مطالعه موردی تأثیر تبدیل مراتع به اراضی کشاورزی بر برحی ویژگی‌های فیزیکی حاصل خیزی، و شاخص کشت پذیری خاک در بروجن

محمدرضا چکیبک

چکیده

خاک‌های مراتع غربی استان چهارمحال و بختیاری به خاطر تغییرات بارشی و گل שלی، ساختارهای خاص و کم‌پذیری و نیازهای کشاورزی، بهبود اقتصادی و زیست‌محیطی خاک‌های مراتع ضروری است. در این مطالعه به بررسی تأثیر تبدیل مراتع به باغات در خاک‌های کشاورزی و اثرات تغییرات محیطی بر خاک‌های مراتع پرداخته شد. نتایج نشان داد که تبدیل مراتع به باغات منجر به افزایش کیفیت خاک‌های مراتع و بهبود اقتصادی و زیست‌محیطی آن‌ها می‌شود. این تحقیق به کمک شاخص‌هایی ایجاد شده تا با استفاده از آن‌ها این تغییرات ارزیابی و بررسی شده است.

۱. مقدمه

۲. کاربرد تبدیل مراتع به باغات

۳. نتایج و جوامع

۴. نتیجه‌گیری و توصیه

۵. پایان نتیجه‌گیری

۶. اکثریت اشارات در این مقاله به خاک‌های مراتع استان چهارمحال و بختیاری اشاره شده است.
مقدمه
توسعه پایدار در هر نظام، نیازمند قوام موقع‌های تشکیل دهنده آن می‌باشد. مدیریت علوم و درمان در ایران، مالکیتی از مؤلفه‌های مهم توسه پایدار به شمار می‌آید. آب و برق، هر دو از حوزه‌های فنی بازاریابی از کشور می‌باشند. تلاش در حفظ و افزایش قابلیت اقتصادی و رفع وابستگی و حفظ حیات زیست را در پی دارد. بنابراین، استقلال فرهنگی، سیاسی و اقتصادی کشور، از مقرراتی است که از دیگر شاخص‌های توسه پایدار می‌باشد.

با در نظر گرفتن جمعیت پنج میلیاردی جهان در سال 1982، سرانه زمین کشاورزی به طور میانگین 50 هکتار بوده است که در سال 2000 به 74 رسیده و برآورد می‌شود که این رقم در سال‌های 2015 و 2020 به ترتیب 125 و 140 هکتار باشد (15). از سوی دیگر، تولید سرانه غلات کشور از سال 1950 در هر دهه ۵ درصد رشد داشته است و از آن تا سال 1980 در دهه ۱۹۹۰ حدود ۴۰ درصد درصد کاهش نشان می‌دهد و در به بعد تا ۱۹۹۰ حدود هفت درصد کاهش نشان می‌دهد (15). بنابراین، افزایش تخصصی جمعیت، و نیز کاهش رشد تولید باعث شده که انسان‌ها هم‌و هم‌بین صدًس و گسترش زمین‌های پایدار که مورد استفاده کشاورزی و تولید قرار دارد، و حتی برای تولید فوتوکالری به تصرف می‌آورند. ولی به طور کلی، این زمین‌ها از لحاظ پیمایش و بلندی و زرفا خاکی تولید کشاورزی طولانی مدت را ندارند، و با به‌هم‌خوردن ساختاران آن در حال فرسایش درمان می‌گردد. در اثر تبیبنی، مراتع و بخش‌های زیر زمین‌های کشاورزی و عملیات خاک‌پزشکی، سالانه حدود ۲۵ میلیون هکتار از اراضی کشاورزی گوناگون، که برابر با ۳۰ درصد کل زمین‌های شخم خورده جهان است، فرسایش می‌یابد.

اختلافات به‌خاطر دارا بودن موارد نسبتاً زیاد و ساختار مناسب، همواره مورد توجه بوده است ولی تغییر در مدیریت کاربرد آنها و عوامل خاک‌پزشکی تأثیر زیادی بر مقدار موارد آلی و دیگر ویژگی‌های فیزیکی، شیمیایی این
مطالعه موردی تأثیر تغییرات مراتع به اراضی کشاورزی بر پوشش جنگلی‌های فیزیکی,

مدل 1000 ساخت شرکت فینلند ایراناتناگه‌گری گردید.
در هر 10 نقطه آنالیز، و نوازهای 20 سانتی‌متری از
یافته‌ها مناسب‌تر است. برای مصالح مقاومت نقاط‌ای با
شناخت مخروطی از رابطه زیر استفاده گردید:

\[
CI = \frac{F}{\sqrt{A}}
\]

که:
- \(CI \): شناخت مخروطی خاک بر حسب مگاخیکال (MPa)
- \(F \): نیروی عمودی وارد بر مخروط بر حسب کیلوگرم بر متر (kgf)
- \(A \): سطح مقطع مخروطی بر حسب سانتی‌متر مربع

قطر میانگین وزنی خاک‌دانه‌ها پایدار در آب
(ایزود-WSA) و ضریب پیک‌پنجای خاک‌دانه‌ها (AUC)
(به‌سمت کلاس اندازه‌های 1، 3، 5 و 75 میلی‌متر) برای تغییر گردید (12 و 29).

برای تغییرات پایداری خاک‌دانه‌ها با روش غربال کردن در
آب، دستگاه مخصوص ساخته شد (10 و 12). این دستگاه
قابل نیروگیری در دو طرف آب چهارگانه بود، چه با
سرعت 50 بار در دقیقه به مدت 10 دقیقه می‌توانست بالا و
پایین شود. ابعاد شیب‌ها به ترتیب 0.7، 0.75 و 0.25 میلی‌متر
بود. ذرات کوچکتر از 0.75 میلی‌متر در دو طرف غربال‌ها
جمع آوری شدند. پس از گذراندن نمونه‌های خاک (700 الگوری
که هشت میلی‌متر و قرار دادن در رنگ غربال بالایی (دوم
میلی‌متری)، کمی آب توسط آب‌نشان روی نمونه خاک پاشیده
شد، این عمل به منظور جلوگیری از تخلخل شدن خاک‌دانه‌ها
پس از ورود ناگهانی به آب صورت گرفت. پس از انجام
آزمایش، خاک‌دانه‌ها باقی مانده روی الگوری کرده، و
پس از جابجاسی زنی و شکست کردن، وزن خاک‌دانه‌ها روی
سر کشیده شد و وزن خاک‌دانه‌ها نسبت درصد وزن خاک‌دانه‌ها روی
هر کلم مشخص کردی. برای تغییرات منحنی از اندازه‌گیری
خاک‌دانه‌ها، نسبت درصد وزنی خاک‌دانه‌ها روی هر غربال به
وزن کل نمونه در مقابل اندازه اکسا چاپ شد. برای محاسبه
ظرف متوسط وزنی خاک‌دانه‌ها از رابطه زیر استفاده گردید.

مواد و روش‌ها

منطقه مورد بررسی مراتع اطراف بروجرد در استان چهارمحال و
بختیاری و در جنوب غربی حوزه آبی آذری شمال و روستای کارون
وقت شده است. این ناحیه دارای میانگین سالانه بارندگی
502 میلی‌متر و دمای C 1499، و اقلیمی نیمه مرطوب-گرم با
زمستان‌های سرد بی‌نشان.

عملیات صحراپی

سپه قطعه که از نظر سانتر زمین‌شناسی و سن پیکران بودند
وقت در مقطع‌های در هفت کیلومتر جنوب غربی شهر بروجن
انتخاب گردید. از این ناحیه، یکی دارای پوشش کامل مرتعی
پکر و دست نخورده، دیگری مرتعی که آن را متناوب شخم زده
و کشت دیده شده ولی در حال حاضر مربع دیم رها شده
می‌باشد و سومی مرتعی که بین 20 و 30 سال پر اثر عمیقات
شکم زیاد کاملی از زینه فرته و مواد مادی آن تقریباً اشکال شده
بود، انتخاب گردید. دستورالعمل کلی خاک‌دانه‌ها حدود
20 سانتی‌متر بوده به همین علت یکی از نقاط فوق به چهار
بلوک تقسیم و به‌صورت نمونه‌برداری خاک برای انجام آزمایش‌های
مربوط از انتهای 1000-1020 سانتی‌متر برداشت شد.

تجزیه و تحلیل

ویژگی‌های فیزیکی و شیمیایی

تغییرات فیزیکی خاک مانند ۱۹ (درجه مخلوطی
Plasticity) (PI)، مواد آلی (AI)، شاخص‌های دیگر
\text{index} (AI)، حمایت آن‌ها (index) CI، مصرف
\text{Cone index} CI، به عنوان

نماهنگی از نفوذ ریشه‌ها استفاده از دستگاه فروستنگ

151
میانگین اندازها در محدوده‌های 1-2 و وزن Wi در این آزمایش به‌طور متوسط 0.50 ± 0.25 بوده است. مثلاً برای اولین اندازه‌های X برای ابتدا با X = 60 mm و برای آخرین اندازه X = 160 mm (3/0.25 mm) در رسم منحنی توزیع اندازه‌های که در آن شکل‌ها، درصد وزنی خاک‌های ذرت نشان می‌دهند که در این پروژه به‌طور کلی کمتر از این قطعات می‌باشدند. برای این ضریب توسط روش وری (29) تعیین شد.

ضریب یکنواختی خاک‌های (Aggregate uniformity)، D1، D2 و D3، که به ترتیب 10، 50 و 100% از تعداد خاک‌های مرتبط با قطری کروی‌کشتن از این قطعات می‌باشند، این ضریب تعیین شد.

\[
\text{MWD} = \sum X_i W_i
\]

که در آن \(X_i\) میانگین اندازه، خاک‌های که در محدوده‌های 1-2 و وزن \(W_i\) در این آزمایش به‌طور متوسط 0.50 ± 0.25 بوده است. مثلاً برای اولین اندازه‌های X برای ابتدا با X = 60 mm و برای آخرین اندازه X = 160 mm (3/0.25 mm) در رسم منحنی توزیع اندازه‌های که در آن شکل‌ها، درصد وزنی خاک‌های ذرت نشان می‌دهند که در این پروژه به‌طور کلی کمتر از این قطعات می‌باشند. برای این ضریب توسط روش وری (29) تعیین شد.

\[
\text{NTG Index, TI} = \text{TC1} * \text{TC2} * ... * \text{TCn}
\]

که در آن Ti میانگین اندازه، خاک‌های که در محدوده‌های 1-2 و وزن Wi در این آزمایش به‌طور متوسط 0.50 ± 0.25 بوده است. مثلاً برای اولین اندازه‌های X برای ابتدا با X = 60 mm و برای آخرین اندازه X = 160 mm (3/0.25 mm) در رسم منحنی توزیع اندازه‌های که در آن شکل‌ها، درصد وزنی خاک‌های ذرت نشان می‌دهند که در این پروژه به‌طور کلی کمتر از این قطعات می‌باشند. برای این ضریب توسط روش وری (29) تعیین شد.

نتایج و بحث

تحلیل آماری مربوط به پارامترهای اندازه‌گیری شده و ضرباب ۸۸۱ میانگین متنگرها در محیط تجربی و نشان دهنده اختلافاتی بین تیمارها و یا بین اعداد بوده است. در این گزارش نتایج یافته‌های ارزیابی که بین تیمارها و یا بین اعداد از لحاظ آماری (در سطح پنجم درصد احتمالات) تفاوت معنایی داشته‌اند، اشکال است. به طور کلی، تفاوت میان اعداد کلمی، pH، سلول‌های و در سطح پنجم درصد احتمالات برای بیشتری بین تیمارها و اعداد متقابل آنها معنی دار نیست. با توجه به بارندگی سالانه ۵۰۰ میلی‌متری، یکسان بودن مقدار سلول‌های امروز نسبتاً طبیعی، وی برای آهن غیر قابل پیش‌بینی بود. نتایج دیگر پارامترها به سری بی سیماشکلی

بافت خاک و مقدار رس

تغییر در مدیریت ابن اراضی باعث شده که طی مدت ۲۰ سال تغییر جزئی در بافت آن حاصل شود، به گونه‌ای که در ابتدا
جدول ۱. مقادیر حدودی بنج عامل وزن مخصوص ظاهری خاک، مواد آلی، شاخص مخروطی، شاخص خمشی و ضریب محلولی خاک‌دانه‌ها به‌منظور کمی کردن مفهوم کشت‌پذیری

<table>
<thead>
<tr>
<th>شاخص</th>
<th>واحد</th>
<th>معادله</th>
<th>شرایط</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC(BD)</td>
<td>مگرام هر مکعب سانتی‌متری (Mg m<sup>-3</sup>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC(BD) = 1/10</td>
<td>For</td>
<td>BD < 1/3</td>
<td></td>
</tr>
<tr>
<td>WC(BD) = -1/10 + 10/4 * BD - 1/5 * BD<sup>T</sup></td>
<td>For</td>
<td>1/3 < BD < 17/1</td>
<td></td>
</tr>
<tr>
<td>WC(BD) = 0/00</td>
<td>For</td>
<td>BD > 17/1</td>
<td></td>
</tr>
<tr>
<td>TC(CI)</td>
<td>مگرام هر مکعب سانتی‌متری (Mg m<sup>-3</sup>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC(CI) = 1/10</td>
<td>For</td>
<td>CI < 1/0</td>
<td></td>
</tr>
<tr>
<td>WC(CI) = 1/0012 - 0/0012 * CI<sup>T</sup></td>
<td>For</td>
<td>1/0 < CI < 10/0</td>
<td></td>
</tr>
<tr>
<td>WC(CI) = 0/00</td>
<td>For</td>
<td>CI > 10/0</td>
<td></td>
</tr>
<tr>
<td>مواد آلی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC(OM)</td>
<td>مگرام هر مکعب سانتی‌متری (Mg m<sup>-3</sup>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC(OM) = 1/10 + 0/69 + 0/75 * OM - 0/008 * OM<sup>T</sup></td>
<td>For</td>
<td>OM > 7/1</td>
<td></td>
</tr>
<tr>
<td>WC(OM) = 0/00</td>
<td>For</td>
<td>OM < 7/1</td>
<td></td>
</tr>
<tr>
<td>ضریب محلولی خاک‌دانه</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC(AUC)</td>
<td>44 درصد رس بوده، ولی با هم خوردن ساختار کامل خاک (مرتعم تخرب شده) بافت آن به لوم رس سیلیسی و بیش از ۳۹ درصد رس رسیده است.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC(AUC) = 1/0012 + 0/0012 * AUC<sup>T</sup></td>
<td>For</td>
<td>AUC < 6 and > 2</td>
<td></td>
</tr>
<tr>
<td>WC(AUC) = 0/00</td>
<td>For</td>
<td>AUC < 2</td>
<td></td>
</tr>
<tr>
<td>شاخص پلاستیکی</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC(PI)</td>
<td>۴۱ درصد رس می‌باشد (جدول ۹).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC(PI) = 1/001 + 0/0009 * PI - 0/0001 * PI<sup>T</sup></td>
<td>For</td>
<td>PI < ۷/۱۵</td>
<td></td>
</tr>
<tr>
<td>WC(PI) = 0/00</td>
<td>For</td>
<td>PI > ۷/۱۵</td>
<td></td>
</tr>
</tbody>
</table>

شناور شده و همراه با روان‌آب فرسایش یافته و یا به‌افته‌ای زیرین منتقل شونده (۱۱). تفاوت معنی‌داری در بهبود و درصد رس بین تیمارها و در زرافه ۱۰–۲۰ سانتی‌متری دیگه نشده (جدول ۲). جرم مخصوص ظاهری (مرتعم دست نخورده) خاک دارای بافت رس سیلیسی با مقدار ۴۴ درصد رس بوده، ولی با هم خوردن ساختار کامل خاک (مرتعم تخرب شده) بافت آن به لوم رس سیلیسی و بیش از ۳۹ درصد رس رسیده است. مرتعم در حلق کشت چهار دارای بافت رس سیلیسی با ۴۱ درصد رس می‌باشد (جدول ۹). با هم خوردن خاک، مواد آلی آن در معرض هوای ضربانی، اکسید شده و از بین می‌روند. در نتیجه خاک‌دانه‌ها خاک خرد شده و تولید خاک‌دانه‌های ریزتر می‌نمایند. این عمل باعث می‌شود درخت‌ها راه‌انداز در آب...
جدول 2. وزیاتی فیزیکی خاک‌های مورد بررسی ناحیه بروجن در مراتع دست‌نخورده، تخریب شده و تحت کشت

<table>
<thead>
<tr>
<th>میزان‌گذاری (هوا)</th>
<th>مناسب</th>
<th>گرم مخصوص (g cm⁻³)</th>
<th>ظاهروی</th>
<th>درصد رس</th>
<th>بافت خاک</th>
<th>وضعیت اراضی</th>
<th>درصد دست‌نخورده</th>
<th>تخریب شده</th>
<th>تحت کشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Zarvay, 10-40 cm)</td>
<td>4/3a</td>
<td>1/22b</td>
<td>44b</td>
<td>رس سیلی</td>
<td>لومرس</td>
<td>مرطع دست‌نخورده</td>
<td>1/31b</td>
<td>1/6b</td>
<td>1/44a</td>
</tr>
<tr>
<td>1/4a</td>
<td>1/4b</td>
<td>1/62b</td>
<td>51b</td>
<td>رس سیلی</td>
<td>لومرس</td>
<td>مرطع تخریب شده</td>
<td>1/72a</td>
<td>1/32b</td>
<td>1/48a</td>
</tr>
<tr>
<td>3/8a</td>
<td>1/5b</td>
<td>1/52b</td>
<td>57b</td>
<td>رس سیلی</td>
<td>لومرس</td>
<td>مرطع تحت کشت</td>
<td>1/72a</td>
<td>1/32b</td>
<td>1/48a</td>
</tr>
</tbody>
</table>

(Zarvay, 10-40 cm)

مقادیر در هر ستون و برج می‌تواند ارقامی با حرف را به احتمال آماری در سطح پنج درصد اختلاف چاپی ندازند.

تیمارها بر گرم مخصوص ظاهروی در زرفا 2010-2011 سانتی‌متری نیز چشمگیر بوده، به طوری که در این زرفا بیشتر مرطع دست‌نخورده و در حالی اشباع بیشتر می‌باشد. به علت اینکه در زرفا صفر تا 10 سانتی‌متری، مقدار درصد آب این خاک در حالی اشباع مرطع دست‌نخورده حدود 25 درصد بیشتر از خاک مرطع تخریب شده می‌باشد (جدول 1). در زرفا 10-20 سانتی‌متری تفاوت معناداری بیان‌نامه دیده نشده است (جدول 2). در پژوهش دیگری (17) نیز در گزارش‌های کشوری به ارائه شکاف‌های بیشتر استriansی بافت بوده و در حالی که در حدود 15 درصد کاهش می‌باشد. بیشترین سهم این کاهش به علت تخریب خاک و فرح درشت بوده است (16).
مواد آلی

مواد آلی خاک مرتع دست تخریب دهنده در زرفای صفر تا 10 سانتی متری به میزان 30 درصد پیشرفت از خاک مرتع تخريب شده (ب ترتیب 1/84/211) در این منطقه می‌باشد (جدول 1). و لیکو مقدار مواد آلی خاک مرتع تحت کشت (1/84/211) تفاوت معنی‌داری با خاک مرتع دست نخورده در این عمق نداشته است. بنابراین کاهش مواد آلی خاک اکسید شدن این مواد در اثر شکم سالیان و فرسایش فیزیکی مواد آلی همه‌مره دزه‌های خاک مرتع منتسب به خاک و گازهای دیگری نشان می‌دهد. در گزارش‌های دیگری نشان داده شد که تبدیل مرتع به زمینهای کشاورزی باعث کاهش چشمگیر (حدود 10 درصد) مواد آلی خاک در طی شصت سال گردیده است (5). همچنین، اعمال مدیریت کشت حذفی و باعث بدنک خاورورزی نسبت به خاکوری مرسم، باعث محیط‌محفظ (کربن آلی خاک) شده است (14 و 21).

مقدار مواد آلی در مرتع تخربی شده و تحت کشت و در زرفای 20-30 سانتی متری از لحاظ آماری تفاوت معنی‌داری نداشته است، ولی مقدار مواد آلی خاک در خاک مرتع دست نخورده به ترتیب 26 و 18 درصد پیشرفت از تیمارهای یاد شده می‌باشد (جدول 2).

شاخ مخربی

به طور کلی هرچه خاک دارای مواد آلی پیشرفت باشد ساختان‌پذیری خاک‌های کشاورزی به میزان بالا می‌باشد. ولی همچنین تفاوت معنی‌داری در مقدار انعقاد تیماری و تیماری پیشرفت بین تیمارهای در زرفای 10-20 سانتی‌متری دیده نشد.

شاخ‌های خمیرایی

حضور مواد آلی و رس در خاک باعث می‌شود که در حد سیلان (LL) و نیز در حد خمیری (PL)، مقدار زیادی آب در خاک وجود داشته و در نتیجه با وجود مواد آلی و رس در خاک مقدار شاخ‌های خمیرایی که از اختلاف این دو حد به دست می‌آید، کوچک باشد. ولی در خاک که مواد آلی پیشرفت است، البته در این فاصله سهم رس نسبت به مواد آلی بسیار بیشتر گیر است. بنابراین که در جدول 3 مشاهده می‌شود، مواد آلی (برای با 27 برای مرتع دست‌یافتنی Preferences بررسی کرده‌اند.) 87 MPa و 57 MPa
جدول 3 مقداری شاخص‌های فیزیولوژیک، نیتروژن کل، فسفر، پتاسیم و شاخص خمیسی خاک‌های مورد بررسی ناحیه پروجن در مراع

<table>
<thead>
<tr>
<th>شاخص خمیسی</th>
<th>پتاسیم (meq/L)</th>
<th>فسفر (mg/kg)</th>
<th>نیتروژن کل (%)</th>
<th>وضعیت اراضی (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرظم دست نخورده</td>
<td>0/22</td>
<td>0/15</td>
<td>0/37</td>
<td>0/53</td>
</tr>
<tr>
<td>مرظم تخریب شده</td>
<td>0/18</td>
<td>0/27</td>
<td>0/37</td>
<td>0/89</td>
</tr>
<tr>
<td>مرظم تحت کشت</td>
<td>0/14</td>
<td>0/23</td>
<td>0/34</td>
<td>0/73</td>
</tr>
</tbody>
</table>

مقادیر در هر سانتی‌متر بوده و در نتیجه آماری در سطح 0/05 درصد احتمال تفاوتی ندارند.

1. عمق 20 cm
2. میلی‌متر بوده

خاک‌دانه‌ها در خاک مراعت تحت کشت بربر 2/8 میلی‌متر بوده است. از بخش اول پژوهشگران دلیل پایداری پیشتری خاک‌دانه‌ها در مراعت را توجه می‌پذیریم، همچنین در خاک‌دانه‌ها و تولید مقدار زیادی رطوبت در خاک کاهش یافته و در حد خفیف مقدار و کلیاً می‌تواند در خاک بقای نماید. بر اساس نتایج، در سیستم‌های سیبرای قابل توجهی رطوبت در آن وجود داشته بوده است. نتایج حضور درخت رق‌پیچ و مواد آلی کمتر در این نواحی باعث افزایش پیش‌رده شاخص خمیسی غربیده است.

میانگین وزنی قطر خاک‌دانه‌ها و توزیع آنها و عماد بسست باعث به وجود آمدن خاک‌دانه‌ها و پایداری آنها است. این دو عامل وجود خاصیت‌های آب‌داری خاک‌دانه‌ها و این دو عامل تأثیر عوامل باد شده می‌باشد. حال حاضر می‌دانیم که فضای محدودیت‌های این دو عامل فضای محدود شده است. با اعمال خاک‌دانه‌ها شهره مقدار خاک‌دانه‌ها در آستانه باران و پایداری آن نیز کاهش می‌باشد. خاک‌دانه‌ها سالانه پی‌درپی طی 20 ماه باعث شده است که مقدار مواد آلی خاک این منطقه کاهش یابد و نیز با به خود خود می‌یابد و در مدت مراعت و تخریب شده

و تحت کشت بهترین 70 و 60 درصد می‌باشد (18).

shaขاص کشت چهارشنبه

در جدول 4 مقداری میانگین ضرایب ویژگی‌های مربوط به بربر 2/8 میلی‌متر بوده

با کاهش مواد آلی و به مخورس ساختمان خاک، توسعه

اندازه‌گیری خاک‌دانه‌ها نیز به سمت کاهش در مقدار خاک‌دانه‌ها برگرفته می‌شود. به طوری که در خاک مرتعی دست نخورده و در هر دو روزانه 100 تا 20 سانتی‌متر ضریب 10 دصد از خاک‌دانه‌ها برگرفته از 25 میلی‌متر بوده و در صورتی که این مقدار باید در کشت بهترین است. در این است که این مقدار به 5/10 می‌باشد. خاک‌دانه‌ها که به 25 تا 20 میلی‌متر بوده و در جدول 4 مقداری ضرایب ویژگی‌های مربوط به

برابر 2/8 میلی‌متر بوده است.
شكل 1. منحنی توزیع اندازه‌های خاک‌دانه‌ها در خاک مرطع دست نخورده، تخرب شده و تحت کشت در عمق 0–10 سانتی‌متر در منطقه بروجن.

علائم اثری تغییری به اراضی کشاورزی بر برش و یزی‌گی‌های فیزیکی.

که میانگین مقدار ضرایب کشت مرطع بی‌پرتو و ویژگی‌های در TI خاک مرطع تخرب شده حدود ۴۰ درصد کمتر از تجارب مرطع دست نخورده بوده است. به طور کلی، تجارب‌های مورد بررسی از لحاظ شاخص مخروطی محدودیتی برای کشتی‌پذیری شاخص کشتی‌پذیری در تیمارها و گونه‌گون مقایسه شده است. از لحاظ آماری در سطح پنج درصد احتمالات، تیمار مرطع تخرب شده دارای بازی کشتی‌پذیری کمتر از دو تیمار مرطع تحت کشت و به ویژه مرطع دست نخورده بوده، به گونه‌ای

107
جدول ۴: ضرایب ویژگی‌های اندازه‌گیری شده CFX مربوط به ضریب کشت‌بذیری خاک (TI)، برای خاک‌های مرتفع دست‌نخورده، تخمیر شده و تحت کشت منطقه برجست در استان چهارمحال و بختیاری

<table>
<thead>
<tr>
<th>عمق خاک (cm)</th>
<th>جرم مخصوص ظاهری CF(BD)</th>
<th>مواد آلی CD(OM)</th>
<th>CF(AUC)</th>
<th>CF(PI)</th>
<th>CD(CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/100</td>
<td>0/75</td>
<td>0/65</td>
<td>0/74</td>
<td>0/60</td>
<td>0/40</td>
</tr>
<tr>
<td>1/100</td>
<td>0/75</td>
<td>0/65</td>
<td>0/74</td>
<td>0/60</td>
<td>0/40</td>
</tr>
</tbody>
</table>

شدت‌هایی که در بالا ذکر شده‌اند، نشان‌دهنده اهمیت ارائه این شدت‌ها برای همواره بودن پوشش، افزایش یا کاهش و ریختن، کاهش خاموشی و پودری کردن خاک منطقه برجست.

