تأثیر تاریخ کاشت و تراکم بونه بر عملکرد و اجزای آن در زنوتیپ‌های نخود زراعی (Cicer arietinum L.)

صفحه فلاح *

(تاریخ دریافت: ۱۳۸۷/۰۹/۲۱؛ تاریخ پذیرش: ۱۳۸۷/۱۱/۳۰)

چکیده

برای مطالعه تأثیر تاریخ کاشت و تراکم بونه بر عملکرد و اجزای عملکرد زنوتیپ‌های نخود زراعی در شرایط دیم و نطفه خرم‌آباد، آزمایشی در مزرعه تحقیقات شکارلویی اداره هواشناسی استان در سال‌های ۱۳۸۶-۱۳۸۷ ه. ق. انجام داده شد. این آزمایش بهصورت اسپلیت-فاکتوریل در قالب طرح پلک‌های تصادفی با نرخ اجرا شد. تاریخ کاشت شامل کشت در ۱۵ اسفند، اول فروردین و ۱۵ فروردین می‌باشد. عامل اصلی و تراکم بونه شامل ۱۸، ۲۴ و ۳۰ بونه در متر مربع به همراه توده محلی گریت و زنوتیپ Flip گزارش شدند. نتایج نشان دادند که تأثیر تاریخ کاشت ۴۲ تا ۴۳ تا در دوره نخود می‌باشد. عملکرد دانه و ماده خشک بیشتر در فصول بهاری می‌باشد. تراکم بونه نیز به طور ملایم دارد.

واژه‌های کلیدی: تاریخ کاشت، تراکم بونه، شرایط دیم، زنوتیپ، عملکرد، نخود زراعی

مقدمه

گیاه نخود (Cicer arietinum L.) از یک طرف به دلیل میزان بالای پروتئین دانه از اهمیت غذایی بالایی برخوردار است و از طرف دیگر به دلیل قابلیت‌های پژوهشی به‌کارگیری تیپ بندی کشتی نیازمند در برخورداری به عناصر معنی‌داری جنگلی اکوسیستم‌های زراعی اهمیت می‌باشند (ازدی ۱۳۳۶). دانه نخود علاوه بر انواع و بیانی‌های و ماده معدنی حاوی ۱۵ تا ۲۴ درصد پروتئین بوده و از سطح زیر کشت جهانی ۱۱

* مسئول مکاتبات، پست الکترونیکی: falah1357@yahoo.com

1. استادیار زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه شهرکرد

133
عدم نیام در بوته داشت و با افزایش تراکم عملکرد داهن در هکار کاهش یافت. در تراکم 75 بوته در مترمیکر تعداد نیام در بوته 30 درصد بیشتر از سایر تراکم ها بود و عملکرد داهن بیشتری نسبت به تراکم های بالاتر بهبود یافت. این در حالتی است که فلاح و همکاران 5 نیز مشابه تناوب فراز را برای نخود تحت شرایط دیگر گزارش کردند و در مطالعه آنها تراکم 20 بوته در مترمیکر بیشترین عملکرد دانه را تولید کرد.

به همین منظور این مطالعه جهت بررسی اثرات تاریخ کاشت و تراکم بوته بر برخی خصوصیات کیکی و زنونیب نخود دیم در گرمای آبادانی انجام گرفت.

مواد و روش‌ها
پژوهش در مزرعه تحقیقات کشاورزی اداره هواشناسی لرستان واقع در 30 کیلومتری شمال شرقی خرم‌آباد (عرض جغرافیایی 33 درجه و 37 دقیقه شمال و طول جغرافیایی 49 درجه و 46 دقیقه غربی) و ارتفاع 1680 متر از سطح دریا در سال رعاعی 1387-85 اجرا گردید. طبق تقسیم‌بندی اقلیمی کشور، محل انجام آزمایش دارای آب و هوای معتدل با تابستان گرم و نیمه یاس. میانگین ماهانه بارندگی و دمای شبانه‌روزی هوای منطقه در طول دوره آزمایش در شکل 1 نشان داده شد. است. محیط محل آزمایش دارای رسترسی سه‌پایه و پیچ حداکثر 74 بیس. پس از آبادمانی بست، بر همان تجهیز شکاک میژه و 5000 کیلوگرم در هکار به ترتیب کود اوره و سوپر فسفات به هم اضافه شد.

آزمایش به صورت استقلال فاکتوریل در قالب بلکوه‌های کامل مقطعی به سه تکرار اندازه شد. تاریخ کاشت به عنوان عامل اصلی شامل کاشت در 15 اسفند، اول فروردین و 15 فروردین، تراکم بوته با چهار سطح 120، 180 و 240 بوته در Flip متغیر و زنونیب شامل نخود محلی گریب و زنونیب 93 به ارزیابی فاکتوریل به عنوان عامل فرعی مقایسه شدند. هر 93 گریب به طول 6 متر و شال 5 درفی کاشت به فاصله 30 سانتی‌متر بوته. بیشتر کاشت به رنگ سفید در علاوه 5 سانتی‌متر روزان دیمی نخود گزارش کردند که تراکم بوته امتیان‌دار بر

124
نتایج و بحث
خلاصه وضعیت جوی
در سال زراعی ۸۴-۸۵ میانگین دمای منطقه در طول فصل رشد، نخود (امضا-تبر)، رود افراشته داشت. در مزارع که میانگین حداقل و حداکثر دما در طی ماهه به ترتیب به ۱۵۹ و ۲۵۷ درجه سانتی‌گراد رسید (شکل ۱). شروع کل به‌دنبال و تیپ‌های دو زننبعی در تاریخ‌های کاست مختلف از اوایل اردیبهشت تا اوایل خرداد موجب شد که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد. در ماه آبان و همکاران (۶۴) نشان دادند که دمای ۴/۱۵ درصد عمکردن دانه زننبعی‌های مختلف نخود گردید. در سال زراعی ۸۴-۸۵ می‌ماند به شدت نخود بافت که حدود ۱۰ درصد آن در طول فصل رشد نخود بافت با توجه به عدم بارش‌پذیری در خرداد و ژوئیه در طی این دوره به‌مدت ۴۵ روزه از شرایط محیطی غلیظ که از این سو چنین با استفاده از هر فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به برداشت دماهای که دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

این نتایج بهترین سرعت نخود دانه به‌عنوان حاشیه نوری شد. قابل انتظار است که دانه به‌عنوان حاشیه نوری در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوته در زمان رسیدن به اولین ماه (۱۰ بوته) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوته در زمان رسیدن به اولین ماه (۱۰ بوته) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوته در زمان رسیدن به اولین ماه (۱۰ بوته) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوته در زمان رسیدن به اولین ماه (۱۰ بوته) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.

برای اندازه‌گیری تعداد نیم در بوتهم در زمان رسیدن به اولین ماه (۱۰ بوتهم) به‌طور تصادفی پس از حذف حاشیه در هر قسمت از فاصله‌ها نسبت به حالت در زمان‌های نخود گردید، از تنظیم نخود دانه به‌طور معمول به‌طور کلی به دست آمده‌ها برپایه دماهای که دانه‌پذیری در دمایی نسبتاً بالا انجام گیرد.
بوده است، بنابراین ممکن است نتایج رطوبتی گیاه در این دوره به‌ویژه در تاریخ کاشت در و تراکم‌های بالا با خوبی تأمین شده باشد.

تعداد نیمای در بوته

اثر تاریخ کاشت تراکم بوته و زنوتیب بر تعداد نیمای در بوته در مساحت احتمال یک درصد معیار بوته در تراکم شدن فصل رشد در تاریخ کاشت دیر بایعت کاهش تعداد نیمای در بوته گردد. به طوری که تعداد نیمایها در کاشت با تاریخ ۵۰ درصد کاهش اول بوته (جدول ۲) این تجربه با گزارش چاپسون و من (۲۰۰) و بنگر و مککور (۲۰۳ مطالعات دارد.

آنها نیز تعداد نیمای در بوته را به‌تأخیر در کاشت تراکم کردند. احتمالاً کاشت زرد با توهین غیر گریز جدید نور و نبض نشده، فتوسنتز افزایش یافته و در نتیجه توزیع نیمایها و مولکول‌های تولیدی به‌طور کامل نیمایها فراهم می‌گردند.

تراکم گیاهی رابطه معکوسی با تعداد نیمای در بوته داشته، به گونه‌ای که کمترین تعداد نیمای در بوته در بالاترین تراکم بوته به‌دست آمده‌است (جدول ۲). در تراکم‌های بالایی محدودیت‌های محیطی چنین پردازش تراکم گیاه وجود ندارد و گیاه نور کافی و همچنین آب و عناصر غذایی کافی را جذب نموده و در نتیجه گهی‌هایی یکه در هوای بوته صورت می‌گیرد. برغمش با زیاد شدن تراکم گیاهی رقابت بخش روشی با زیادی تشخیص شده و گل‌دهی و نیمای‌بندی کم‌بوده صورت می‌گیرد. علاوه بر تراکم‌های بالا به دلیل تولید سطح تعرق کندن‌های بالا، تشکیک و بازیابی ناشی از هنگام آهک به همراه روند روند تراکم در تاریخ کاشت به‌طور کامل نیمایها را تایید می‌نماید.

تعداد نیمای در بوته در سطح احتمال یک درصد معیار بوته (جدول ۲) به طوری که گاهی با تأخیر در کاشت تعداد نیمای در بوته

۱۴۶
جدول 1. تجزیه و ارزیابی اثرات تاریخ کاشت و تراکم بونه بر عملکرد اجزای عملکرد و شاخص برداشت دو نوتب تنوخ

<table>
<thead>
<tr>
<th>مانع تغییر</th>
<th>درجه ازاید در بونه</th>
<th>تعداد نیم در بونه</th>
<th>وزن صد دانه (g)</th>
<th>عملکرد دانه (kg/ha)</th>
<th>ماده خشک برداشت (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نکران</td>
<td>1</td>
<td>0/5</td>
<td>1293</td>
<td>255b</td>
<td>134,34</td>
</tr>
<tr>
<td>تاریخ کاشت</td>
<td>2</td>
<td>0/1</td>
<td>132/1</td>
<td>255a</td>
<td>129.3</td>
</tr>
<tr>
<td>تراکم بونه</td>
<td>3</td>
<td>0/5</td>
<td>108</td>
<td>230</td>
<td>129.2</td>
</tr>
<tr>
<td>دامنه</td>
<td>4</td>
<td>0/1</td>
<td>108</td>
<td>230</td>
<td>129.2</td>
</tr>
<tr>
<td>M^*</td>
<td>5</td>
<td>0/1</td>
<td>187.9</td>
<td>238</td>
<td>129.3</td>
</tr>
</tbody>
</table>

جدول 2. تأثیر عوامل آزمایشی بر عملکرد، اجزای عملکرد و شاخص برداشت نوتب زراعی تحت شرایط دم

<table>
<thead>
<tr>
<th>شاخص</th>
<th>تعداد نیم در بونه</th>
<th>وزن صد دانه (g)</th>
<th>عملکرد دانه (kg/ha)</th>
<th>ماده خشک برداشت (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاریخ کاشت</td>
<td>15 علفن (کاشت اول)</td>
<td>18/3</td>
<td>1/33a</td>
<td>21/8a</td>
</tr>
<tr>
<td>تاریخ کاشت</td>
<td>19 علفن (کاشت دوم)</td>
<td>18/3</td>
<td>1/33a</td>
<td>21/8a</td>
</tr>
<tr>
<td>تاریخ کاشت</td>
<td>14 غرور های (کاشت سوم)</td>
<td>18/3</td>
<td>1/33a</td>
<td>21/8a</td>
</tr>
<tr>
<td>تراکم بونه</td>
<td>بونه در متراپری</td>
<td>18/3</td>
<td>1/33a</td>
<td>21/8a</td>
</tr>
</tbody>
</table>

میانگین‌های هر گروه در هر ستون که حداقل در یک حرف مشترک هستند، فاقد تفاوت معنی‌دار براساس آزمون دانکن در سطح احتمال 5 درصد می‌باشند.
شکل ۲. اثر متقابل تاریخ کاست با تراکم پوته بر تعداد نیای در پوته.

شکل ۳. اثر متقابل زنوتیبا تراکم پوته بر تعداد نیای در پوته.

تعداد دانه در نیای

شکل رشد پروری، رشد نخود و جاروی وجود دارد (۲۳، ۲۵ و ۳۲).

بتربرب در کاست اول گیاه نخود با رشد زودتر از شرایط محیطی بهره بیشتری برده و در نهایت تعداد دانه در نیای افزایش بیا. ویژه و همکاران (۷۸) قربانی‌ها و یک تیپ در تحقیقات خود گزارش کرده‌اند که با تأثیر در کاست تعداد دانه

کاست، ۱۴۴ در نیای.

کاست قرار گرفت (جدول ۱) با به عربی افکن کاست تعداد دانه در نیای به‌طور معنی‌داری کاهش یافته (جدول ۲) با توجه به این که کاست، به صورت دم انگام گرفته و اصولاً در اواخر
تاکید تاریخ کاشت و تراکم بونه بر عملکرد و اجرای آن در زنویع‌های نخود زراعی…

دانه بیشتری تولید می‌کند اما در تراکم‌های بالا که رقابت بین بونه‌ها فزونی می‌گیرد، پتانسیل تولید دانه آن کاهش یافته است. پسیستگی متغیر و معنی‌دار تعداد دانه در نیمی از تعداد نیمی در بونه از 34/86 به 34/14 رسید (جدول 4) در تراکم پایین‌تر رقابت کم بوده و شرایط جهت حداکثر توان فتوستاتیک گیاه نسبتاً فراهم می‌باشد. بونه‌هایی که در این شرایط تکثیف شده‌اند به علت فراهم کردن مواد فتوستاتیک به سرعت زیاد توانستند دانه‌های این بونه‌ها با تولید مواد فتوستاتیک بیشتر در شرایط کمبود محیطی از عقیم‌ماندن نیامده کاهشی کرده‌اند (نکته 10 و 11).

وزن صد دانه

تاریخ کاشت تأثیر معنی‌داری بر وزن صد دانه داشت (جدول 1). بالاترین وزن صد دانه با کاشت در انتهای سه‌ماهه حاضر شد که با دو تاریخ کاشت دیگر اختلاف معنی‌داری نداشت. این بونه‌ها در این تاریخ با افزایش میزان نسبی از افزایش طول دوره برخوردار که در نتیجه بیشتری در وزن صد دانه با کاشت‌های انتهای سه‌ماهه بودند. البته کاهش وزن صد دانه با حاصل کاشت انطباق دارد. تفاوت بونه بر وزن صد دانه در سطح احتمالی یک درصد معنی‌دار بود (جدول 1). کمترین وزن صد دانه مربوط به بونه‌های از افزایش طول دوره برخوردار که در نتیجه بیشتری در وزن صد دانه با کاشت‌های انتهای سه‌ماهه بودند. البته کاهش وزن صد دانه با کاشت انطباق دارد. تفاوت بونه بر وزن صد دانه در سطح احتمالی یک درصد

گریتی با زنوتیپ 93-96 اختراع معنی‌داری داشت (جدول 2). به‌نظر می‌رسد تعداد زیاد بونه در بونه در این بونه موجب تشکیل رقابت بین نیام‌ها برای مواد فتوستاتیک شده است که تعیین دنیه کمتری در نیام‌های آن تائید شده است. فلاح و مامساران (5) در مطالعه زنوتیپ نخودی‌های مشابه را گزارش نموده‌اند اما در گیاهان شناس مقدماتی نظر نخود ناسامبد بودن شرایط محیطی تأثیر منفی در رون عوامل نخودی‌های داشته است (جدول 11).

روی تعیین وزن صد دانه کاهش داشت (جدول 2) در تعداد قبلی فقط در اثر معاینه کار تراکم با زنوتیپ بر عهده‌داری دانه در نیام معنی‌دار بود (جدول 1). در تراکم پایین تعیین دادن Flip بالاتر از نیام محلی بود، این حال با تفاوت بونه در این بونه اختراع معنی‌دار بین دو زنوتیپ وجود نداشت (شکل 4). از آنجا که در تراکم‌های پایین‌تر محدودیت محیطی برای گیاه کمتر از تراکم‌های زیاد است، به‌نظر می‌رسد با وجود این امر Flip 93-96 در هر نیام
شکل ۴. اثر مقیاس زنوتیب با تراکم بوتنه بر تعداد دانه در نیام

وزن صد دانه زنوتیب Flip ۹۳ حداکثر ۲ دصرد بیشتر از توده محلى گربه است. بوده که این اختلاف از لحاظ آماری معنادار بود (جدول ۴). به افتراقی تبادل داده، به گونه‌ای که کاهش عملکرد دانه کاهش دو می‌باشد و کاهش سوم نسبت به دو می‌باشد. (جدول ۲), به عبارت دیگر، به طور متوسط عملکرد دانه به یک روز تأخیر در کاهش حداکثر ۵/۵ کیلوگرم در هكتار کاهش یافته. طی‌ها استقرار و رسید زودتر در ابتدا فصل رسید سبب استفاده بیشتر از شرایط مساعد فرود و ارتباط ماه‌شده و از طرف دیگر اجزای زایشی که راه و تتأثیر تنش رطوبتی و حرارتی قرار گرفت (۱۰ و ۲۵). نمایان در کاهش زود با وجود افزایش تعداد نیامها، نتوان با تعداد دانه در نیام کم نسبت به دانه افزایش نیاز دانه (۳۳). پیر و والکر (۱۹۸۲) روزار و برادرد (۳۶) نیز در تحقیقات خود اعلام نمودند که با تأخیر در کاهش عملکرد دانه کاهش می‌آید.

اثر تراکم بوتنه بر عملکرد دانه در سطح استفاده پک درصد عملکرد دانه (۱۱۳۲ کیلوگرم در هکتار) با تراکم ۴۴ بوتنه در متر مربع به دست آمد که با بالاترین و تأثیر کاستی نیاز دانه با شرایط جهانی نسبت به کاستی نیاز دانه کاهش می‌آید.
تاahir تاریخ کاشت و تراکم بوته بر عملکرد و اجرای آن در زنجیره‌های نبوغ زراعی...

باید تنین تراکم بوته اختلاف معناداری داشته (جدول ۲). به افزایش تراکم برعلت رقابت بین بوته‌ها عملکرد تک بوته‌ها کاهش یافت ولی سرعت کاهش عملکرد تک بوته‌ها در تراکم ۲۴ بوته در متر مربع کمتر از افزایش عملکرد حاصل در ۶ بوته اضافه شده نسبت به تراکم ۱۸ بوته در متر مربع بود. از طرف دیگر در تراکم‌های بالا ایجاد رقابت بین اجزای رویی و زانی برای عوامل محیطی سبب کاهش اختصاص منابع و تولیدات فتوسنتزی اجزای زانی می‌شود و همین امر در کاهش عملکرد تراکم‌های بالا نتیجه ذداد. این نتایج به بررسی‌های پیشین مطابقت دارد.

بعضی مواقف بی‌پروزی در مورد گیاهان زراعی را نشان می‌دهد. مانند تولید مصرفی بالای گیاه‌های زراعی در اثر تراکم‌های بالا که از اکثریت افراد برای کاهش تولید مواد خوراکی مورد نیاز افراد در قالب عملکرد بالایی از طریق تولید منابع غذایی به دست آورده سندرم مزید می‌کنند. در این باره گزارش صادرازهک از افزایش تراکم در مزارع نوروژ نشر داده بود که افزایش تراکم در مزارع نوروژ نسبت به گستره‌های تولید زیاد در بوته‌های عمومی به دست آمده و در این حال زودرسی آن نبود. این تغییر با برخوردی از تیب رشد کشت رخید سبب کاهش نسبت به دیگر روش‌های استفاده می‌شود. بهترین نیازی است که زود رسی آن بر بهبود شدکه گل‌دهی و نیاین بندی قابلیت تشخیص رطوبت و حرارتی صورت نگرفت و (۱۰ و ۱۱). بافت‌های فیتوفیسیولوژی و همیکاراک (۲) نیز در نتیجه‌گیری را تایید می‌نماید.

واکنش عملکرد دانه به تراکم بوته در تاریخ‌های مختلف کاشت یکسان نبود. به‌طور کلی در کاشت اول یک رابطه منفی بین تراکم بوته و عملکرد دانه وجود داشت (۹) با نتایج

در کاشت عکسی عملکرد به نقطه نهایی شد

ماله خشک

اثر تاریخ کاشت بر ماده خشک در مساحت ۱/۰ معنادار

۱۴۳
شکل 5. اثر مقاول تاریخ کاشت با تراکم بوته بر عملکرد دانه

شکل 6. اثر مقاول زنونی با تراکم بوته بر عملکرد دانه

تعداد بوته در متر مربع

ستون‌هایی که دارای یک حرف مشترک هستند، فاصله تفاوت آماری معنی‌دار بر اساس آزمون جن دانه‌ای دانکن در سطح احتمال ۰.۰۵ رصد می‌باشد.

 تحت تأثیر قرار داده و در ترتیب همگن مقدار ماده خشک تولید شده در هکتار کاهش یافته است. نتایج این تحقیق با دبیر مطالعات مطبوعاتی دارد (۲۸ و ۳۰). تأثیر در کاشت حدود ۲۴۰ کیلوگرم در هکتار کاهش نشان داد. تأثیر در رشد نخود هم رشد روندی و هم رشد زایشی را

۱۳۲
جدول 3: ضرایب همبستگی بین صفات مورد مطالعه

<table>
<thead>
<tr>
<th>شاخص برداشت</th>
<th>وزن صد دانه</th>
<th>عملکرد ماده خشک</th>
<th>تعادل نیام</th>
<th>تعداد نیام در بوته</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>در بوته</td>
<td>وزن صد دانه</td>
<td>تعادل نیام</td>
<td>تعادل نیام در بوشه</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/6/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/6/3</td>
</tr>
</tbody>
</table>

* و **: ترتیب معنی‌دار در سطح احتمال 0.05 و 0.01

هیچکدام از اثرات مقیاسی بر وزن ماده خشک معنی‌دار نبودند. همبستگی مثبت و معنی‌دار ماده خشک با عملکرد دانه (جدول 3) در تراکم‌های مبتنی بر قدرت کاهش ماده خشک تک بوته‌ها کمتر از افرادی ماده خشک ناشی از افزایش تعادل بوته در واحد سطح بوشه و کاهش در اثر رقابت کمتر بین بوته‌ها به خصوص طی دوره رشد روشی دانسته شد. در تراکم بالا به عنوان افزایش سطح تعرق کننده، نشانه افزایش عمکرد تولید بیشتر برای افزایش تولید افزایش عمکرد رشد روشی مناسب از امر نشان می‌دهد، به‌طور مسئولی‌تر از افزایش عمکرد نیز ماده خشک نهایی افزایش می‌دهد. این همبستگی‌ها با همبستگی‌ها با همبستگی یارانه شده توسط فلاح (۳) هم‌خوانی دارد.

شاخص برداشت

اثر زنوزیپ بر شاخص برداشت معنی‌دار بود و اثر سایر عوامل آزمایشی در صفر معنی‌دار نبود. شاخص برداشت زنوزیپ یا به‌طور معنی‌داری بالاتر از توده محلی گریت بود که این امر به ماده خشک بالاتر توده محلی مربوط می‌باشد. احتمالاً سازگاری توده محلی و خصوصیات زنوزیپی آن عامل افزایش ماده خشک و در نتیجه کاهش شاخص برداشت می‌باشد. تفاوت شاخص برداشت بین زنوزیپ‌های مختلف نتوان توسط سایر مقادیر نزدیک گزارش شده است. (۷). تفاوت در اجزای توزیع و تخصیص ماده فتوستروی بین زنوزیپ‌ها غالب سبب تفاوت در شاخص برداشت در گیاهان مختلف می‌شود.

همین‌طور همبستگی شاخص برداشت با عملکرد دانه (۳/۴=۰/۵) و همبستگی شاخص برداشت با عملکرد بوشه (۳/۴=۰/۵) Drop
نتیجه‌گیری

زراعین منطقه بایا کنترل علف‌های هرز کاشت را با تأخیر انجام می‌دهند. بر اساس حاضر این تأخیر در کاشت حدود ۴۲ روز (۱۱۹ کیلوگرم در هکتار) کاشت می‌شود. را به‌دنبال داشت. بیابنی پرای استفاده بیشتر از فصل رشت و متابع مورد استفاده

۱. آمارنامه کشاورزی ۱۳۸۳. دفتر آمار و فن‌آوری اطلاعات. نشریه هماه.

۲. قانی، ع.، نظامی، ع.، محمد آبادی، و ج. شهابی. ۱۳۸۳. مطالعه اثرات کنترل علف‌های هرز و تراکم بیونه‌های گروه‌بندی، ترکیبی و اجرای عملکرد آن در شرایط دم شمای خراسان. مجله علوم و صنایع کشاورزی ۱۲: ۱۰۱-۱۵۴.

۳. برسا، ح.، نظامی، ع.، بارقی، ع.، محمد آبادی، و ح. رستگار. ۱۳۸۲. تأثیر نکته‌های پایه‌های زمانه بر خصوصیات مورفولوژیکی عملکرد و اجرای عملکرد ناخود در شرایط حرارت فاصله در خراسان (شیروان). مجله علوم کشاورزی و متابع طبیعی ۱۱(۲):۴۲-۵۱.

۴. فلاح، س.، افشار، ز.، و دانشور. ۱۳۸۴. مطالعه اثرات تراکم بیونه و آبیاری تکمیلی بر عملکرد و اجرای عملکرد سه رقیم ناخود در دم بیان کشاورزی ایران ۳۱:۴۱-۵۱.

۵. قازی، ح.، و م. نیک‌هی. ۱۳۸۵. واکنش عملکرد دانه ارگی سیا و اجرای آن به تأخیر در کاشت. مجله دانش کشاورزی ۰۱۵:۱۹-۲۱.

۶. میمن، حسینی، ن.، محمدی، د.، بودیکی، ح.، زرآ، ع.، ع.، و ح. زرآ. ۱۳۸۴. تأثیر تراکم بیونه بر صفات زراعی، میزان کاراپل و درصد انتقال مجدد ساچه در ارگی ناخود سیزی (Cicer arietinum L.). مجله علمی کشاورزی ایران ۳۳:۱۱-۱۱۲.

phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Res. 98:230-244.

