ارزیابی تحمل به شوری در ارقام بومی و اصلاح شده برنج ایرانی

حسین صبوری، عبدالمحج رضائی و علی مؤمنی

(تاریخ دریافت: 98/8/14)

چکیده

به‌منظور بررسی توان زنینی دزونتیپ برنج (25 رتم بومی ایرانی، 25 رتم اصلاح شده و 5 رتم خارجی) در راه‌پیمایی بالسه بودن بتواند یکی از جهان‌های حساسیت و تحمل بروز می‌نماید. در بررسی این هرکک زنینی دزونتیپی با 7 بروز فاکتورهای و در نتیجه این ترقیات برنج گزارش‌های اثری در زندگی اجتماعی می‌تواند در شرایط مختلف در سه تکار در شرایط کنترل شده و نش شوری (1/2، 8 دسم (زنینی دزونتیپی) در موسسه تحصیلات برنج کشور واقع در رشت اجرا شد. طول ریشه و ساقه، وزن خشک ریشه و ساقه، درصد ساقه و نسبت دمید و زنینی دزونتیپی بر اساس روش استاندارد مورد ارزیابی قرار گرفت. معمولاً برای پاسخ‌های صفر مورد انتظار، وجود تتنوع باید آن‌ها را نشان داد. با اثربن و پایین‌ترین درشت‌نیرویی برتنیپی به‌طور مبهم به طول ساقه و درصد پاناسیم بود. بررسی کد زنینی دزونتیپی در شرایط تخت نشان داد که طول محتوا غربی، شاخه نسبت به و رشد اثری پلاکت‌های و درصد پاناسیم کد زنینی دزونتیپی با از این طرح محتوا ضروری، اصولی ارقام محاسباتی، با توجه به دست آمده از این پژوهش، می‌توان از ارقام محتوا به منظور تحقیق و نهایی جمع‌یابی و مناسب برای پرورش‌های اصلاح‌ها استفاده نمود.

واژه‌های کلیدی: زنینی، شاخص‌های تحمل و حساسیت، نسبت دمید، برنج

مقدمه

برنج بعد از گندم مهم‌ترین گیاه زراعی دنیا به‌شمار می‌رود و غذای ۲۵ تا ۴۰ درصد از مردم جهان را تام‌گذار می‌دهد. زارعین برنج کار به‌دست رشد سریع جمعیت و تبدیل زمین‌های حاصل خرید برنج به آماده چنی و مصرفی به استفاده از زمین‌های کم بهره و از جمله اراضی شور روي آورده‌اند. به‌طور اکثر موارد سورد استفاده در برنج نیز حاوی بسیاری از شوری خاک به‌دست احتمال سختی و جنگل‌گیری از جنبش آب و عناصر یکی از مهم‌ترین محصولاتی که برند گیاهان زراعی محسوب می‌شود و به‌عنوان مشکل بزرگ کشاورزی است. حدود ۳۸۰ میلیون هکتار اراضی شور در دنیا وجود دارد که بیشتر آن در آسیا (۳).

۱. برگرفته از ملاقات در دکتری و استاد وزارت اورزها و اصلاح‌های دانشگاه کشاورزی، دانشگاه صنعتی اصفهان

۲. استادیار پژوهش موسسه تحصیلات برنج کشور، رشت

* مسئول مکاتبات، پست الکترونیک: am.rezai@cc.iut.ac.ir
نمک‌های غیر محول به خصوص نمک‌های سدیم و کلراید می‌باشد. علاوه بر این تبخر و تعریق زیاد در طول دوره رشد، مشکل‌هایی برای کشت برگ یافت می‌کند (9).

اثرات شوری روی گیاهان پیچیده می‌باشد. بسیاری از گیاهان متحمل به شوری به‌علامه‌ی چون تجمع نمک در بافت‌ها تأثیرات پاتولوژی‌ای نسبت به پاتولوژی‌های اسکار خواهد داشت. با توجه نمک در ویژن‌ها و اینکه یا بی‌گیسی اجزای دیگر که کشته‌دهنده در برابر شوری مقاومت می‌کنند و اثرات مضار آن یا کاهش می‌دهند. اما اثر ارگان برفی می‌تواند با چند ساز و کار پاده‌شده‌ستند (10). از طرف دیگر توانایی پایین بی‌گیسی در خاک و در ارتفاع بی‌گیسی با شوری دوران نمک (کمتر از 1 درصد) اثرات گیاه‌های روی گیاه برفی می‌باشد. اثرات گیاه‌های روی غلظت‌های مویی شوری از اثرات اسموزی ناشی می‌شود و از افزایش غلظت بی‌گیسی، شوری روی نمک کلی گیاه به‌طور می‌کند. (30).

اصفهانی نشان داد که بخش کوچکی از واریانت به‌دامن شوری روی ارقام مورد مطالعه تا انتظار است (1). زنگ (2) یانون زنگی و همکاران (3) با آزمایش 36 رقم برگ ایندکیا و زاپوریکا از 10 کشور آسیایی و 5 کشور شرق آفریقا. نمونه‌ها قابل ملاحظه‌تر در روزهای شوری 1/5 درصد کل برآور سیمه‌گزارش نمودند. آنها گزارش نمودند که ارقام ایندکیا متحمل نر از ارقام زاپوریکا می‌باشد. این نتایج گزارش بررسی صفات مرغولوزیک و اکلی و آپوزیست است. نیز این نتایج به دنبال مرحله‌ها و نمونه‌های پایین‌تر نه داشته‌اند. این محکم‌ترین نشان دادند که نتایج اندکی به دست آمده‌ست می‌باشد. به تغییر می‌باشد.

خصایص می‌باشد (16) با استفاده از صفات مولتی‌پورژیکا ژنوتیپ‌های گیاه را ارزیابی نمودند. آنها 12 ژنوتیپ برگ در گلخانه و در قلمدان آب‌برد به محلول ترکیب‌ها ارزیابی نمودند. در این بررسی از دو سطح شوری 4/5 و 8/3 نمک‌های غیر محول به خصوص نمک‌های سدیم و کلراید می‌باشد. علاوه بر این تبخر و تعریق زیاد در طول دوره رشد، مشکل‌هایی برای کشت برگ یافت می‌کند (9).

اثرات شوری روی گیاهان پیچیده می‌باشد. بسیاری از گیاهان متحمل به شوری به‌علامه‌ی چون تجمع نمک در بافت‌ها تأثیرات پاتولوژی‌ای نسبت به پاتولوژی‌های اسکار خواهد داشت. با توجه نمک در ویژن‌ها و اینکه یا بی‌گیسی اجزای دیگر که کشته‌دهنده در برابر شوری مقاومت می‌کنند و اثرات مضار آن یا کاهش می‌دهند. اما اثر ارگان برفی می‌تواند با چند ساز و کار پاده‌شده‌ستند (10). از طرف دیگر توانایی پایین بی‌گیسی در خاک و در ارتفاع بی‌گیسی با شوری دوران نمک (کمتر از 1 درصد) اثرات گیاه‌های روی گیاه برفی می‌باشد. اثرات گیاه‌های روی غلظت‌های مویی شوری از اثرات اسموزی ناشی می‌شود و از افزایش غلظت بی‌گیسی، شوری روی نمک کلی گیاه به‌طور می‌کند. (30).

اصفهانی نشان داد که بخش کوچکی از واریانت به‌دامن شوری روی ارقام مورد مطالعه تا انتظار است (1). زنگ (2) یانون زنگی و همکاران (3) با آزمایش 36 رقم برگ ایندکیا و زاپوریکا از 10 کشور آسیایی و 5 کشور شرق آفریقا. نمونه‌ها قابل ملاحظه‌تر در روزهای شوری 1/5 درصد کل برآور سیمه‌گزارش نمودند. آنها گزارش نمودند که ارقام ایندکیا متحمل نر از ارقام زاپوریکا می‌باشد. این نتایج گزارش بررسی صفات مرغولوزیک و اکلی و آپوزیست است. نیز این نتایج به دنبال مرحله‌ها و نمونه‌های پایین‌تر نه داشته‌اند. این محکم‌ترین نشان دادند که نتایج اندکی به دست آمده‌ست می‌باشد. به تغییر می‌باشد.
ارزیابی تحلیل به شوری در ارقام بومی و اصلاح شده بینج ایرانی

gیاهچه‌ها مربوط دانستن و مقادیر سدیم ابزارهای مطلوب را اعمال گرایش نموده که سطح برگ درصد بالایی از تغییرات عمکردا را توجه کند. با این‌که، ارتباط معنی‌داری بین سطح برگ و اجزای عمکردا در زنوتپی‌های حساس و متغیر گزارش نموده است. در مورد

با افزایش شوری افزایش یافت. در Na/Ca کاهش پیدا کرد. در نتایج افزایش Na/Ca در یک نمونه، که در نمونه‌های ۱۷٪ در شرایط تنش شوری بیش از ۶/۱ می‌باشد و به دلیل هم‌بستگی‌های قانونی بین پیوستگی‌های فیزیولوژیکی و رشد

بی‌گیاهچه نشان دادن که شاخص Na/Ca می‌باشد. مهم‌ترین افراد گیاه به شوری می‌باشد.

حسین و همکاران (۱) در پژوهش جدیدی مشابه نشان دادند که Na/Ca در در رایانه‌ای آزمایشگاه‌های چهارمین برگ

سیمی‌سازی و تبادل سدیم و نشان دادن که تجلیل سدیم در برگ‌های ۱۲٪ پیشرفته است. مقادیر کلافولیم این طبقه‌بندی ارقام برنج ایرانی از نظر تحلیل به شوری و در نتایج بررسی جدید

سازوکار تحلیل به شوری در ارقام متحمل ایران طریق شد.

مربوط و روش‌ها

در این بررسی ۲۵ رقم بومی و ۵ رقم خارجی از برنامه‌های اصلاحی مؤسس‌های تحکیم برنج کشور در سال ۱۳۸۷ مورد تحلیل قرار گرفته. آزمایش به‌صورت فاکتوریل و در قالب طرح یک‌کانال، کامل تصادفی در هر دو به تایید شد.

لیچی (۱۲) (شاهد)، ۴، ۸، ۱۶ و ۳۲ می‌باشد بررسی فشار فانوسون (۲۵) در روز -۸ در شب و رطوبت ۷۰ درصد اجرا شد. زنوتپی‌ها در محلول غذایی بوستیدا (۲۵) بازیافت دیدن و تیمار‌های شوری ۲۰ روز پس از

کشت اعمال گردیدند. برای کشت از صفحه‌های بوستیدا، با ابعاد ۳۵×۲۵×۱۸سانتی‌متر و سینی‌های به حجم ۴۰ لیتر استفاده گردید و

دیسی‌زیناتس بر مت کلرور سدیم استفاده شد. این محققین
جدول 1. نحوه کدکدی زنوتوپ‌ها در شرایط شوری

<table>
<thead>
<tr>
<th>شاخص نمایشگر</th>
<th>کد زنوتوپ‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>بسیار محروم</td>
<td>1</td>
</tr>
<tr>
<td>محروم</td>
<td>2</td>
</tr>
<tr>
<td>نسبتاً محروم</td>
<td>3</td>
</tr>
<tr>
<td>حساس</td>
<td>4</td>
</tr>
<tr>
<td>بسیار حساس</td>
<td>5</td>
</tr>
</tbody>
</table>

\[(\text{Geometric Mean productivity, GMI})\]

\[
\text{GMP} = \sqrt[\text{GMI}] {\frac{Y_p - Y_S}{Y_p + Y_S}}
\]

\[(\text{Stress Tolerance Index, STI})\]

\[
\text{STI} = \frac{Y_p \times Y_S}{Y_p + Y_S}
\]

\[(\text{Harmonic Mean, HM})\]

\[
\text{HM} = \frac{\text{GMP} \times Y_p \times Y_S}{Y_p + Y_S}
\]

\[\text{TOL} = \frac{Y_p - Y_S}{Y_p}
\]

\[\text{MP} = \frac{Y_p - Y_S}{Y_p}
\]

\[\text{SSI} = \frac{Y_S - Y_p}{\text{SI}}
\]

\[\text{SI} = 1 - \frac{Y_S}{Y_p}
\]
نتایج و بحث
اختلاف در سطح شوری و تفاوت بین ارقام مورد ذکر صفات
معنی داری این تحقیق بیانگر است تغییر زیاتیکی براfmt صفات
ازیابی شده در مرحله گاها در شرایط تنفس شوری در ارقام
ایرانی است. با افزایش تنفس شوری از سطح 1/6 (شاده) به 8
دنیا زیمنس بر متر طول ریشه، طول ساقه، وزن خشک ریشه، وزن
خشک ساقه، زیست نامه و درصد سدیم کاهش ییدن می‌کرد.
درحالی که درصد سدیم و نسبت سدیم به ناحیه افزایش یافت
(جدول 3). مقدار وراثت پایداری برای کد زئوتیپی (24/76)،
طول ریشه (28/58) و وزن خشک ساقه (28/76) زیست توده (35/78)
درصد سدیم (20/75) و ناحیه 3/15) جدید شده و نسبت
ندیا زیمنس بر متر طول ریشه به ناحیه افزایش یافت
و زیست توده، کد زئوتیپی ارقام کاهش پیدا نمود و با توجه به
وراثت پذیری بالای آنها، می‌توان از این در بررسی‌های اصلاحی
استفاده نمود. و اکثر نمایانگر ارقام در سطح متفاوت شوری
موشک شده که از مقابله رقم 8 شوری نیز برای کله صفات مورد
بررسی معنی‌دار گردید (داده‌ها نشان داده شده).
جدول ۲: میانگین و دامنه صفات گیاهچه در شوریهای ۲ و ۸ دسی‌اینٹس بر متر و شرایط نرمال

<table>
<thead>
<tr>
<th>صفت و شوری (دسی‌اینٹس بر متر)</th>
<th>طول شوری (سانتی‌متر)</th>
<th>طول ریشه (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زیست تووده (گرم)</td>
<td>نرمال</td>
<td>نرمال</td>
</tr>
<tr>
<td>(سیه رود آدریبان شرقی ۱/۱۷-پستد/۶۸/۳۸۴)</td>
<td>۶/۷۶۸/۰/۷۱۷</td>
<td>۹/۸۴۰/۰/۱۷۸</td>
</tr>
<tr>
<td>(دامپرمان ۱/۱۷-پستد مازندران/۶۸/۵۸)</td>
<td>۲/۸۵۴/۰/۷۱۷</td>
<td>۷/۸۹۰/۰/۱۷۸</td>
</tr>
<tr>
<td>(لاینی/۱۷۵/۱۷۹-پوکاکی/۴/۹۹)</td>
<td>۸/۷۹۴/۰/۰۱۳</td>
<td>۸/۷۴۲/۰/۱۶۷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>طول ساقه (سانتی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرمال</td>
</tr>
<tr>
<td>(داریک/۱۷۵/۱۷۹-پشت پستد/۳۸/۷۷)</td>
</tr>
<tr>
<td>(پوشش ۳/۱۷۹-پشت پستد مازندران/۱۷۵/۹۹)</td>
</tr>
<tr>
<td>(پوکاکی/۴/۹۹)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک ریشه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرمال</td>
</tr>
<tr>
<td>(سیه رود آدریبان شرقی ۱/۱۷-پستد/۶۸/۳۸۴)</td>
</tr>
<tr>
<td>(دامپرمان ۱/۱۷-پستد مازندران/۶۸/۵۸)</td>
</tr>
<tr>
<td>(لاینی/۱۷۵/۱۷۹-پوکاکی/۴/۹۹)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک ساقه (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرمال</td>
</tr>
<tr>
<td>(لاماد/۱/۱۷۵/۱۷۹-پشت پستد/۳۸/۷۷)</td>
</tr>
<tr>
<td>(پوکاکی/۴/۹۹)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نسبت ساقه به پناسیم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرمال</td>
</tr>
<tr>
<td>(پوکاکی/۴/۹۹)</td>
</tr>
<tr>
<td>(پوکاکی/۴/۹۹)</td>
</tr>
</tbody>
</table>
جدول 3. میانگین و دامنه شاخص‌های تحمل و حساسیت برای صفات گیاهچه در شریهای ۴ و ۸ دیسی‌زمین بر متر

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تراکم Zn (میکروگرم/کیلوگرم)</th>
<th>سطح ارتفاع</th>
<th>میانگین</th>
<th>دامنه</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص ۱</td>
<td>MP (میکروگرم/کیلوگرم)</td>
<td>MP (میکروگرم/کیلوگرم)</td>
<td>MP (میکروگرم/کیلوگرم)</td>
<td>MP (میکروگرم/کیلوگرم)</td>
</tr>
<tr>
<td>شاخص ۲</td>
<td>TOL (میکروگرم/کیلوگرم)</td>
<td>TOL (میکروگرم/کیلوگرم)</td>
<td>TOL (میکروگرم/کیلوگرم)</td>
<td>TOL (میکروگرم/کیلوگرم)</td>
</tr>
<tr>
<td>شاخص ۳</td>
<td>SSI (میکروگرم/کیلوگرم)</td>
<td>SSI (میکروگرم/کیلوگرم)</td>
<td>SSI (میکروگرم/کیلوگرم)</td>
<td>SSI (میکروگرم/کیلوگرم)</td>
</tr>
<tr>
<td>شاخص ۴</td>
<td>STI (میکروگرم/کیلوگرم)</td>
<td>STI (میکروگرم/کیلوگرم)</td>
<td>STI (میکروگرم/کیلوگرم)</td>
<td>STI (میکروگرم/کیلوگرم)</td>
</tr>
<tr>
<td>شاخص ۵</td>
<td>HM (میکروگرم/کیلوگرم)</td>
<td>HM (میکروگرم/کیلوگرم)</td>
<td>HM (میکروگرم/کیلوگرم)</td>
<td>HM (میکروگرم/کیلوگرم)</td>
</tr>
</tbody>
</table>

توجه: نماد SP میزان میانگین و نماد £ علیه تراکم Zn را نشان می‌دهند.

نتیجه‌گیری به پاسخ

- MP (میکروگرم/کیلوگرم):
- TOL (میکروگرم/کیلوگرم):
- SSI (میکروگرم/کیلوگرم):
- STI (میکروگرم/کیلوگرم):
- HM (میکروگرم/کیلوگرم):

توجه: نماد SP میزان میانگین و نماد £ علیه تراکم Zn را نشان می‌دهد.
جدول ۲. نتایج بر نتیجه تجزیه و ارزیابی بررسی از تجربه خوش‌های و دکترینی

<table>
<thead>
<tr>
<th>واکنش کد زنوتی</th>
<th>نتیجه خوش‌های</th>
<th>رقم</th>
<th>واکنش کد زنوتی</th>
<th>نتیجه خوش‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>۳۶</td>
<td>۳۸</td>
<td>۳۶</td>
<td>۳۸</td>
</tr>
<tr>
<td>جمله</td>
<td>۳۷</td>
<td>۳۹</td>
<td>۳۷</td>
<td>۳۹</td>
</tr>
<tr>
<td>حرکت</td>
<td>۴۰</td>
<td>۴۲</td>
<td>۴۰</td>
<td>۴۲</td>
</tr>
<tr>
<td>زمان</td>
<td>۴۳</td>
<td>۴۵</td>
<td>۴۳</td>
<td>۴۵</td>
</tr>
<tr>
<td>مصرف</td>
<td>۴۶</td>
<td>۴۸</td>
<td>۴۶</td>
<td>۴۸</td>
</tr>
<tr>
<td>صحت</td>
<td>۵۰</td>
<td>۵۲</td>
<td>۵۰</td>
<td>۵۲</td>
</tr>
<tr>
<td>شادی</td>
<td>۵۴</td>
<td>۵۶</td>
<td>۵۴</td>
<td>۵۶</td>
</tr>
<tr>
<td>اطمینان</td>
<td>۵۸</td>
<td>۶۰</td>
<td>۵۸</td>
<td>۶۰</td>
</tr>
<tr>
<td>نیازهای پزشکی</td>
<td>۶۲</td>
<td>۶۴</td>
<td>۶۲</td>
<td>۶۴</td>
</tr>
<tr>
<td>نیازهای آموزشی</td>
<td>۶۶</td>
<td>۶۸</td>
<td>۶۶</td>
<td>۶۸</td>
</tr>
<tr>
<td>نیازهای اجتماعی</td>
<td>۷۰</td>
<td>۷۲</td>
<td>۷۰</td>
<td>۷۲</td>
</tr>
<tr>
<td>نیازهای اقتصادی</td>
<td>۷۴</td>
<td>۷۶</td>
<td>۷۴</td>
<td>۷۶</td>
</tr>
<tr>
<td>نیازهای شخصی</td>
<td>۷۸</td>
<td>۸۰</td>
<td>۷۸</td>
<td>۸۰</td>
</tr>
<tr>
<td>نیازهای اکثریت</td>
<td>۸۲</td>
<td>۸۴</td>
<td>۸۲</td>
<td>۸۴</td>
</tr>
<tr>
<td>نیازهای اجتماعی</td>
<td>۸۶</td>
<td>۸۸</td>
<td>۸۶</td>
<td>۸۸</td>
</tr>
<tr>
<td>نیازهای اقتصادی</td>
<td>۹۰</td>
<td>۹۲</td>
<td>۹۰</td>
<td>۹۲</td>
</tr>
<tr>
<td>نیازهای شخصی</td>
<td>۹۴</td>
<td>۹۶</td>
<td>۹۴</td>
<td>۹۶</td>
</tr>
<tr>
<td>نیازهای اکثریت</td>
<td>۹۸</td>
<td>۱۰۰</td>
<td>۹۸</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

۲/۱ و ۳-ییبرتیپ بر نتیجه تجزیه و ارزیابی بررسی از تجربه خوش‌های و دکترینی در شوریهای ۲ و ۸ دستیزی و نه در سطح شهری دلیل دارد.
شکل 5: میانگین صفات در گروه‌های تشکیل شده از تجزیه خوش‌های در شوری‌های 4 و 8 دسی‌زیمت بر متر و در سطح شوری

<table>
<thead>
<tr>
<th></th>
<th>متوسط حساس</th>
<th>حساس</th>
<th>حساس</th>
<th>صفت</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 دسی‌زیمت بر متر</td>
<td>6/42</td>
<td>6/42</td>
<td>6/32</td>
<td>کد زدودگی</td>
</tr>
<tr>
<td>4 دسی‌زیمت بر متر</td>
<td>6/42</td>
<td>6/42</td>
<td>6/32</td>
<td>وزن شکافت ریشه</td>
</tr>
<tr>
<td>8 دسی‌زیمت بر متر</td>
<td>6/32</td>
<td>6/32</td>
<td>6/32</td>
<td>وزن شکفت سطحی</td>
</tr>
<tr>
<td>4 دسی‌زیمت بر متر</td>
<td>6/42</td>
<td>6/42</td>
<td>6/32</td>
<td>ریشه توده</td>
</tr>
<tr>
<td>8 دسی‌زیمت بر متر</td>
<td>6/32</td>
<td>6/32</td>
<td>6/32</td>
<td>طول ریشه</td>
</tr>
<tr>
<td>4 دسی‌زیمت بر متر</td>
<td>6/42</td>
<td>6/42</td>
<td>6/32</td>
<td>طول سطحی</td>
</tr>
<tr>
<td>8 دسی‌زیمت بر متر</td>
<td>6/32</td>
<td>6/32</td>
<td>6/32</td>
<td>طول سطحی</td>
</tr>
</tbody>
</table>
به تشرشوري در مرحله گياهچيي دايشته باشند. ارقام متحمل از نظر شاخه ميانگين توليد، ميانگين هندي، شاخه تحميل به تنش و ميانگين هم زاست توليد بالا ى نسبت به ساير ارقام داشته در حاليهاي ارقام حساس از نظر شاخه هاي ميدوکر بالا بودند.

جر29 IR28 (ب) نتایج نسبت نظري كه اندmomي مي باشد و در صورت فراهم بودن در خاک توسيع روي را جذب شده و باعث کاهش پتانسيل اسمروي (باتسانسي آب) محيط داخل سلول مي شود.

و در نتيعه تحليل آب از گياه کاهش مي ىابد. يكي از آثار شوري مي تواند از دست رفتن وظايف بون پاتسيم در برجدهاي گياه بايشد (10). تون عوض جذب سليم بيشترين پارايس نود و اين نترايهد كه امتثالها در ارقام دينارسي وژنوكار جلونگري از جذب مي دهد، به جذب پاتايسيم پيش بر خشي سازي اثر سليم، اعتراف باشي و ارقام ترجيح مي دهد كه بون سليم را جذب كنند تا اين از جذب آن با پاتايسيم خشته نيماید. زنوتشيپي كه سعي در خشي نمودن اثر بون سليم جذب شده دارند. بخش عمديهي از انزيم مورد نياز گياه برای فوتست و رشد مصرف مي كنند. در نتيعه موج باش كاهش عملکرد و زاست تواده خواهند شد.

تافز در ارقام برای خشخاش تحميل به تنش، ميانگين هندي، شاخه حساسيمت به تنش و ميانگين توليد از نظر كد زنوتشيپي، زاست تواده و نسبت سليم به پاتايسيم معندي دار بود. تفاوت بين زنوتشيپي برای ميانگين هم زامت صفحات جزي زنوتشيپي ى در 4 دس ژينامين بر متر معطر نارود. ميانگين و دامنه شاخه هاي حساسيمت و تحميل برای زاست تواده كد زنوتشيپي و نسبت سليم به پاتايسيم در جدول 3 آدم است. ارقام متحمل پابندشترين شاخه تحميل ميانگين توليد، حساسيمت به تنش، ميانگين هندي، تحميل به تنش و ميانگين هم زامت از پارايس كد زنوتشيپي در شرايط 8 دس ژينامين بر متر داشتند. در حالي كه شاخه هاي ميدوکر برای ارقام حساس (جدول 4) بالا بود ى نادر روم در شرايط 8 دس ژينامين بر متر شاخه تحميل پارايشتي از شاهداني حساس IR28 و (ب) نتایج تجارب خونه ي بر اساس صفات گياهچيي در شوري 4 دس ژينامين بر متر و ميانگين صفات در دو سطح شوري در جدول 5 و آدمه است. نمودار خونه‌ي در شرايط 4 دس ژینامين بر متر (شكل 1) نشا داد كه كليه ارقام
ارزیابی تحمیل به شوری در ارقام بومی و اصلاح شده برنج ایرانی

شکل 1. دندورگرام تجزیه خوشه‌ای ارقام برنج به روش Ward در شوری 2.6 سی‌یوی‌سی بر متر براساس صفات گیاهچی‌ای

۵۷
تایب علوم و فنون کشاورزی و منابع طبیعی / سال دوازدهم / شماره چهل و پنج (الف) / پاییز 1387

شکل ۲: نمودار تایب تشخیص در نقطه برش انتخاب شده در دندان‌گرم مربوط به شوری ۲ دسی زیمنس بر متر براساس صفات گیاهچای.

در سه گروه مجنا فارم‌گیرند. تجزیه تایب تشخیص با استفاده از این سه گروه (شکل ۳) نشان داد که تایب اول/۲ درصد و تایب دوم ۲۹/۸ درصد از تغییرات کل را توجیه می‌کند (به ترتیب با کای اسکوئر ۱۷۴/۷ و ۵۵/۷۶). تجزیه‌های خوش‌های و تایب تشخیص با استفاده از صفات گیاهچای در شرایط ۸ دسی‌زیمنس بر متر نیز ارقام مربوطی را در سه گروه فرار داد شکل های (۳ و ۴). در این حالات تایب اول/۸ درصد و...
این صفحه مقایسه‌ی درجه‌ی تحمل به شوری در ارقام بومی و اصلاح شده بینج ایرانی را نشان می‌دهد.

<table>
<thead>
<tr>
<th>CASS</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>55</td>
</tr>
<tr>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
</tr>
</tbody>
</table>

شکل 3. دان‌رودگرام تجزیه خوش‌اب از ارقام بینج به روش Ward در شوری 8 دمی زیمنس بر متر برآورده‌ای صفات گیاهچه‌ای.
شاخص تشخیص ۱

شکل: نمودار تابع تشخیص در نقطه بررسی انتخاب شده
در دندان‌گرمی مربوط به شوری ۸ دستی زیرساخت متر بررسی صفات گیاهچای
نام زنوتیپ‌ها بر حسب شماره در شکل ۱ آمده است.

واقعاً متعادلانی را نشان دادند. نتایج حاصل از آین پژوهش نشان می‌دهد که می‌توان از ارقام بین‌شاید منتج ایرانی برای کشت در شمال کشور استفاده نمود به‌وجود مناطقی که از سیستم کشت مستقیم برای کشت استفاده می‌کنند چون در این سیستم، مصرف گیاهچه‌ها به شوری ضروری می‌باشد. همچنین می‌توان از ارقام مطلوب و حساب جهت تلاش بر پردازه‌های اصلاحی و بهبود جمعیت‌های مناسب استفاده نمود.

سیاستگذاری
بخشی از هزینه‌های اجرایی این پژوهش از طریق پرودر و

سیدم و نسبت سیدم به پتاسیم پایینتری بودند. از طرف دیگر میانگین وزن خشک ریشه، ساقه و زیست توده و طول ساقه در این گروه بالاتر بود. ارقام گروه اول به‌عمل کاهش کرد زنوتیپی، درصد سیدم و نسبت سیدم به پتاسیم پایینتر و وزن خشک ریشه، ساقه، زیست توده و طول ساقه بالا و در نتیجه واکنش بهتر نسبت به نش شوری متحمل نامیده شدند. گروه دوم ارقام دارای کد زنوتیپی، درصد سیدم و نسبت سیدم به پتاسیم بالا و وزن خشک ریشه، ساقه و زیست توده و طول ساقه پایینتری بودند و حساس نام‌گذاری شدند. گروه سوم از نظر صفات مورد بررسی حدایی دو گروه مذکور بودند و
شکل ۵. دندروگرام تجزیه خوش‌های ارقام برنج به روش Ward در میان‌گین شوری‌های ۴ و ۸ دسی‌زئمین بر متر براساس صفات گیاهچه‌ای
شکل 6. نمودار تابع تشخیص در نقطه برش انتخاب شده در دندوگرام مربوط به میانگین شوری‌های 4 و 8 دس زیرس بر متر

براساس صفات گیاهی‌های نام‌زینتیپ‌ها بر حسب شماره در شکل 1 آمده است.

طبقه‌بندی تحقیقات برنج به منظور تأمین مالی طرح تشکر

بین‌المللی جهانی آب و غذا تأمین کرده است. بدین وسیله از مؤسسه تحقیقات برنج کشور و مؤسسه بین‌المللی جهانی آب و غذا تأمین کرده است. بدین وسیله از مؤسسه تحقیقات برنج کشور و مؤسسه بین‌المللی جهانی آب و غذا تأمین کرده است.

منابع مورد استفاده

1. اصفهانی، م. 1378. بررسی واکنش‌های فیزیولوژیکی و مولکولی ارگام مختلف برنج نسبت به دمای سیاه و بادابنگی. پایان نامه دکتری، دانشگاه تربیت مدرس، تهران.
2. دهدازی، ا. 1383. تجزیه زننیتوپییی تحقیق برنج نسبت به دمای نان. پایان نامه دکتری، دانشگاه صنعتی اصفهان.

