تأثیر تاریخ‌های مختلف کاشت و کاربرد چنین اینکه پوده مقدار نیتروژن و
گروزایی سه گونه بونجع یک‌ساله
مجید امینی دهقی، سید علی محمد مدرس ثانوی و فرهاد فتاحی نسبتی
(تاریخ دریافت: 18/5/1392؛ تاریخ پذیرش: 8/6/1392)
چکیده
به‌منظور بررسی تأثیر تاریخ کاشت و چنین اینکه (Genistein) (بر مقدار نیتروژن و گروزایی سه گونه بونجع یک‌ساله، آزمایشی در شرایط مزرعه‌ای به‌صورت فارابی در سال‌های 1382 و 1384 در مزرعه دانشگاه کشاورزی اشاغه کرباد متسلسل (طول 40 درجه و 8 دقیقه و عرض ۳۵ درجه و ۲۲ دقیقه) انجام گرفت. آزمایش از گل‌زا کرت‌های اصلی (Medicago polymorpha cv. (Santiago, M. rigidula cv. Rigidula, M. radiata cv. Radiata بر لیزر در کرت‌های فرعی فرار گرفت. محتوی نیتروژن گیاه، گروزایی و سایر صفات در گونه‌های مودره بورسی تفاوت معنی‌داری داشتند و گونه M. polymorpha در تاریخ کشت مورد (نسبت احتمال) نسبت به گونه‌ها بهتر از نظر وزن خشک گیاه داشت. تعداد گرت گره در هر کلنون عمدی گرفت و نسبت گره به بهتر بود. گونه M. polymorpha نسبت به سایر گونه‌ها مقاومت بیشتری به سرمایه در تاریخ اول کاشت نشان داد. همچنین 20 میکرومولار لیزر چنین تأثیر ازبین‌یافته ای بر گروزایی و محتوی نیتروژن در تمام گونه‌های بونجع یک‌ساله داشت. چنین اینکه در تاریخ کشت اول در تمام گونه‌ها باعث افزایش گروزایی و محتوی نیتروژن گیاه شد که این امر می‌تواند تأثیر این ایده به‌رژیم گروزایی و افزایش محتوی نیتروژن یک‌ساله را در شرایط مزرعه‌ای
واژه‌های کلیدی: تاریخ کاشت، محتوی نیتروژن، چنین اینکه، گروزایی، بونجع یک‌ساله
مقدمه
نظر به وسعت زیاد مرار در نواحی سرد ایران (بیش از ۷۰ میلیون هکتار) باعث گونه‌های مقدار در برای سرمایه امروز ضروری است. بونجع یک‌ساله از جهتی نسبت به گونه‌های چند ساله برتری دارد. بیشتر گونه‌های یک‌ساله، سریع‌تر از یک‌ساله‌های چند ساله رشد کرده و دارای سازگاری و سبک با شرایط آب و هوا و مختلف هستند. گونه‌های M. polymorpha، M. rigidula، M. truncatula باعث شده‌اند که می‌تواند معنی‌داری از استفاده‌های مختلفی باشد.

1. به ترتیب دانشجوی دکتری، دانشیار و دانشجوی سال چارشنبه از دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران
Modaresa@modares.ac.ir: مشمول مکاتبات، پست الکترونیکی: *
کیلولکرم در مراکز نیتروژن به خاص اضافه می‌شود (20). بیشتر یک سال علاوه بر ازدیاد نیتروژن آمی خاک، در افزایش کربن آل خاک نیز تأثیر دارد (6). حضور فراوانی بیوخته‌های یک ساله در هر محیطی می‌تواند منیا انتخاب گونه‌های سازگار با آن محیط باشد (6). زمان کاشت در بیونهی یک ساله حیات حیوانی در بررسی مخلوط کاسته شد و عمده آنها تأثیر زیادی دارد. به طوری که کاشت گونه‌های موجب افزایش عمق خاک، باعث افزایش خاک به اندازه کافی از بارندگی‌ها اول فصل استفاده کرده‌اند، بهترین انگش می‌گردد (7). حوار کتیم از 3 درجه سانتی‌گراد خاک سبب توقف فعالیت پاتوری‌ها می‌شود. به علاوه باعث تأکید نفوذ پاتوری به ریشه گیاه و کاهش فعالیت نیتروژن‌زا می‌گردد. حوار 60 تا 70 درجه سانتی‌گراد برای فعالیت پاتوری‌ها، رژیمونیوم می‌گردد (3). اولین اثر دوماهی پایین روي گیاهان کاهش در سرعت رشد و متانولیسی می‌باشد. دما پایین، رشد گیاهان تیبند کننده نیتروژن را بیشتر از گیاهان که از ترکیبات نیتروژن استفاده کرده، محدود می‌کند (9). تمامی مراحل هیپسنتیسین (بی‌پازیگ - تاره‌های کشنده ویره) به‌منظور انتخاب گونه‌های مناسب و سازگار به بایان می‌پردازد.

دانش داده‌اند که تحت تأثیر دمای پایین مقطعه ریشه متوسط می‌شود و عفونت ناراحتی کشنده را بیشتر از آغاز گرایید. رشد گره و افزایش نیتروژن با تأخیر می‌باشد (15). ماده‌بندی سیگمالیکولین بین‌رژیمونیوم و گیاهان می‌بایست برای رشد گره در ریشه کلگرم ضروری است (16). ایزوفلوانو دیابت و جنستین اجرای اصلی عصاره (ISOFLAVONES DAIDZEIN)
تأمیل تاریخ‌های مختلف کاشت و کاربرد جنیستین بر مقدار نیتروژن و...

محصول نیتروژن گیاه و سایر صفات سه گونه بونجه یکسان، آزمایشی در شرایط مزج معدنی به‌صورت فارمیاک در سال‌های 1839 و 1843 و مجدداً در مزرعه دانشگاه کشاورزی دانشگاه تربیت مدرس (طول 11 دقیقه و 8 دقیقه و عرض 24 دقیقه و 92 دقیقه) انجام گرفت. در این آزمایش از گونه بونجه یکسان Medicago polymorpha cv. Santiago, M. rigidula cv. Medicago Rigidula, M. radiata cv. Radiata

سازگاری دارند استفاده شد. آزمایش در قالب طرح بلوک-کهکاک تصادفی به‌صورت کهردی در بار خرد شده در چهار تکرار انجام شد. تاریخ کشت یکانی اول، دوم و سوم استفاده در کردهای اصلی و گونه‌های بونجه یکسان به‌عنوان کردهای فرعی و جنیستین در دو سطح 20 و 40 میکرومول در لیتر در کردهای فرعی فرعي قرار گرفتند. در فصل پاییز برای آماده سازی زمین به‌عنوان 30 سانتی‌متر یک شور خرد شده دیسک زده و بعد کود فسفات آمونیوم به دوز 75 کیلوگرم در هکتار پاش گردید. در این تحقیق به‌عنوان پایه علت پایه بودن طرفیت نگهداری آب خاک، زمین مورد نظر هر سوز در میان امرای می‌شد. به‌دلیل پایین بودن حاصل خرید خاک، کود اوره به بیان 15/4 کیلوگرم در هکتار به‌عنوان استفاده به‌معنی داده شد. هر کرت مشکل از شش خط 20 سانتی‌متری بود که فواصل خطوط وزنیک 50 سانتی‌متر در نظر گرفته شد. بیش از ۲ کیلوگرم در هکتار در نظر گرفته شد. در طی دوره رشد عملیات و جنگ توسط کارگر به دفع نهایی صورت گرفت.

نتایج و بحث

به‌دلیل معنی‌دار شدن عامل سال در تعدادی از صفات اندازه‌گیری شده، با استفاده از ونیانس خطای آزمایشی صفات المکرون در دو سال آزمایش، آزمون بارنلت به عمل آمده و در 4 مورد از صفات (ماده خشک بخش‌هایی، ماده خشک گرده، تعداد دسته‌گرده خشک و ماده خشک رشد) χ² معنی‌دار بود (جدول 1). در جدول 1 تجزیه و تحلیل این صفات سالانه انجام گرفت. از نظر کشت، گونه و جنیستین و آمار متقابل آنها روی چهار صفت مورد بررسی (به‌جز اثر مقفلی) که در جنیستین بر صفت ماده خشک رشدی در دو سال متوازن معنی‌دار بود (جدول 2). در مورد 5 صفت دیگر (طول رشد، عرض گرده، قدرت نیتروژنی، تعداد گرده، تعداد پررنگ) به دو گروه به‌صورت نیتروژنی ۵ صفت بر اساس تجزیه مکربر داده‌ها صورت پذیرفت (جدول 3). اثرات سال، تاریخ کاشت و گونه‌های Rhizobium meliloti به‌دلیل تفاوت مجمع‌گرایی از یک‌کاتری شده در محیط تره‌بین بدون آگار استفاده شد. برای تهیه یک‌کاتری، گره‌های محل‌گرایی از رشته جدآ و پس از شستشوی سروند شده (به‌معنی دیده در محلول هیبریدیت 3 صر.) به محیط کشت بدون آگار که در دمای 100°C به‌معنی 30 دقیقه در انوکلاستر ضدعفونی شده بود اضافه گردید. (۱۳) برای تهیه ۲۰ میلی‌لیتر نیتروژنی که به‌معنی 2 رو 90 درجه دمای 25°C قرار داده شد. پس از سه روز شدن این مقدار جهت تلاقی از آنها استفاده شد.
جدول 1. تغییر همگونی واریانس خطاهای مختلف آزمایش برای صفات مورد بررسی

<table>
<thead>
<tr>
<th>صفت اندراجه‌گیری شده</th>
<th>نتیجه تحلیل CHISQ</th>
<th>نتیجه تحلیل CHISQ</th>
<th>نتیجه تحلیل CHISQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار ماده شکست گره ریشه هرگیاه</td>
<td>0.080</td>
<td>0.5 / 106*</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>تعادل گره نیروی</td>
<td>0.203</td>
<td>0.866</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>تعادل گره هر کلون ریشه</td>
<td>0.456</td>
<td>0.8</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>تعادل دسته گره در ریشه</td>
<td>0.266</td>
<td>0.344</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>مقدار نیتروژن</td>
<td>0.001</td>
<td>0.969</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>قطع گره</td>
<td>0.55</td>
<td>0.2</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>مقدار ماده شکست ریشه هرگیاه</td>
<td>0.002</td>
<td>0.905</td>
<td>ناهمگون</td>
</tr>
<tr>
<td>طول ریشه</td>
<td>0.009</td>
<td>0.001</td>
<td>ناهمگون</td>
</tr>
</tbody>
</table>

*در هر دو سوال مصرف جنگی‌پذیر بر مقدار ماده شکست، برنج یکساله و همچنین اثرات مقابل عامل تیتر کشت، تاریخ کشت × جنسنین، گونه × جنسنین و گونه × تاریخ کشت × جنسنین روی اثر صفات تأثیر معیار داشت. اثرات مقابل عامل تیتر کشت × جنسنین در تمام صفات معنی‌دار نبودند. ضمناً، در جنگی‌پذیری مختلف جنسنین فقط بر عمد کشت گره در ریشه معنی‌دار بود (جدول 2، همچنین با واریانس خطای استفاده می‌شود از نظریه بایستی در دو نمونه از سراسر صفات می‌تواند مربوط به اختلاف دما در اولین فصل رشد در دو سوال باشد. در سال اول‌اواصل این مدل که در دو سوال اول در اول رشد در دو سال اول 12 و در سال دوم 131 درجه حرارت گراد سرخه‌های برنج یکساله رشد و نمو و گردونه بهتر و پیشینه نسبت به سال دوم که در ابتدا فصل رشد دمای نامیسپ در سه طولانی‌تر حاکم بوده، داشت است (جدول 3).

میکروب مول در تاریخ جنسنین در تاریخ کشت سوم حاصل گردید (جدول 2). نتایج حاصل با نتایج سابقاً محقق شده در رابطه با تأثیر افزایش جنسنین بر مقدار ماده شکست گره مشابه می‌باشند. استفاده از جنسنین بر تعداد گره و ماده شکست گره را در گیاه مصرف کننده و زمان شروع ثبت نیتروژن را در سویا در طول فصل رشد و زمانی که تا حداً هنوز سرد است یک جلو می‌اندازد (18).

در هر دو سوال مصرف جنگی‌پذیر بر مقدار ماده شکست بخش هوایی به مقدار مورد بررسی در تاریخ کشت سوم تأثیر معیار داشت و باعث افزایش مقدار آن نسبت به عدم کاربرد آن در همان تاریخ کشت شد (جدول 4). ممکن است به دلیل تأثیر منفی بر مقدار فتوستیت و انتقال مواد باعث کاهش ماده شکست بخش هوایی شده باشد. این نتایج توسط محققین دیگر به تأثیر دمای پایین بر فتوستیت نیز گزارش شده است (12). در هر دو سوال گونه رجیدی‌الا در تاریخ کشت سوم همه به تأثیر بیشتر آن با جنسنین مقدار ماده شکست بیشتر تولید نمود اما ماده شکست ریشه آن در این تاریخ کشت کمتر از رادیاتور بود و برعکس
جدول ۲. تجزیه واریانس سال‌های آتار تاریخ کشت روز صفات مختلف گونه‌های بی‌پوسته یکسانه تحت تأثیر گل‌تکیه‌های مختلف جنستی

<table>
<thead>
<tr>
<th>سال چهارم</th>
<th>سال اول</th>
<th>درجه</th>
<th>منابع تغییر آزادی</th>
<th>تکرار</th>
<th>تاریخ کشت</th>
<th>خطای اول</th>
<th>گونه</th>
<th>تاریخ کشت</th>
<th>خطای دوم</th>
<th>جنستی</th>
<th>تاریخ کشت</th>
<th>خطای جنستی</th>
<th>کل</th>
<th>خطای کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۱۱۱</td>
</tr>
<tr>
<td>۰/۰۱۸۲</td>
</tr>
<tr>
<td>۰/۰۲۵۰</td>
</tr>
<tr>
<td>۰/۰۳۷۰</td>
</tr>
<tr>
<td>۰/۰۴۳۹</td>
</tr>
</tbody>
</table>

* معنی‌دار در درصد ۵۰.
** معنی‌دار در درصد ۷۵.
جدول ۳ تجزیه و ارایه مرکب اثرات سال و تاریخ کشت بر صفات مختلف گونه‌های یکسانه تحت تأثر غله‌های متغیرت گیاهان

<table>
<thead>
<tr>
<th>میانگین مربوط</th>
<th>طول ریشه</th>
<th>قطر گره</th>
<th>تعداد گره در ریشه</th>
<th>تعداد گره در کل ریشه</th>
<th>درجه آرایی</th>
<th>منابع تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>0/100**</td>
<td>1/200**</td>
<td>183/600**</td>
<td>188/900**</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>خطای اول</td>
<td>0/100</td>
<td>1/200</td>
<td>183/600</td>
<td>188/900</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>تاریخ کشت</td>
<td>0/100**</td>
<td>1/200**</td>
<td>183/600**</td>
<td>188/900**</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>سال × تاریخ کشت</td>
<td>0/100</td>
<td>1/200</td>
<td>183/600</td>
<td>188/900</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>خطای دوم</td>
<td>0/100</td>
<td>1/200</td>
<td>183/600</td>
<td>188/900</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

** معنی در دو سطح ٪
* معنی در سطح ۵%
جدول 4. مقایسه میانگین‌های اثرات متقابل جنسیت‌های تاریخ کاشت و گونه بر صفات مختلف گونه‌های پویه‌برکه یک‌ساله

<table>
<thead>
<tr>
<th>جنسیتین</th>
<th>مقایسه</th>
<th>میانگین‌های kg/plant</th>
<th>ماده حشک گره (g/plant)</th>
<th>تعداد دسته گره ریشه</th>
<th>ماده حشک بخش هوایی (mg/plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. polymorpha</td>
<td>20</td>
<td>2.196</td>
<td>0.915</td>
<td>0.282</td>
<td>0.123</td>
</tr>
<tr>
<td>M. rigidula</td>
<td>20</td>
<td>2.196</td>
<td>0.915</td>
<td>0.282</td>
<td>0.123</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر ستون بر اساس آزمون چند دانه‌ای دانک (P<0.05) اختلاف معنی‌داری ندارند.
20 μ mol l⁻¹ کمترین آن در گونه M. radiata، 20 μ mol l⁻¹ کمترین آن در گونه M. polymorpha و 20 μ mol l⁻¹ کمترین حاصل شده (جدول ۵).

در تاریخ کشت های امواج در M. radiata و M. polymorpha، گونه هایی در ۲۰ هروهایی به ترتیب مصرف کرده‌اند. همچنین در تاریخ کشت های امواج در M. radiata و M. polymorpha، گونه هایی در ۲۰ هروهایی به ترتیب مصرف کرده‌اند.

به همچنین از نظر تاریخ کشت های امواج، مصرف مخلوط در گونه M. polymorpha در هر دو سال آزمایش، در تاریخ‌های کشت دوم و سوم مصرف گونه نیست. به همچنین در تاریخ‌های کشت دوم و سوم مصرف گونه نیست. به همچنین در تاریخ‌های کشت دوم و سوم مصرف گونه نیست.

در گونه M. polymorpha در هر دو سال آزمایش، در تاریخ‌های کشت دوم و سوم مصرف گونه نیست. به همچنین در تاریخ‌های کشت دوم و سوم مصرف گونه نیست.

در گونه M. polymorpha در هر دو سال آزمایش، در تاریخ‌های کشت دوم و سوم مصرف گونه نیست. به همچنین در تاریخ‌های کشت دوم و سوم مصرف گونه نیست.
جدول 5 مقایسه میانگین‌های اثرات مختلف گیاه تاپیه‌سازی و گونه‌بر صفات مختلف گیاه پویه‌های یکساله در دو سال

<table>
<thead>
<tr>
<th>جنسیتین</th>
<th>مقدار میانگین‌ها (mm)</th>
<th>تعداد گره</th>
<th>تعداد دسته ریشه</th>
<th>ماده خشک</th>
<th>ماده خشک بخش هوایی (kg/ha)</th>
<th>مقدار نیتروژن کوهنها (mg/g)</th>
<th>مقدار نیتروژن من طرف ریشه (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. polymorpha</td>
<td>24/8 ab</td>
</tr>
<tr>
<td>M. radiate</td>
<td>24/8 ab</td>
</tr>
<tr>
<td>M. rigidula</td>
<td>24/8 ab</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر ستون بر اساس آزمون دانکن (P≤0.05) اختلاف معنی‌داری ندارد.
نتیجه‌گیری
با توجه به نتایج بدست‌آمده در این آزمایش، این گونه M. Rigidaula نسبت به سایر گونه‌های مقاومت‌یافته به سرما نسبت به مصرف جنس‌تین در تاریخ‌های مختلف کاسته‌شده در سه نوع گونه تأثیری بر مقادیر نیترژن نداشت. گونه‌های Radiana و Rigidula BA با مصرف جنس‌تین در تاریخ‌های کاسته شده دو و سوم نسبت به تاریخ کاسته اول مقادیر نیترژن بیشتر در اندام‌های هواپیمایی ذخیره کرده‌اند (جدول 5). این نتایج دو گونه رادیان و ریجیدولا آمده این واقعیت اینکه گونه‌های با نمونه‌های اصلی نیترژن یافته بیشتر فرد تاریخ‌های دو و سوم نسبت به سایر گونه‌ها بیشتر مقادیر نیترژن بیشتر انتظار داشت. گونه‌های مختلف یافت شده در تشکیل گره‌های روند رشته و جذب نیترژن دارند.

مراجع

1. سندرلی، ع. و. ملکی‌پور. 1373. مروری بر تحقیقات انجام شده و در حال اجرای آن در رابطه با یونجه‌های بکسلار در ایران و تدوین برنامه کاری آینده. نشریه مؤسسه تحقیقات گیاه‌ها و محیط کشور، تهران.

