تأثیر بعضی از عناصر غذایی بر مصرف و کم مصرف بر عملکرد دانه، میزان روشگن و سایر صفات زراعی در رقم کلزا (Brassica napus L.)

قدرت الله سعیدی* و آزاده صدیقی

(تاریخ دریافت: 93/10/10، پذیرش: 86/8/14)

چکیده

به منظور بررسی اثر چگالگی و نیاز عناصر غذایی N، P و K بر عملکرد دانه و دیگر صفات زراعی مثل Mn و Zn، Fe، K، Ca و P در برنج گلیس (Brassica napus L.) از آماری در مزرعه تحقیقاتی دانشگاه صنعتی اصفهان در سال 1385 انجام گردید. این آزمایش به صورت کنترل بیانیه کودهای فاکتور اصلی بر صفات زراعی دو رقم کلزا شامل اکیپلو و زمین به همراه با کودهای مانند Fe + NPK، Fe + P و Fe + PK، که در نهایت به نتایج مشابهی با یکدیگر نهادند. با تأثیر نشان داد که هر کدام از نیازهای کودهایی تأثیر مثبتی داری را بر تعداد روغن سرسبز داشتند. این یافته به توجه مصرف افزایش ارتفاع بیونه در میزان گرده. تیمارهای زمین به مصرف افزایش NPK و P و N، کودهای N، P و K و Fe نزدیک به هم بودند.

وزن هزار دانه در رقم اکیپلو، Zn و Fe از موجب کاهش معنی‌دار بود و در کودهای Fe + NPK و Fe + PK نیز نزدیک به موجب افزایش از رده نیز بود. متوسط زمین به روشگن افزایش 27 و 32 درصد عملکرد دانه گردید. براساس این نتایج از نتیجه‌گیری‌هایی پیشبردی، به روشگن که با هر دو نیازهای Fe، Mn، Zn و P و N بهره‌مند است، همکاری با یکدیگر می‌دهد. این نتایج نشان می‌دهد که تعداد زراعی و بهره‌مندی افزایش عملکرد دانه و روشگن در کلزا شود.

واژه‌های کلیدی: کلزا، عنصر غذایی، عملکرد دانه، روشگن دانه

مقدمه

کلزا (Brassica napus L.) یکی از گیاهان دانه‌روغنی است که در مناطق معیار در ایران طیف وسیعی از سازگاری‌های مصرف در دانه، کاهشی داشته و دانه‌های بهبودی کلزا به روشگن نیز می‌تواند از آن استفاده کند.

*gsaeidi@cc.iut.ac.ir; پست الکترونیکی: 1

شماره مکاتبات: پست الکترونیکی: 2
راست. بعضی از ارقام کلارا که در گروه کانال قرار دارند، در یک کمتر از 50 درصد گلوکوزیونات در هر گرم کنجاله، با دارای رونگ دانه آنها در ارتفاع بالا از هدهای چرب غیر خاص و حذف 4 درصد بیا ایستاده، ارتباط بین سیالون عندگی می‌باشدند. از دیگر رونگ دانه آنها به صورت خزایر مصرف می‌شود (2). روغن کلارا در مسایل مختلف از جمله صباو، سازی و تولید مواد دارویی و آراپاتی نیز استفاده دارد و در خازن گیاهان آن با حذف 44-46 درصد پرتوی جهت تغذیه دام و طیور استفاده می‌شود.

افراش تولید در واحد سطح و کیفیت محصولات زراعی از لحاظ اقتصادی ارزیابی سیستم است و نامی عناصر غذایی مورد نیاز یک یکی از جنبه‌های مهم مدیریت زراعی جهت رشدیدن این یکی می‌باشد (2). بعضی از عناصر بی‌صرف مانند، نیتروژن، فسفر و نیترات در مقداری نسبتی مورد نیاز یک گیاهی حیاتی و در صورت کمبود آنها تولید محصول کاهش می‌یابد (1 و 17). عناصر غذایی کم مصرف هم‌مانند روی اهمیت برای رشد گیاهان ضروری است. در فراهنگی فیزیولوژیکی مانند مناسب، تولید محلول مشاهده شده و تکنیک واکفی‌گی که دخالت داخلی و کمک آنها می‌تواند موجب عدم تووان عناصر غذایی در گیاه و به‌نها کاهش کیفیت و کیفیت محصول را به‌مدتی داشته باشد (1).

کلارا نیاز به کلارا به تیروژن دارد و لی گیاه عمل آن نشود. آن به کلارا بستگی به شرایط محیطی از جمله شرایط آب و هوا مطلق، نوع حاکم، رطوبت حاکم و همچنین از بارداری(16). بیان‌برای این افراد تولید کلارا کلارا از مدیریت محصول زراعی خصوصاً ثبت آمیز عناصر غذایی مورد نیاز یک گیاهی دارای اهمیت زیادی.

مواد و روش‌ها
در این آزمایش تأثیر پایه تیمار کودی (جدول 1) بر عملکرد دانه و دیگر صفات زراعی و رقم کلارا شامل شملک، و وزن و بی‌کلام کاری خرد شده در قابل طرح بلوک‌های کامل تصادفی با سه رکار مورد بررسی قرار گرفت. در این آزمایش تیمار‌های کودی به عضوی فاکتور اصلی و ارتفاع عضوی فاکتور فرعی در نظر

GC% 1387 (الف) / پاییز
جدول ۱. تیمارهای کودی مورد استفاده در آزمایش گل‌های نیتریک

<table>
<thead>
<tr>
<th>زمان و نحوه مصرف کود</th>
<th>شرح تیمار کودی</th>
<th>عنصر مورد استفاده</th>
<th>تیمار</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدم استفاده از هر نوع کود شیمیایی</td>
<td>نا</td>
<td>T₀</td>
<td></td>
</tr>
<tr>
<td>یک سوم قبل از کاشت با خاک مخلوط شد و در سوم باقی مانده نیز در مرحله شروع گل‌دهی بصرف مصرف شد.</td>
<td>۱۳۸ کیلوگرم نیتراتیون از منبع اوره</td>
<td>N</td>
<td>T₁</td>
</tr>
<tr>
<td>قبل از کاشت با خاک مخلوط شد.</td>
<td>۳۳ کیلوگرم اکسید فسفر از منبع سوپر فسفات تریبل</td>
<td>P</td>
<td>T₂</td>
</tr>
<tr>
<td>قبل از کاشت با خاک مخلوط شد.</td>
<td>۴۸ کیلوگرم اکسید پتاسیم از منبع سولفات پتاسیم</td>
<td>K</td>
<td>T₃</td>
</tr>
<tr>
<td>T₀ + T₁</td>
<td>N + P</td>
<td>T₄</td>
<td></td>
</tr>
<tr>
<td>T₀ + T₂</td>
<td>N + K</td>
<td>T₅</td>
<td></td>
</tr>
<tr>
<td>T₀ + T₃</td>
<td>P + K</td>
<td>T₆</td>
<td></td>
</tr>
<tr>
<td>T₀ + T₄ + T₅</td>
<td>NPK</td>
<td>T₇</td>
<td></td>
</tr>
<tr>
<td>همانند T₀ و T₁ و سکسترون نیز قبل از کاشت با خاک مخلوط شد.</td>
<td>۵۰ Kg/ha + کود آهن (سکسترونش) به میزان</td>
<td>NPK + Fe</td>
<td>T₈</td>
</tr>
<tr>
<td>همانند T₀ و سولفات روزی نیز قبل از کاشت با خاک مخلوط شد.</td>
<td>۲۰ Kg/ha + سولفات رنگی به میزان</td>
<td>NPK + Fe + Zn</td>
<td>T₉</td>
</tr>
<tr>
<td>همانند T₀ و سولفات سمنگر نیز قبل از کاشت با خاک مخلوط شد.</td>
<td>۳۰ Kg/ha + سولفات سمنگر به میزان</td>
<td>NPK + Fe + Zn + Mn</td>
<td>T₁₀</td>
</tr>
</tbody>
</table>
آزمایش در سال زراعی ۱۳۸۵ در مزرعه قزهندان کشاورزی دانشگاه صنعتی اصفهان واقع در لرک نوجف آباد (۴۰ کیلومتر جنوب غربی اصفهان) انجام شد. طبق طبقه‌بندی کونی، مطلقه آزمایش دارای اقلیم خشککوه گرم و خشک است (۳). خاک مزارع از گروه‌های تیپیک های بالابزرگ و در دارای بافت نرم رمی جرم مخصوص (Typic Hapludalf) ظاهری ۴/۱ گرم بر سانتی‌متر مکعب و pH۷/۶ است. نتایج تجزیه عناصر خاک و خصوصیات خاک مزارع در جدول ۲ نشان داده شده است.

به منظور تغيير بسته بذر، زمين محل آزمایش كه در سال قبل آيش بود، در پایز گرسنگی و قبل از کاشت چند بار ديسک زده شد. کلبه تیمارهای کودک و کود سوم از کود اوره در تیمار قبل از کاشت به خاک اضافه و با آن مخلوط شد (جدول ۱). بقاه کود اوره در هر تیمار کودی در شروع مرحله به ساقط رفت به صورت سرک مصرف گردید. برای پیکان‌نویسی در توزیع کودهای شیمیایی در هر تیمار آزمایشی، مقدار کود مورد نظر به ماهه نرم مخلوط به مس و آزمایش به صورت دستی در کرت‌ها یا پایه‌های شد و مسی با خاک مخلوط گردید. آب اری به صورت سطحی و پس زمان استقرار گیاه‌ها ۴ روز یکبار و طی فصل رشد و بسته به نیاز گیاه با فواصل ۸–۱۱ روز انجام شد.

تجزیه و اریolatile داده‌های مربوط به صفات با استفاده از از نرم‌افزار آماری SAS انجام شد. برای مقایسه میانگین‌ها در نرمال و فارا (LSD) استفاده گردید. به منظور بررسی روابط بین صفات نیز، ضرایب همبستگی بین آنها محاسبه شد.

نتایج و بحث

نتایج نشان داد که تیمارهای کودی تأثیر مثبتی نداشتند و نسبت به تعداد روز تا ۵۰ درصد گلد هم نداشتند، ولی تأثیر آنها بر تعداد روز تا رسیدگی فیزیولوژیک معیار دارد (جدول ۳). میانگین تعداد روز از کاشت تا رسیدگی در تیمارهای کودی مختلف گرفته شد. هر کرت آزمایشی فرعي شامل پنج روش کاشت به‌طور مداوم به صورت نیم بذر به‌شکل کافی بسیار کشت گردید و پس از استقرار کامل گیاه‌ها، با فواصل بیشتری در نهایت کردن به روز ۴ تا ۶ سانتی‌متر تنظیم شد.

در هر کرت آزمایشی، تعداد روز تا ۵۰ درصد سبز شدن،
جدول ۲: میانگین و خطای استاندارد عناصر موجود در خاک محل آزمایش (متوسط ۶ نمونه)

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>آهن (Fe) (mg/ kg)</th>
<th>روی (Zn) (mg/ kg)</th>
<th>سکر (Mn) (mg/ kg)</th>
<th>نیتروژن (N) (٪)</th>
<th>فسف (mg/ kg)</th>
<th>پتاسیم (mg/ kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>۰.۵±۰.۰۸</td>
<td>۰.۴±۰.۰۸</td>
<td>۰.۸±۰.۰۸</td>
<td>۹.۴±۰.۵</td>
<td>۵۲±۵</td>
<td>۶۵±۵</td>
</tr>
<tr>
<td>2-5</td>
<td>۰.۸±۰.۱۲</td>
<td>۰.۶±۰.۱۲</td>
<td>۱.۵±۰.۰۵</td>
<td>۹.۹±۰.۵</td>
<td>۴۵±۵</td>
<td>۷۵±۵</td>
</tr>
<tr>
<td>۰.۵-0.۸</td>
<td>۰.۴±۰.۰۸</td>
<td>۰.۴±۰.۰۸</td>
<td>۰.۸±۰.۰۸</td>
<td>۹.۴±۰.۵</td>
<td>۵۲±۵</td>
<td>۶۵±۵</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج تجزیه واریانس برای صفات مختلف

<table>
<thead>
<tr>
<th>عمق خاک (سانتی‌متر)</th>
<th>تعداد روزکار</th>
<th>تعداد روزکار نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۵-۰.۸</td>
<td>۲۶</td>
<td>۲۹/۸۵</td>
<td>۳۷/۸۱</td>
<td>۴۶/۸۲</td>
<td>۵۵/۸۳</td>
<td>۶۴/۸۴</td>
<td>۷۳/۸۵</td>
<td>۸۲/۸۶</td>
</tr>
<tr>
<td>۰.۸-۱-۰.۸</td>
<td>۲۵</td>
<td>۲۹/۸۵</td>
<td>۳۷/۸۱</td>
<td>۴۶/۸۴</td>
<td>۵۵/۸۳</td>
<td>۶۴/۸۴</td>
<td>۷۳/۸۵</td>
<td>۸۲/۸۶</td>
</tr>
</tbody>
</table>

** و **: بهترین معیار در سطح احتمال پنج و یک درصد

معنی دار نمی‌باشد: HS

نکته: ۷/۲۴/۸۷
از لحاظ تعداد دانه در غلاف تنشع زیاد و معنی‌دار بین تیمارهای کودی مشاهده شد و دامنه تغییرات آن بین 20/8 تا 2/442 عدد بود (جدول 4). مقایسه دو رقم نیز نشان داد که رقم اکاپ به‌طور مشابه دارای تعداد دانه در غلاف بیشتری بود (12/8). نسبت به رقم زرقام بود (جدول 4).

اثر رقم و اثر مقیاس آن بر تیمارهای کودی بر وزن هزار دانه معنی‌دار بود (جدول 3) و رقم زرقام دارای میانگین وزن هزار دانه بیشتری نسبت به رقم اکاپ بود (جدول 4). اثر مقیاس معنی‌دار بین تیمارهای کودی و ارقام برای وزن هزار دانه (جدول 3) نشان داد که تیمارهای کودی (K7) و (NPK+F e +Zn +Mn) تفاوت نداشتند (جدول 4).

از انتقال معنی‌دار اثر تیمارهای کودی و رقم قرار گرفت و البته اثر استفاده آن بر افتتاح بسیار کم در رسیدگی کارا شده است (4) بر روی دانه نیز زرقام به‌طور معنی‌داری میانگین بیشتری نسبت به رقم اکاپ داشت (جدول 4). وجوش تفاوت معنی‌دار در لحاظ انتفاع بونه بین ارقام و همچنین تأثیر معنی‌دار کودهای نیترات به‌طور کلی در بررسی‌های دیگر نیز کروش این شده است (16).

در اثر تیمارهای کودی بر صفت تعداد غلاف بونه از لحاظ آماری معنی‌دار بود، ولی میانگین این صفت تغییر نسبتاً بیشترین زیادی را در بین تیمارهای کودی نشان داد، به‌طوری که کمترین و بیشترین مقادیر آن به ترتیب برابر 89/3 و 13/8 به‌طور معنی‌دار (NPK+F e +) + K7 (جدول 4) و به تیمارهای کودی (K7) + (NPK+F e +Zn +Mn) (جدول 4) و شاهد نیز دارای میانگین تعداد غلاف در بونه برای 87/0 بود. ولی تأثیر معنی‌دار تیمارهای کودی بر تعداد غلاف در بونه در مطالعات دیگر مشاهده و استفاده از نیترات موجب افزایش تعداد غلاف در بونه کلی شده است (5) که با نتایج این مطالعه تطابق ندارد. از لحاظ تعداد غلاف در بونه نیز تفاوت معنی‌داری بین دو رقم دیده نشد (جدول 4).
جدول ۲ میانگین صفات مورد بررسی تحت تأثیر تیمارهای کوده متفاوت و ارقام آزمایشی و زرقم

تیمار کوده	وزن در ۱۰۰۰ دانه (گرم)	تعداد روز تا افتراق در بوته (ساعته)	تعداد روز تا افتراق در بوته (ساعتگذی)	تعداد روز تا گل‌دهی	آزمایش	عملال	گرم/کیلوگرم	5/17
T1	65	32	2	11	12	6	1	7
T2	65	32	2	11	12	6	1	7
T3	65	32	2	11	12	6	1	7
T4	65	32	2	11	12	6	1	7
T5	65	32	2	11	12	6	1	7
T6	65	32	2	11	12	6	1	7
T7	65	32	2	11	12	6	1	7
T8	65	32	2	11	12	6	1	7
T9	65	32	2	11	12	6	1	7
T10	65	32	2	11	12	6	1	7
T11	65	32	2	11	12	6	1	7

تیمار	وزن در ۱۰۰۰ دانه (گرم)	تعداد روز تا افتراق در بوته (ساعتگذی)	تعداد روز تا گل‌دهی	آزمایش	عملال	گرم/کیلوگرم	5/17
A5	65	32	2	11	12	6	1
B4	65	32	2	11	12	6	1
C3	65	32	2	11	12	6	1
D2	65	32	2	11	12	6	1
E1	65	32	2	11	12	6	1
F0	65	32	2	11	12	6	1

در هر ستون و برای هر عامل آزمایشی میانگین‌هایی که دارای حداکثر یک حرف مشترک هستند در سطح احتمال ۵٪ تفاوت معنی‌دار دارند.

*x: آزمون برای عاملی انجام شد که مقیاس F آن در تجزیه واریانس معنی‌دار نشد.

LSD(۵/۱۷)
جدول 5 میانگین‌های اثر متقابل تیمارهای کودی و ارقام برای صفات وزن هزار دانه و درصد روغن دانه

<table>
<thead>
<tr>
<th>رقم</th>
<th>تیمارهای کودی</th>
<th>T11</th>
<th>T10</th>
<th>T9</th>
<th>T8</th>
<th>T7</th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
<th>T1</th>
</tr>
</thead>
</table>

مقدار LSD در سطح احتمال ۵٪ برای جهت مقایسه میانگین‌های اثر متقابل وزن هزار دانه و درصد روغن به ترتیب ۰/۲۴۲ و ۰/۲۷۹ می‌باشد.
تأثیر بعضی از عناصر غذایی بر معیار بر عملکرد دانه، میزان رونف...

کودهای شیمیایی در مطالعات دیگرگونی گزارش شده است (۱۷۳۳).
عملکرد رونف در تیمارهای کودی بين ۵۵/۱ تا ۹۸/۳ میلگرم در هکتار معیار و پیشرفت نسبت به تیمارهای کودی (NPK+Fe) و (K) (۲۴) تعقیب داشت.
تیمار کودی (۲۴) کمترین عملکرد دانه و درصد رونف دانه را نیز به خود اختصاص داد (جدول ۴). و لیه تیمار کودی (۹) از درصد روغن بالا و حداکثر عملکرد دانه بروخوردار بود. بهطور کلی تیمارهای کودی N، NPK+Fe و NPK+Fe و NPK موجب تیمارهای کودی (۱۷) و (۲۴) درصد افزایش عملکرد رونف گردد (جدول ۴). با توجه به نسبت به موجب افزایش عملکرد NPK+Fe این که رونف گردد، بطور مناسب افزایش عملکرد روغن در تیمار پیشرفت ناسی از عملکرد NPK مست سبب مولکول و انتظار مورد افزایش عملکرد Fe به خاک موجب افزایش عملکرد Fe و N و روغن گردد. عدم وجود اثر متقابل معنیدار بین تیمارهای کودی و ارقام برای عملکرد نظر عملکرد در هر دو رقم به نحو نسبتاً پیکان چهار تای تیمارهای کودی فاقد درغدغه است. در مطالعات دیگر نیز افزایش از عناصر غذایی مختلف از جمله S و P و Fe و Fe (۱۲۰، ۱۲۱ و ۱۵) موجب افزایش عملکرد روغن در کلزا شده است.

تأثیر تیمارهای کودی بر درصد رونف دانه معنیدار بر. بهطوری که بر اساس متوجه به، مستبداً در N و به تنهایی (تیمار کودی (۲۴) موجب افزایش معنیدار بر درصد روغن دانه گردد و بیش از تیمارهای کودی تأثیر معنیداری را بر این صفت نداشته. در مطالعات دیگر نیز افزایش از کود نشانزون موجب افزایش (۹) و (۱۶) معنیدار درصد روغن دانه در کلزا شده است. معنیدار بودن اثر متقابل بین تیمارهای کودی و ارقام برای درصد روغن (جدول ۳) نشان داد که در رهم اکثر تیمارهای کودی معنیدار است، ولی در رقم زیافت کوادی (۲۴) موجب کاهش معنیدار درصد روغن گردد (جدول ۴) در یک پرسی دیگر تشایفت از کودهای N و K دارای K و N در اکثر مناطق مورد بررسی تأثیر معنیدار بر درصد روغن دانه کازا نداشته و فقط در یک منطقه موجب افزایش آن شده است (۹). وجود اثر متقابل معنیدار بر ارقام و استفاده از
جدول ۶: ضرایب همبستگی بین صفات مختلف

<table>
<thead>
<tr>
<th>صفت</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ - تعداد روز‌های ۵۰٪ سپر شدن</td>
<td>۰/۰۹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲ - تعداد روز‌های ۵۰٪ گل‌دهی</td>
<td></td>
<td>۰/۰۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳ - تعداد روز‌های رشدی</td>
<td></td>
<td></td>
<td>۰/۰۰۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴ - ارتفاع بوته</td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵ - تعداد غلاب در بوته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶ - تعداد دانه در غلاف</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷ - وزن هزار دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸ - عملکرد دانه در بوته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹ - عملکرد دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
<td></td>
</tr>
<tr>
<td>۱۰ - درصد رونان دانه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۱</td>
</tr>
<tr>
<td>۱۱ - عملکرد رونان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰/۰۴</td>
</tr>
</tbody>
</table>

* و ** به ترتیب معنی‌دار در سطح احتمال پنج و یک درصد.

11. Lewis, D.C., T.D. Potter, S.E. Weckert and I.L. Grant. 1987. Effect of nitrogen and phosphorus fertilizers on the seed yield and oil concentration of oilseed rape (Brassica napus L.) and the prediction of responses by soil tests...