲/۱</td>
</tr>
<tr>
<td>۲۸/۳</td>
<td>۸۶/۴±۴/۸</td>
<td>۷۳</td>
<td>۱۵۶/۶±۲۲/۱</td>
<td>۲۴/۲±۱۲/۹</td>
<td>۳۶۲±۰۵/۵</td>
</tr>
</tbody>
</table>

میانگین کل مقایسه این ارقام نسبی نشان می‌دهد که در مورد نمونه‌های صرفی، بیشترین و رقم بی‌خزدان درصد افزایش نشست و بالا رفته را نسبت به شاهد دارند. مقایسه این ارقام مختلف با داده‌های از لحاظ میزان نشان دهنده بر اثر بی‌خزدانی مصنوعی و بی‌خزدانی صرفی در نمونه‌های مورد بررسی بر اساس مورد بررسی بر اثر بی‌خزدانی مصنوعی است. افزایش نسبت به شاهد بی‌خزدانی صرفی در نمونه‌های صرفی دیده شده است. در نمونه‌های بی‌خزدانی که در معرض بی‌خزدانی صرفی قرار گرفته‌اند تأثیر رقم لحاظ بی‌شأهرودتی و ارقام ناجی و آذر کمترین درصد
بحث و نتایج گیری

یکی از راههای مقاومت به بیخ‌دگی، افزایش مواد محمل در سولون به‌ویژه در شیره و اکولو است. بنابراین بین مقادیر مواد محلول سولون و تحول به بیخ‌دگی ارتباطی وجود دارد.

با این حال، بر اساس نتایج این پژوهش بین مقادیر کل متا بالیت‌های محلول و مقادیر نشان این کلیت‌های نمونه‌ها بر اثر بیخ‌دگی همبستگی وجود نداشت و با مقادیر یک سیار کم بود. بنابراین، برای مقادیر ضریب همبستگی احتمالاً باین دیل است که علاوه بر غلظت متا بالیت‌های محلول در سولون، عوامل متعدد دیگری نیز در آن امر دخالت دارند (28). مقادیر نشان این کلیت‌های بی خود نسبت وارد به سولون این سیاه مناسب است. با این حال، در چنین شرایطی سولون‌های مرده تمام محتوای خود را تخلیه می‌کند. اگر تراکم سولون‌های آسیب دیده در بافت‌های مورد آزمایش در پایه به نشان بی‌دگی تغییر کند، یعنی برخی از سولون‌ها از بین بروند و برخی دیگر زنده بمانند، در نتیجه، مقادیر کلیت‌های نشانی نیز مناسب با تعداد این سولون‌ها تغییر می‌کند.
رشید و حاج میرزایی نیز با شواهد تجربی مطالعه‌دارند. ارقام مذکور جزو ارقام دیگر در غلظ حاصل مقالات به یژدگانی محصول می‌شوند. بنابراین وحشی از لحاظ تحلیل به یژدگان در حد متوسط است. طول گل‌های یک راس در آن بر اثر یژدگان آسیب بیشتری نمی‌بیند. گل‌های دیگری که بعد از آن بار می‌شوند جایگزین شده و در تعیین یژدگان تولید محصول آن کاهش نمی‌یابد. این تحقیق گزارش دیپیکر منوط به بررسی مراحل فنولوژی به ویژه تعیین درجه رشد (Growing Degree-Day = GDD) برای هر یک از ارقام، با توجه به شرایط الیکلی منطقه است.

سیاسگزاری
این پژوهش از محل اعتبارات دانشگاه پیام نور انجام شده است. بدلیل وسیله از مصادر مربوط به نقله‌های دانشگاه سیاسگرایی می‌شود. از آن‌ها بررسی قواعد و مجدید مهدی‌که در آن‌ها حکم‌های شبیه به نمودار شده و نیز از همکاران خانم عیدی و آقای امینی، کارشناسان محترم آمایی‌ها و همچنین از آقای غلامرضا کیهانی، کشاورز تجربه، به خاطر همکاری و در اختصار قرار دادن ارقام محیط بایدن، و از کمک و همکاری آقای دکتر باربری‌محمدی در انجام آن‌الیزهای آماری قدردانی می‌شود.

منابع مورد استفاده
1. اداره کل آموزش و اطلاعات وزارت جهاد کشاورزی، اداره کل آموزش و اطلاعات. 1377. خشکبازار، آمار و مرایا. انتشارات وزارت کشاورزی، تهران.
2. خانم‌ساز. م. 1371. پوست‌های سرخ. (Rosaceae) انتشارات مؤسسه تحقیقات گنج‌های و مراعات، تهران.
3. ازفیز. م. 1380. عربی، بادام کویه (Amygdalus scaparia). مقالات دهمین کنفرانس سراسری زیست شناسی ایران، تهران.
4. میر محمدرضا مبیدی، س. ع. و. س. ترکیه‌ای اصفهانی. 1383. مدیریت نشی سرما و یخ زدگی گیاهان زراعی. انتشارات جهاد