تأثیر تاریخ‌های مختلف کاشت و کاربرد ژنتیکی بر مقدار نیتروژن و گروه‌رای سه گونه پونجه یکساله

مجد امینی‌دهقان، سید علی محمد مدرس ثانوی و فرهاد فتاحی نیسابوی

(تاریخ دریافت: 2/10/1485، تاریخ پذیرش: 6/8/1486)

چکیده

به منظور بررسی تأثیر تاریخ کاشت و ژنتیک (Genistein) بر مقدار نیتروژن و گروه‌رای سه گونه پونجه یکساله، آزمایشی در شرایط مزرعه‌ای با بیش از ۱۳۸۴ و ۱۳۸۲ در مزرعه دانشگاه کشاورزی دانشگاه تربیت مدرس (طول ۵۰ درجه و ۸ دقیقه و عرض ۳۵ درجه و ۲۲ دقیقه) انجام گرفت. آزمایش در قالب طرح بلوک‌های کامل تصادفی بی‌صورت کرده در یک ترکیب چهار گونه پونجه یکساله (Medicago polymorpha cv. Santiago, M. rigidula cv. Rigidula, M. radiata cv. Radiata) انجام شد. تاریخ‌های کاشت (آورل، دهه و پیست آسفند) در گونه‌های اصلی و گونه‌های پونجه یکساله (۰ و ۲۰ میلی‌مولی پirk) در کراته فرعی و غلظت مقدار مختلفی کاشت (۰ و ۲۰ میکرومول پیر) در کراته فرعی فرم فار گرفته و محصول نیتروژن گیاه، گروه‌رای و سایر صفات از گونه‌های مورد بررسی نشاوت ممنو داری داشتند و گونه‌های گردو در تاریخ کاشت سوم (پیست آسفند) نسبت به گونه‌های دیگر از نظر وزن خشک گیاه، نسبت به سایر گونه‌ها مقاومت بیشتری به سرمایه در تاریخ اول نسبت به سایر گونه‌ها می‌باشد. کاشت نشان داد که از ۲۰ میلی مول از لیتر ژنتیکی تأثیر افزایشی بر گروه‌رای و محصول نیتروژن در تمامی گونه‌های پونجه یکساله داشت. ژنتیک‌هایی که تاریخ‌های کاشت اول در تمام گونه‌ها باعث افزایش گروه‌رای و محصول نیتروژن گیاه شد که به کلی اثر مؤثر تأثیر این ماده در بهبود گروه‌رای و افزایش محصول نیتروژن پونجه یکساله می‌باشد.

واژه‌های کلیدی: تاریخ کاشت، محصول نیتروژن، ژنتیک، گروه‌رای، پونجه یکساله

مقدمه

نظر به وسعت زیره مزارع در نواحی سرد ایران (بالت بر ۴ میلیون هکتار) انتخاب گونه‌های مقاوم در برابر سرمای ابری ضروری است. پونجه‌های یکساله به عنوان گونه‌های جهانی نسبت به گونه‌های چند ساله برتری دارند. پیشنهادات گونه‌های پونجه یکساله، سرعت تر از پونجه‌های چند ساله رشد کرده و دارای زراعت کارکردی و سبزی‌گاهی نسبت به شرایط آب و هوا و مختلف هستند. گونه‌های م. پ. (M. polymorpha) نسبت به سایر پونجه‌های یکساله بیشتر مقدار سلول‌ها در ایران دارد و در ارتفاع کمتر

از امید بخش ترین گونه‌های M. polymorpha, M. rigida م. r. (M. rigidaula, M. truncatula) نواحی سرد ایران به شمار می‌آیند. در آب و هوای مناطقی با زمستان‌های ملایم گونه‌های M. polymorpha و M. scutellata از ویژگی‌تازه‌تر برخوردار می‌باشد. پیشنهادات سنجش بهبود سبزی‌گاهی مقداری جهت افزایش منوط می‌گردد. گونه M. polymorpha بنابراین به سایر پونجه‌های یکساله بیشتر سلول‌ها در ایران دارد و در ارتفاع کمتر

1. به ترتیب دانشجوی دکتری، دانشیار و دانشجوی سابق کارشناسی ارشد زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

Modaresa@modares.ac.ir: *
بمنظور انتخاب گونه‌های مناسب و سازگار به پایین بودن
دامی‌ها و خاک در اواخر فصل کشت و همچنین افزودن
حالت خیزی خاک با افزودن تیترزون در دیزیارها و
مراکز و تولید عفونت مورد نیاز این تحقیق انجام شد

مواد و روش‌ها

به منظور بررسی تأثیر نارنجی کشت و چینیتین بر گروه‌زایی،

ار 2000 متر از انواع خاک دیده می‌شود (1). تحلیل در بررسی
سرما گونه‌های

مورد تأثیر M. rigidula و M. polymorpha

قرار گرفته است (4).

در ایران با استفاده از یونجه‌های یک ساله حدود

1000 گیلوگرم در هکتار تیترزون به خاک اضافه می شود (1). یونجه‌های یک ساله علاوه بر افزایش تیترزون آلی خاک، در

اطرافی ترین آل خاک تعریز دارد (5). حضور و فراوانی

یونجه‌های یک ساله در هر محیطی می‌توانند مبناي انتحاب

گونه‌های زراعی با آن محیط بالادست (6). زمان کاشت در

یونجه‌های یک ساله حتی مصرف مخلوط کاشته شود در

عمارک‌ها آنها تأثیر زیادی ندارد. به طور کلی کاشت

زوئی این گونه‌ها موجب افزایش عامل یکساله و

می خشک آنها می گردد (7). در نواحی داری زمستان سرد،

خروج جوانه‌های خاک، زندان ماندن و باعث

می شود. به علاوه باعث تأخیر

نفوذ باکتری به رشته گیاه و کاهش فعالیت تیترزوناز می گردد.

حرارت 20 تا 30 درجه سانتی‌گراد برای فعالیت باکتری‌های

ریزوپیوسمون است (3). اولین اثر دمایی پایین روی

گیاهان کاهش در سرعت رشد و منابع موجود می‌باشد. دمای

پایین، رشد گیاهان تثبیت کننده تیترزون را پیش از گیاهان که

از ترکیبات تیترزون افتاده کرده، محدود می کند (9). تماس

مراحل هورمونی (بیچ‌بی‌گی) تاره‌های کشنده، رشته

سیرانت قند، شکل کیتی و نوع آنها، رشد گه و عکریک آنها

شناسی‌دان‌های تحت تأثیر دمایی پایین منطقه ریشه‌های متوسط

می شود و عفونت تاره‌های کشنده را پیش از آغاز گریباندی،

رشد گه و یا ترکیب تیترزون به تأخیر می‌آورد (10). ماده

سیلکالیک مولکولی بین ریزوپیوسمون و گیاهان میزان برای

رشد گه در رشته گونه‌های جنگلی می‌باشد (12). ایزوفرلانون دی‌اضاءه

و چینیتین اجرای اصلی عصاره (Isolflavones daidzein)
محتوی نیتروژن گیاه و سایر صفات سه گونه بوخه یک‌سانه، آزمایشی در شرایط مزرعه‌ای به‌صورت فازیاب در سال‌های 1383 و 1384 در مزرعه دانشگاه کشاورزی دانشگاه تربیت مدرس (طول 01 درجه و 8 دقیقه و عرض 35 درجه و 24 دقیقه) انجام گرفت. در این آزمایش از این گونه بوخه یک‌سانه Medicago polymorpha cv. Santiago, M. rigidula cv. Medicago polymorpha و Rigidula, M. radiata هم به‌کار گرفته شد.

سرگاری دانش استفاده شد. آزمایش در قالب طرح پذشکی کامل تصادفی به‌صورت گروه‌های دو بار خردشده در چهار تکرار انجام شد. تاریخ کشت‌های اول، دوم و سوم استفاده شد. در کرت‌های اصلی و گونه‌های بوخه یک‌سانه به‌عنوان کرت‌های فرضی و چند گروه در دو سطح 0 و 20 کیلومولار در لیتر در کرت‌های فرضی قرار گرفتند. در فصل پاییز برای آماده‌سازی 10 زیمین به‌عنوان 25 سانتی‌متر هر شن سپس جهت شدن کل‌خواه و سطح شن زمین یک نویسی دیسک زده و بعد کود فسفات آمونیوم به میزان 70 کیلوگرم در هکتار پخش گردید. در زین تحت فشار علت پایین بودن طرفت نگهداری آب خام، زین مورد نظر به‌سرعت در میان آبژایی می‌شود. به‌دلیل پایین بودن حاصل خیزی خاک، کود اوره به میزان 1/5 کیلوگرم در هکتار به‌عنوان استارتر به‌عنوان داده شد. هر کرت مشخص از شش خط 120 سانتی‌متری بود که فاصله خطوط بین یک‌دانگ 50 سانتی‌متر در نظر گرفته شد. میزان تراکم برای همه واریتهای بوخه پیکان به‌مدت 20 کیلوگرم در هکتار در نظر گرفته شد. در طی دوره رشد عملیات و جنین توطئ کارگر به دفع صورت گرفت.

کشت Rhizobium meliloti به شکل میکرویس بدن می‌تواند آگار استفاده شد. برای تهیه باکتری، گره‌های فعال از رشته چاپ و پس از شستشو سترونج شده (به مدت سه دقیقه در محلول هیپکلریت 3۰۰ درصد) به پیچش کشت پیدا کرد. به‌طور کلی به مدت ۱۲۰ دقیقه در اتیکلار ضدعفونی شده بود اگر گرده‌بستگی (۲۳). برای تکرار سریع باکتری مولکول کشت به‌مدت 2 روز در دمای ۵۰ درجه داده شد. پس از سیری شدن این مدت جهت تلقیح از آنها استفاده شد.
جدول 1: تغییر همگونی واریانس خطاهای مختلف آزمایش برای صفات مورد بررسی

<table>
<thead>
<tr>
<th>صفات اندازه‌گیری شده</th>
<th>تحریک نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHISQ</td>
</tr>
<tr>
<td>مقادیر ماده خشک گره ریشه هرگیاه</td>
<td>ناهمگون 6/1890**</td>
</tr>
<tr>
<td>تعداد گره ریشه</td>
<td>ناهمگون 0/0097</td>
</tr>
<tr>
<td>تعداد گره هر کلون ریشه</td>
<td>ناهمگون 0/0097</td>
</tr>
<tr>
<td>تعداد دسته گره در ریشه</td>
<td>ناهمگون 7/7269**</td>
</tr>
<tr>
<td>مقادیر نیتروژن</td>
<td>ناهمگون 8/8162**</td>
</tr>
<tr>
<td>قطر گره</td>
<td>ناهمگون 0/0097</td>
</tr>
<tr>
<td>مقادیر ماده خشک ریشه هرگیاه</td>
<td>ناهمگون 6/0610**</td>
</tr>
<tr>
<td>طول ریشه</td>
<td>ناهمگون 0/0097</td>
</tr>
<tr>
<td>مقادیر ماده خشک</td>
<td>ناهمگون 6/0610**</td>
</tr>
</tbody>
</table>

بنا گرفتگی M. polymorpha با 25 % میکرومول در لیزر جستجوی در تاریخ کشت سوم حاصل گردید (جدول 2). یکپارچه سامان محیطی در رابطه با تأثیر افزایش جستجوی بر مقدار ماده خشک گره مشابه چیزی ساده. استفاده از جستجوی تعداد گره و ماده خشک گره را در گاه افزایش میزان شروع نیتروژن را در سویا در طول فصل رشد و زمانی که خاک هنوز سرده است جلو می‌اندازد (26).

بونجه یک‌ساله و هم‌چنین اثرات مقابل گونه X تاریخ کشت، تاریخ کشت X جستجوی، گونه X تاریخ کشت X جستجوی روی اثر اضافه‌ی گونه داشته‌اند. (جدول 3) اثرات مقابل گونه X تاریخ کشت X جستجوی در تمام صفات معنی‌دار نبوده‌است. ضمناً گرفتگی متفاوت جستجوی فقط بر تعداد گره در ریشه معنی‌دار بوده‌است (جدول 4). هم‌چنین آب‌بندی خاطر نشان کرد که معنی‌دار در سال 0.05 به صورت غیر معنی‌دار است.

مربوط به اختلاف‌های بین اولین فصل رشد در دو سال باشند. در سال اول با توجه به مناسب‌تر بودن شرایط دما و افزایش بیشتر نیتروژن در آغاز فصل رشد (میانگین ماده) در دو سال اول قابل رشد در سال اول 16 و در سال دوم 131 درجه سانتی‌گراد، گونه‌های بونجه یک‌ساله رشد و نمایندگی‌های بیشتری نسبت به سال دوم که در ابتداه فصل رشد دمای نامناسب بوده است.

طلایی‌تر حاکم بوده، داشته است (جدول 6).

Bonje یک‌ساله مصرف جستجوی در گونه لی. پارما در هر دو سال مصرف مصرف جستجوی در تاریخ کاشت در آزمایش‌های مختلف کمتر از اینکه توسط هم‌مرتبه بر تأثیر دمای یا نیتروژن یا در گاه افزایش میزان شامل پیامبر تک‌تاریخ اگه که تأثیر بر مقدار فتوسنتز و انتقال مواد باعث کاهش ماده خشک بخش هواپیمای شده باند. این نتایج توسط هم‌مرتبه دیگر مبنی بر تأثیر دمای پایین بر فتوسنتز نیز گزارش شده است (27). در هر دو سال گونه بهیدرولا در تاریخ کاشت سوم همان را تفاوت بین آن با جستجوی مصرف ماده خشک بیشتر است. نتایج نمود اما ماده خشک گره آن در این تاریخ کاشت میم از رادیاتور بوده و بر عکس
جدول 2. تجزیه واریانس سالهای آثار تاریخ کشت روی صفات مختلف گونه‌های بونه‌هایی به‌کمک تأثیر غلظت‌های مختلف جنگلی

<table>
<thead>
<tr>
<th>سال دوم</th>
<th>سال اول</th>
<th>درجه</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماده خشک گره</td>
<td>ماده خشک گره</td>
<td>تعداد دسته گره</td>
<td>ماده خشک گره</td>
</tr>
<tr>
<td>ریشه</td>
<td>ریشه</td>
<td>هواپیمایی (mg/plant)</td>
<td>ریشه</td>
</tr>
<tr>
<td>(g/plant)</td>
<td>(kg/ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/800</td>
<td>0/011</td>
<td>1/800</td>
<td>0/013</td>
</tr>
<tr>
<td>0/096</td>
<td>0/012</td>
<td>0/096</td>
<td>0/012</td>
</tr>
<tr>
<td>0/055</td>
<td>0/014</td>
<td>0/055</td>
<td>0/014</td>
</tr>
<tr>
<td>0/042</td>
<td>0/015</td>
<td>0/042</td>
<td>0/015</td>
</tr>
<tr>
<td>0/031</td>
<td>0/016</td>
<td>0/031</td>
<td>0/016</td>
</tr>
<tr>
<td>0/027</td>
<td>0/017</td>
<td>0/027</td>
<td>0/017</td>
</tr>
<tr>
<td>0/024</td>
<td>0/018</td>
<td>0/024</td>
<td>0/018</td>
</tr>
<tr>
<td>0/021</td>
<td>0/019</td>
<td>0/021</td>
<td>0/019</td>
</tr>
<tr>
<td>0/018</td>
<td>0/020</td>
<td>0/018</td>
<td>0/020</td>
</tr>
<tr>
<td>0/015</td>
<td>0/021</td>
<td>0/015</td>
<td>0/021</td>
</tr>
<tr>
<td>0/012</td>
<td>0/022</td>
<td>0/012</td>
<td>0/022</td>
</tr>
<tr>
<td>0/010</td>
<td>0/023</td>
<td>0/010</td>
<td>0/023</td>
</tr>
</tbody>
</table>

جدول علائم: معنی‌دار نیست
* معنی‌دار در سطح ٠.٠٥
** معنی‌دار در سطح ٠.٠٠١
جدول ۲ تجزیه و اریام مرکب اثرات سال و تاریخ کشت بر صفات مختلف گونه‌های پونجه یک ساله تحت تأثیر غلظت‌های متغیر چنین

<table>
<thead>
<tr>
<th>منابع تغییر</th>
<th>درجه آرادی</th>
<th>مقدار نتیجه</th>
<th>تعداد کره در رشته</th>
<th>تعداد کره در کلون رشته</th>
<th>قطر کره</th>
<th>طول رشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال ۲۰۰۰</td>
<td>۱</td>
<td>۱۸۵/۹**</td>
<td>۱/۲**</td>
<td>۱/۳**</td>
<td>۵/۱/۲**</td>
<td>۴/۳**</td>
</tr>
<tr>
<td>خطای اول</td>
<td>۶</td>
<td>۲۳/۴**۰</td>
<td>۰/۲**</td>
<td>۰/۹**</td>
<td>۲/۹**</td>
<td>۳/۴**</td>
</tr>
<tr>
<td>تاریخ کشت</td>
<td>۲</td>
<td>۲۵۸/۳/۴**</td>
<td>۰/۲**</td>
<td>۰/۸**</td>
<td>۸/۱/۸**</td>
<td>۲/۰/۲**</td>
</tr>
<tr>
<td>سال × تاریخ کشت</td>
<td>۲</td>
<td>۱۴۷/۸**</td>
<td>۰/۲**</td>
<td>۰/۸**</td>
<td>۸/۱/۸**</td>
<td>۰/۲/۰**</td>
</tr>
<tr>
<td>گونه</td>
<td>۲</td>
<td>۶۳۹/۲**۰</td>
<td>۰/۲**</td>
<td>۰/۹**</td>
<td>۸/۵/۸**</td>
<td>۱/۰/۲**</td>
</tr>
<tr>
<td>سال × گونه</td>
<td>۴</td>
<td>۶۴۱/۲**۰</td>
<td>۰/۹**</td>
<td>۰/۲**</td>
<td>۸/۵/۸**</td>
<td>۱/۲/۰**</td>
</tr>
<tr>
<td>گونه × تاریخ کشت</td>
<td>۴</td>
<td>۲۵۸/۳/۴**</td>
<td>۰/۹**</td>
<td>۰/۸**</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
</tr>
<tr>
<td>خطای سوم</td>
<td>۲۰</td>
<td>۶۵۸/۲**۰</td>
<td>۰/۹**</td>
<td>۰/۸**</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
</tr>
<tr>
<td>چنین ۱۷۰۸</td>
<td>۱</td>
<td>۵۲۸/۱**۰</td>
<td>۸/۱/۸**</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
<tr>
<td>سال × چنین ۱۷۰۸</td>
<td>۱</td>
<td>۵۲۸/۱**۰</td>
<td>۶/۱/۷۸</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
<tr>
<td>چنین × تاریخ کشت</td>
<td>۲</td>
<td>۵۲۸/۱**۰</td>
<td>۶/۱/۷۸</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
<tr>
<td>چنین × سال × گونه</td>
<td>۲</td>
<td>۵۲۸/۱**۰</td>
<td>۶/۱/۷۸</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
<tr>
<td>چنین × تاریخ کشت × گونه</td>
<td>۲</td>
<td>۵۲۸/۱**۰</td>
<td>۶/۱/۷۸</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
<tr>
<td>چنین × سال × گونه × تاریخ کشت</td>
<td>۴</td>
<td>۵۲۸/۱**۰</td>
<td>۶/۱/۷۸</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
<tr>
<td>خطای آزمایش</td>
<td>۵۴</td>
<td>۶۵۸/۲**۰</td>
<td>۸/۱/۸**</td>
<td>۹/۸/۵**</td>
<td>۱/۲/۰**</td>
<td>۰/۹/۰**</td>
</tr>
</tbody>
</table>

** معنی در درسته ۷/۰٪
* معنی در درسته ۵/۰٪
* معنی در درسته ۳/۰٪
بدون علامت: معنی دار نیست.
جدول ۲ مقایسه میانگین‌های ارزات مختلف جنسنی‌تن، تاریخ کاشت و گونه بر سطح مختلف گونه‌های پویه‌بی‌سیمی کهکه در سال‌های مختلف تهیه شده

<table>
<thead>
<tr>
<th>سال اول</th>
<th>تعداد دسته گره رشد</th>
<th>ماده خشک بخش هوای (g/plant)</th>
<th>(kg/ha)</th>
<th>ماده خشک گره (mg/plant)</th>
<th>جنسیتین</th>
<th>مقایسه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰/۱۰</td>
<td>٢/۴۷</td>
<td>٠/٤۹۶</td>
<td>۹/٧٥٣</td>
<td>٠/٣٤٥</td>
<td>٠/٨٢۵</td>
</tr>
<tr>
<td></td>
<td>٣/٨۷</td>
<td>١/٣٧</td>
<td>٠/٣۵٥</td>
<td>٠/١٩٩</td>
<td>٠/٣٤٥</td>
<td>٠/٨٢۵</td>
</tr>
<tr>
<td></td>
<td>۵/۴٢</td>
<td>٢/٩۶</td>
<td>٠/١٢٠</td>
<td>٠/٦۸٠</td>
<td>٠/٢٠٥</td>
<td>٠/٨٢۵</td>
</tr>
<tr>
<td></td>
<td>٢/٨٢</td>
<td>١/۸۲</td>
<td>٠/١٠٥</td>
<td>٠/٩٧٠</td>
<td>٠/٣٤٥</td>
<td>٠/٨٢۵</td>
</tr>
<tr>
<td></td>
<td>٣/۶٢</td>
<td>٣/٧٧</td>
<td>٠/١٠٥</td>
<td>٠/٦۸٠</td>
<td>٠/٢٠٥</td>
<td>٠/٨٢۵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سال دوم</th>
<th>تعداد دسته گره رشد</th>
<th>ماده خشک بخش هوای (g/plant)</th>
<th>(kg/ha)</th>
<th>ماده خشک گره (mg/plant)</th>
<th>جنسیتین</th>
<th>مقایسه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱/۰٠٥</td>
<td>٢/٨٥</td>
<td>٠/٢٠٥</td>
<td>٠/٢٠٥</td>
<td>٠/٢٠٥</td>
<td>٠/٢٠٥</td>
</tr>
<tr>
<td></td>
<td>٢/۰٩٠</td>
<td>١/۱٣٧</td>
<td>٠/١٩٩</td>
<td>٠/١۹٩</td>
<td>٠/١۹٩</td>
<td>٠/١۹٩</td>
</tr>
<tr>
<td></td>
<td>٣/۸٩</td>
<td>٢/٠٧</td>
<td>٠/١۸٩</td>
<td>٠/١۸٩</td>
<td>٠/١۸٩</td>
<td>٠/١۸٩</td>
</tr>
<tr>
<td></td>
<td>٢/٨٢</td>
<td>١/۸٦</td>
<td>٠/١٢٠</td>
<td>٠/٦۸٠</td>
<td>٠/٢٠٥</td>
<td>٠/٨٢۵</td>
</tr>
<tr>
<td></td>
<td>٣/٨٢</td>
<td>٣/٧٧</td>
<td>٠/١٠٥</td>
<td>٠/٦۸٠</td>
<td>٠/٢٠٥</td>
<td>٠/٨٢۵</td>
</tr>
</tbody>
</table>

امیدواریم با حروف مشابه در هر سیون بر اساس آزمون چند دامنه‌ای دانکن (٠/٠٥) اختلاف معنی‌داری ندارد.
رادیاتور ماده خشک اندام هواپی_page_1
جدول 5 مقایسه میانگین‌های اثرات اصلی سال بر ضرایب مختلف گونه‌های یکساله در دو سال

<table>
<thead>
<tr>
<th>مقدار نیترژن گونه‌ها (mg/g)</th>
<th>طول ریشه (cm)</th>
<th>تعداد دسته</th>
<th>تعداد گره ماده خشک</th>
<th>ماده خشک بخش هوایی (kg/ha)</th>
<th>ماده خشک گره ریشه (g/plant)</th>
<th>تعداد گره در هر کلون</th>
<th>تعداد گره در هر کلون ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. polymorpha</td>
<td>24</td>
<td>22</td>
<td>1/3</td>
<td>1/08</td>
<td>2/38</td>
<td>49/48</td>
<td>3/78</td>
</tr>
<tr>
<td>M. radiata</td>
<td>24</td>
<td>22</td>
<td>1/3</td>
<td>1/08</td>
<td>2/38</td>
<td>49/48</td>
<td>3/78</td>
</tr>
<tr>
<td>M. rigidula</td>
<td>24</td>
<td>22</td>
<td>1/3</td>
<td>1/08</td>
<td>2/38</td>
<td>49/48</td>
<td>3/78</td>
</tr>
</tbody>
</table>

جدول 6 مقایسه میانگین‌های اثرات مقابل جنسیت و تاریخ کاشت و گونه بر ضرایب مختلف گونه‌های یکساله در دو سال

<table>
<thead>
<tr>
<th>جنسیتین</th>
<th>مقدار نیترژن گونه‌ها (mg/g)</th>
<th>طول ریشه (cm)</th>
<th>تعداد دسته</th>
<th>تعداد گره ماده خشک</th>
<th>ماده خشک بخش هوایی (kg/ha)</th>
<th>ماده خشک گره ریشه (g/plant)</th>
<th>تعداد گره در هر کلون</th>
<th>تعداد گره در هر کلون ریشه</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. polymorpha</td>
<td>24</td>
<td>22</td>
<td>1/3</td>
<td>1/08</td>
<td>2/38</td>
<td>49/48</td>
<td>3/78</td>
<td>3/78</td>
</tr>
<tr>
<td>M. radiata</td>
<td>24</td>
<td>22</td>
<td>1/3</td>
<td>1/08</td>
<td>2/38</td>
<td>49/48</td>
<td>3/78</td>
<td>3/78</td>
</tr>
<tr>
<td>M. rigidula</td>
<td>24</td>
<td>22</td>
<td>1/3</td>
<td>1/08</td>
<td>2/38</td>
<td>49/48</td>
<td>3/78</td>
<td>3/78</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر ستون بر اساس آزمون دانکن (P≤0.05) اختلاف معنی‌داری ندارد.
پیشینه گی‌ری

با توجه به نتایج به دست آمده در این آزمایش، گونه M. Rigidaula نسبت به سایر گونه‌های مقاومت بیشتری به سرم می‌شود.

M. Polymorpha

برای شرایط دمای نامناسب و پایین که در آزمایش هواپیماسازی وارد شدند، الاستفاده می‌تواند نیازمند پیش‌پردازی در دماهای نیز باشد. استفاده مستقیم M. Polymorpha و M. Radicula از طریق تولید چربی در شرایط دمای نامناسب و پایین M. Rigidaula می‌تواند نتایجی مثبت و خوبی را داشته باشد.

Medicago rigidaula

آزمایش‌های انجام شده در شرایط متنوع‌تر، می‌تواند نتایج خوبی به سرم‌ها و بیشتری در درمان سرده استفاده نمود و در این گونه، شرایط تغییری باشد که می‌تواند موجب تربیت رشد در آغاز خون‌ریزی و گرفتنی در نتیجه افزایش مقادیر نیتروژن گاهی شود. این عمل در نهایت منجر به افزایش عامل‌های مصرفی می‌شود. استفاده از پنجره‌های خاص و در فصل روی دمای هوا و خاک پایین پوده با شرط تلقیح آنها با چسب‌های نیز مؤثر می‌باشد.

در صورت فراهم کردن سایر شرایط خواهد داشت.

نتایج مورد استفاده

1. سندرم ع. ب. م. تکثیر. 1373. مروری بر تحقیقات انجام شده و در حال اجرا در رابطه با پنج‌های پکسالهای پس چشمان در ایران و تدوین برنامه کاری آن‌ها. شرکت مؤسس‌های تحقیقات جنگل‌ها و مراتع کشور، تهران.

