تأثیر نشی کم آبی، ازدادی دی‌اکسید کربن و اشعه ماورای نفیش بر صفات کیفی

(Triticum turgidum L. var. durum Desf.)

حمیدرضا بلوجی، سید علی محمد مدرس ثانوی 1، یحی امام 2 و محسن برزگر 3

(تاریخ دریافت: 18/6/19، تاریخ پذیرش: 8/6/21)

چکیده
مقدمه
واژه‌های کلیدی: اشعه ماورای نفیش، دی‌اکسید کربن، نش‌خشکی، صفات کیفی، نگهداری

استاکتی و رشد‌های است (27). کمبود آب سبب آسیب به

مقدمة

تشی آبی و گرم شاخص مهم‌ترین نشی‌های باشند که کشاورزان

در نواحی مرزی و غربی ایران آنها به او راه بر هستند. دانه

گندم دوروم دارای ویژگی‌های منحصر به فردی برای بهبود

سموی‌ها و در نهایت محصولات پاسدا شامل انواع مکاروی،

1. به ترپیم دانشجوی سابق دکتری و دانشیار زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
2. استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز
3. دانشیار منابع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

: modaresa@modares.ac.ir

167
بعض مختلف افزایشی CO2 کند (6). اثر افزایش CO2 به‌طور عمده در نتیجه تجزیه جهش‌های فتوستری، افزایش میزان انرژی الکترون و خارجی به فتوستری می‌باشد (16). مخلوط مخلوط UV به‌طور معمول در افزایش داده است.

تغییرات مصرف فتوستری را نشان می‌دهد که افزایش CO2 برای نمات‌های فتوستری UV محصولات کربوهیدرات‌های محلول را 20 درصد، محتوای ناشتهای 0 تا 10 درصد و محتوای کربوهیدرات‌های غیرمحول را تا 50 درصد به‌طور معنی‌داری افزایش داده است.

محققان با آزمایش ری گند به‌طور محاسبه شکسی و تغییرات گفته می‌شود که UV به‌طور افزایش محتوا کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).

عندوما و در افزایش UV محصولات، هپارد، و آنتی‌ژن‌های دیگر یافته‌ها را در افزایش UV محصولات کربوهیدرات‌های محلول Ra به‌طور متوسط در حدود 75٪ کربوهیدرات b Ra کاهش داده (17). افزایش UV هرگاه گرانش کند به نشانه کربوهیدرات UV افزایش یافته و میزان ترکیبات جذب نشده UV به‌طور مشخصی افزایش می‌یابد (16).
تآیر نش کم، آبی ازدیاد دی اکسید کربن و اشعه مکانیکی بر صفات کیفی...
جدول 1: آزمون تجزیه خاک مورد آزمایش

<table>
<thead>
<tr>
<th>درصد وزنه ترکیبات</th>
<th>شیشه گدازه</th>
<th>ترکیبات تصویر (باستی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>14/8</td>
<td>19/19</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برای تعیین غلظت پروتئین به روش بارادورد و با توجه به غلظت نمونه‌های پروتئین شاهد حاصل از آلیمیر سرم گرداي به‌وسیله دستگاه اسپکتروفروتومتر در طول موج 550 نانومتر تعیین شد. در نهایت مقادیر پروتئین به‌صورت غلظت بر حسب میکروگرم بر گرم وزن مربوط به جرید (11). برای نسج فلامونیدها میزان جذب عصاره حاصل از برق کیاه را با توسط اسپکتروفروتومتر UV-S نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). برای انتخاب گیری آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 نانومتر استفاده اسپکتروفروتومتر UV-S 2100 نمونه 2100 در طول موج‌های 250، 300، 350 نانومتر خوانند و میزان فلامونیدها بی‌اساس جذب بر میلی گرم وزن تر به بیان گردید.

(23). براش انتخاب آنتوسیانین جذب این ماده در طول موج 550 Nامعلوم A حاصلو در میان وزن خشک برگ مشاهده گردید(جدول 3). مقایسه میانگین‌های مقادیر فلامونیدها (در طول موج‌های 300، 330، 350 نانومتر) و کاراکترهای برگ گنبد و فلامونیدهای درون نشان داشت که بین‌شیر آنان در سطح مشاهده شده بود که قبل از افزایش شدت اشعه مایع برخالت میورد افواح و فلامونیدها و کاراکترهای برگ گنبد در دوره افراشته می‌باشد جدول 3.

(23). ناگار جاقریک که در گیاهان قرار گرفته‌د معرض تعریف UV محصولات فلامونیدها و آنتوسیانین افزایش می‌دهد. معمولاً در یک قسمت (100)، تجمع آنتوسیانین‌ها و درگیر ترکیبات جذب کننده UV فلامونیدها و مجموع فلوربما بعد از تشخیص در گیاهان گزارش شده است(23 و 22) که نتایج این پژوهش را مورد تأیید قرار می‌دهد. ترکیبات مکمل استفاده می‌تواند بر روی عناصر غربال‌های خورشیدی عمل کند و UV RA قبل از آنکه به ادامه می‌رود استفاده کرد. اما به‌نظر می‌آید این مواد ناکافی باشد. بنابر این، برای بررسی UV محصولات کاراکترپلیر برگ شده است (7). به هر حال، نقش این ترکیبات در طور کامل مشخص نشده و منکش است مکمل است شیمی تفکر گیاه‌دهی جاربی کرد رادیکالها باشد. در بیماری از گونه‌های گیاهی مشخص شده که مستند برخی از مشتقات مسیر
جدول 2: تجزیه واریانس صفات کیفی برگ پرچم گندم دوروم تحت تنش کم آب. افزایش دی اکسید کرین و تشعشع مصورای بخش

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>آزادی آنتونسیان</th>
<th>محلول برگ</th>
<th>کربوهیدرات‌های محلول برگ</th>
<th>فلامونی</th>
<th>کاروتئنود</th>
<th>کاروتئن</th>
<th>محلول برگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>0.04</td>
<td>0.005</td>
<td>0.075</td>
<td>0.0015</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>تشغیب</td>
<td>2</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>دی اکسید کرین</td>
<td>1</td>
<td>0.01</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>خشکی</td>
<td>1</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>تشغیب × دی اکسید کرین</td>
<td>2</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>تشغیب × خشکی</td>
<td>1</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>دی اکسید کرین × خشکی</td>
<td>2</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>خطا آزمایش</td>
<td>22</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>ضریب تغییرات (٪)</td>
<td>ns</td>
<td>0.001</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

*، ** به ترتیب عدم وجود اختلاف معنادار، معنادار در سطح احتمال 5٪ و 1٪.
جدول ۳: مقایسه میانگین برخی از صفات کیفی یک گرم گندم دوروم تحت تأثیر تیمارهای کمبود آب، افزایش دی‌اکسید کربن و اشعه ماورای بخش‌های UV-A و UV-B و UV-C

<table>
<thead>
<tr>
<th>تیمار</th>
<th>کاروتئن</th>
<th>کاروتئن b</th>
<th>کاروتئن</th>
<th>لهجه در گرم وزن‌بر</th>
<th>وزن‌بر</th>
<th>وزن‌بر</th>
<th>(میلی‌متر)</th>
<th>(میلی‌متر)</th>
<th>(میلی‌متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-B</td>
<td>0/229</td>
<td>1/185</td>
<td>0/228</td>
<td>0/302</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
</tr>
<tr>
<td>UV-C</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
</tr>
<tr>
<td>UV-A</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
<td>0/353</td>
</tr>
</tbody>
</table>

شکل‌گیری تیمار اشعه ماوراء، UV-B و UV-C

توجه: در این جدول میانگین محاسبه گردیده برای تیمارهای مختلف با استفاده از آزمون دانک (منطقی) با هر میانگین. ممکن است با حروف مشابه در هر ستون بر اساس آزمون دانک (میانگین) اختلاف معنی‌داری نداشته باشد.
تأیید تنش کم آی، ازدیده در اکسید کرین و اشعه ماورای بیش بر صفات کیفی...

فیلی پروتاکس شمار فلارونونیها مثل فلارونونیا، فلارونونیا و همچنین آنتوسیانین ها در پایان UV تشیوع می‌شود (16) و چون این ترکیبات در واکنش سولنیای اپیدرمی تجمیه می‌باشد و نور UV را به خود جذب می‌کند، از این رو این اشکه به فسته‌های حساس برق مثل فستونیا سولنیای (باتریشم وردنی) و جلوگیری می‌نماید (16). فلارونونیها ترکیبات مربوط به UV را بهطور مطلوبی جذب می‌کنند، اما طیف‌های عال فستونیا را جذب نمی‌کنند (15). و اجازه می‌دهد فستونیا در زمانی که طول موج‌های UV به ایزوند برسد برخورد می‌کند اما به‌این‌گونه که این اکسیداتور را به‌طور مطبوع سازنده در پرورش UV حفاظتی به‌هنهار دارد (16). این بخش از فلارونونیها به‌صورت باند در دیواره‌های پوستی و جداره‌های موجود در خون و دندان‌ها و جنگل هم‌کاری می‌کند.

مقادیر رنگ‌های آنتوسیانین، کروم‌هیدرات‌های محلول فلارونونیها (در طول موج‌های 370، 360 و 330 نانومتر) و کروم‌هیدرات‌های محلول برگ کروم‌هیدرات در سطح اثر افزایش غلظت دی‌کسیدور در سطح 1٪ و میزان کروم‌هیدرات در سطح 5٪ فرار گرفتن داشت. افزایش غلظت دی‌کسیدور در میزان کروم‌هیدرات برگ کروم‌هیدرات در میزان کروم‌هیدرات در سطح 5٪ فرار گرفتن داشت.

(27) و (33). تصمیم و همکاران (1998). واکنش کردن که بیان می‌کند که با برگ هم‌کاری می‌کند که بیان می‌کнд که با برگ هم‌کاری می‌کند که بیان می‌کند که با برگ هم‌کاری می‌کند که بیان می‌کند که با برگ هم‌کاری می‌کند که بیان می‌کن.
اهم متن دایری نشان داد (جدول 2). کمبود آب منجر به کاهش معمولی در مقادیر فلاونوئیدها (طول موج‌های 330 و 280 نانومتر) و کارافوفیل b, b'+ b و کارونتوئیدهای برق گندم دوروم گردید (جدول 3).

کمبود آب سبب آسیب به رنگ‌ها و پلاستیک‌ها می‌گردد. کاهش محتوای کارافوفیل نیز نشان گزارش شده است (14) و بیان می‌رسد که این کاهش در کارافوفیل b بیشتر است. (24) محققان همچنین در پژوهش که نشان داد که تنش خشکی نیز باعث افزایش سرعت تجزیه کارافوفیل می‌شود (38). می‌تواند وضعیت فلکسیون و همکاران گزارش کرده این امر تنش خشکی کاهش کارافوفیل a به‌طور متوسط در حدود 25% و کارافوفیل b 28% کاهش داد (24). هم‌سطحی مثبت غلظت CO2 زیست‌محیطی و کسب و نهایت کارافوفیل 6 کربنوتراژیک مقاومت به تنش است. به‌نظر می‌رسد که کاهش غلظت کارافوفیل تحت تنش به واسطه اثر کارافوفیلاز، پراکسیداز و ترکیبات فنی و در تیبه تجزیه کارافوفیل باشد. (24).

مقدار فلاونوئیدها طول موج‌های 270 و 330 نانومتر و کارافوفیل a, b و b, b' و کارونتوئیدها و پرتوئیدها کاهش شد که تنش در سطح 400 میکرومول بر مول هوا در کارافوفیل a و b و کارونتوئیدهای برق گندم نشان داد. در سایر سطح تنش تغییرات غلظت دی‌اشکیده‌ها نشان داد که اختلاف معنی‌داری بین میزان فلاونوئیدها در دو گروه عامل هیچ گونه نمی‌تواند معنی‌داری اثر متفاوت شدت‌های مختلف تنش در اثر کاهش b گروه معنی‌داری (1/3, 0.5/0) بر کارافوفیل و کارونتوئیدها. فرانبه‌ها و تنش داده‌ها نشان می‌دهد که کاهش معنی‌داری در b عامل کاهش معنی‌داری (جدول 3) در سطح کارافوفیل a و b نتایج مشابه ای را نشان می‌دهد. (24) محققان از دیدگاهی مثبت می‌گویند که کاهش خشکی نیز باعث افزایش سرعت تجزیه کارافوفیل می‌شود (38). در این مطالعه، بیشترین میزان رنگ‌ها و پلاستیک‌ها در گروه کاهش معنی‌داری A+ b در سطح 400 میکرومول بر مول هوا در کارافوفیل a و b نتایج مشابهی نشان دادند. در این مطالعه، بیشترین میزان رنگ‌ها و پلاستیک‌ها در گروه کاهش معنی‌داری A+ b در سطح 400 میکرومول بر مول هوا در کارافوفیل a و b نتایج مشابهی نشان دادند. در این مطالعه، بیشترین میزان رنگ‌ها و پلاستیک‌ها در گروه کاهش معنی‌داری A+ b در سطح 400 میکرومول بر مول هوا در کارافوفیل a و b نتایج مشابهی نشان دادند. در این مطالعه، بیشترین میزان رنگ‌ها و پلاستیک‌ها در گروه کاهش معنی‌داری A+ b در سطح 400 میکرومول بر مول هوا در کارافوفیل a و b نتایج مشابهی نشان دادند.
تاپر نش کم آبی، ازاریه دی اکسید کربن و اشعه مواریا بخش بر صفات کیفی...
جدول ۶: مقایسه میانگین صفات کیفی برگ پرچم گندم دوروم تحت تأثیر مختلف تیمارهای افزایش دی اکسید کربن و کمبود آب

<table>
<thead>
<tr>
<th>آنوسین (جذب در کرم وزن خشک برگ)</th>
<th>دی اکسید کربن</th>
<th>خشکسال</th>
<th>نانومتر</th>
<th>نانومتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>57.8</td>
<td>67.8</td>
</tr>
<tr>
<td>130 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>57.5</td>
<td>67.5</td>
</tr>
<tr>
<td>140 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>57.5</td>
<td>67.5</td>
</tr>
<tr>
<td>150 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>57.5</td>
<td>67.5</td>
</tr>
<tr>
<td>160 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>57.5</td>
<td>67.5</td>
</tr>
<tr>
<td>170 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>57.5</td>
<td>67.5</td>
</tr>
</tbody>
</table>

جدول ۷: مقایسه میانگین برخی از صفات کیفی برگ پرچم ماکارونی تحت تأثیر مختلف تیمارهای افزایش دی اکسید کربن

<table>
<thead>
<tr>
<th>آنوسین</th>
<th>دی اکسید کربن</th>
<th>خشکسال</th>
<th>بخش</th>
<th>مول هوا</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>UV-A</td>
<td>400</td>
</tr>
<tr>
<td>130 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>UV-B</td>
<td>900</td>
</tr>
<tr>
<td>140 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>UV-C</td>
<td>400</td>
</tr>
<tr>
<td>150 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>UV-C</td>
<td>900</td>
</tr>
<tr>
<td>160 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>UV-C</td>
<td>400</td>
</tr>
<tr>
<td>170 < (ppm)</td>
<td>آبیار</td>
<td>کمبود</td>
<td>UV-C</td>
<td>900</td>
</tr>
</tbody>
</table>

درصد متغیر است و تنش خشکسال نیز بسته به رقم میانگین است. فضای این ترکیبات را در برگ کاهش با افزایش دهند (21). تجمع کربوهیدرات‌های محلول در برگ در مرحله نش خشکسال معرف عدم انتقال آنها به این مقصدها به واسطه پاپین بودن ظرفیت مقصد (دانه) و عدم نیاز دانه به کربوهیدرات‌های محلول با بالا بودن قدرت برگ در تولید این ترکیبات و یا نیاز
به کربوهیدرات‌های محلول در تنظیم امسال برگ است.

نوبتی و همکاران گزارش کردند که محلول فندهای احیا UV-AB, A, B, C کندنی و در تیمارهای ۶۳ و ۷۷ درصد نسبت به کنترل کاهش نشان می‌دهد. (۴) کاهش محلول فندهای احیا کندنی در تیمارهای UV شاخه‌ای است که محلول فنسترو را نشان می‌دهد و این کاهش فنسترو به دلایل مختلفی می‌باشد. گزارش شده است که شاخه‌ای تیلاکوتیدی به دلیل دانستن اجرای چرب اشیاع فرآوان تحت تأثیر ناهنجاری‌های آزاد اکسیژنی ناشی از تنش UV فنسترو گرفته و اکسید می‌شوند و نیازهای سلولی غشایی در تیلاکوتیدی مخلوط شده که محلول فنسترو و تولید انرژی را با UV مشکل مواجه می‌کند (۴۴). از آنجا که گیاهان تیمار شده با UV تماس به طرفی معنی‌داری دارد، یا فنسترو در آنها کاهش مدایب و کاهش فنسترو کاهش محلول فندهای احیا کندنی را در پی دارد (۱۶).

آیناروس و همکاران گزارش کردند که افزایش CO2 محتوا کربوهیدرات‌های محلول را ۲۰ درصد، محیا محتوا نشانه‌ای را ۱۲۰ درصد و محیا کربوهیدرات‌های غیر محلول را ۴۸ درصد به طور معنی‌داری افزایش داده است (۶). تاسرامار و همکاران گزارش کردند که نهایی به دلیل افزایش قند محلول محیا کربوهیدرات کل یا فنسترو (CO2) در ۱۰ درصد UV و یا افزایش (۵۰ درصد) افزایش منتقل ۳٪ در مجموع UV بیشتر از CO2 مشاهده می‌رسد.

فلانکینیهایی که در سطح جنگل ۳۷۵ نانومتر (۶) بیشتر تحت تأثیر اشعه مواردی تنفس بوده، به طوری که بیشترین مقدار فلانکینیهایی در سطح تشغیل تیلاکوتیدی B مشاهده گردید و بین غلته‌های مختلف دیویدی کری و مقدار مختلف آب آبایی در این سطح از تشغیل اختلاف معنی‌داری مشاهده نشد (جدول ۱).

فیشر اشکالی بسیار زیرا در این بحث ها کسب شده بود که در UV دسترس است و همچنین می‌باشد که در این آبایی بیشتر است (۲۲). علاوه بر این چون پلاستوکونین‌ها موجود در مرکز و اکسیژنی بیشتر ۴ جانبه ۲۴ اشکال UV هستند حساسیت آنها در UV بیشتر است. به‌عنوان چندین جایگزین UV و پلاستوکونین‌های آن UV توسط این فنسترو باعث تfebیر پروتئین‌ها D2 و D1 کمیتیک شکست آب را به آب کربوهیدرات‌های محلول در تنظیم امسال برگ است.

و در سطح تشغیل فنسترو A بیشترین مقداری از UV ۴۰۰ میکرو مول بر مول هوا و دیویدی کری و رشد بدون تنش آبی بیشتر برای ۱/۳۸ و ۴۹۶/۵ میلی‌گرم در گرم

۱۷۸
منابع مورد استفاده

