تأثیر تنش کم آبی، ازدحام دی اکسید کربن و اشعا ماورای بنفش بر صفات کیفی

(Triticum turgidum L. var. durum Desf.)

برگ پرچم گندم دوروم

حمیدرضا بلوجی، سید علی محمد مدرس ثانویه، یحی امام و محسن برزگر

(تاریخ دریافت: 1364/1/27، تاریخ پذیرش: 1365/5/27)

چکیده

خشکی، تنش ماورای بنفش و افزایش غلظت دی اکسید کربن، به تنش عمده محیطی هستند که آینده غذاها پیش را تحت تأثیر قرار خواهند داد. این پژوهش در 5 لنگنه تحقیقاتی دانشگاه کشاورزی دانشگاه تربیت مدرس تهران در سال 1385، به منظور بررسی صفات گیاه بی‌برگ پرچم گندم دوروم تحت تأثیر مختلف دی اکسید کربن (0، 200 و 600 میکرومول بر مول هوا)، اشعه ماورای بنفش (UV-A، B، C) و کمبود آب آبی‌ای (به میزان 60٪ ظرفیت مزروعه) اجرا گردید. نتایج نشان داد که با افزایش شدت اشعه ماورای بنفش، میزان رشد به روندی مثبت افزایش یافت. میزان انرژی بی‌برگ برگ با توجه به نتایج قاره‌برداری گیاه در دریافت ضریب بی‌برگ که رشد را به سمت ترشح عمده محیطی در آینده با کاهش کاهش نرخ بی‌برگ و کاهش هدایت گیاه به پراکندگی محورهای محول بی‌برگ منجر به کاهش عوامل کیفی و کیفیت گندم مورد بررسی خواهد شد.

واژه‌های کلیدی: اشعه ماورای بنفش، دی اکسید کربن، تنش خشکی، صفات کیفی، گندم دوروم

مقدمه

تنش آبی و گرما شاید مهم‌ترین تنش‌های باشند که کشاورزان در نواحی مرطوب و غربی ایران یا اماه را رو به رو هستند. دانه گندم دوروم دارای رئیس‌های محورهای مکان‌‌های *

1. به ترتیب، دانشجوی دکتری و دانشیار زراعت، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران
2. استاد زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز
3. دانشیار صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران

* مسول مکاتبات، پست الکترونیکی: modaresa@modares.ac.ir
نتایج آزمایش

در این آزمایش در محیط آزمایشی، دانشکده کشاورزی دانشگاه تربیت مدرس تهران در طول هفته سوم تعداد کلیه دما 25/30 درجه سانتی‌گراد و رطوبت برابر با مسوغه مخلوط بود.

مقدمه و روش‌ها

آزمایش در دانشگاه تربیت مدرس تهران در دما 25/30 درجه سانتی‌گراد و رطوبت برابر با مسوغه مخلوط بود.

نتایج آزمایش

در این آزمایش در محیط آزمایشی، دانشکده کشاورزی دانشگاه تربیت مدرس تهران در طول هفته سوم تعداد کلیه دما 25/30 درجه سانتی‌گراد و رطوبت برابر با مسوغه مخلوط بود.
تأيیر لیفت کم آبی، ازدیدی در کسب و کار کریم و اشاعه ماورایی بینش بر صفات کیفی...
جدول 1: آزمون تجزیه خاک مورد آزمایش

<table>
<thead>
<tr>
<th>فرآیند و سیستم</th>
<th>نام خاک</th>
<th>شیئ - لومی</th>
<th>رس</th>
<th>سرقت</th>
<th>یکنواخت (سانیتی متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/0</td>
<td>16/8</td>
<td>13</td>
<td>62</td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>7/2</td>
<td>14/8</td>
<td>13</td>
<td>62</td>
<td>19</td>
<td>68</td>
</tr>
</tbody>
</table>

میزان 1.167 میلی مول در گرم وزن خشک برک مشاهده گردید (جدول 3). مقایسه میانگین های مقادیر فلاوانئیدها (در طول موج‌های 230، 270، 300 و 330 نانومتر) و کاروتئن‌های برک کندم در میزان نشان داد که بیشترین میزان فلاوانئیدها و کاروتئن‌های در طحل تشعشع فرابنفش B به ترتیب به میزان 84/67 و 66/67 عضد بدنی در گرم وزن خشک برک و 74/28 میلی‌گرم در گرم وزن برکی قابل ملاحظه‌ای در سطح تشعشع دیده شد (جدول 3). میزان نتیجه‌گیری گرفته که با افزایش شدت اشعه ملایم بهینه میزان رنگدانه‌های آنتوسیانین و فلاوانئیدها در کنار فلاوانئیدها برک کندم دوره افزایش می‌یابد.

(جدول 3)

نام و بیکر گزارش کردن که در گیاهان قرار گرفته در معرض نیاز UV محیط‌ها فلاوانئیدها و آنتوسیانین افزایش می‌یابند. UV جمله آنتوسیانین‌ها و دیگر ترکیبات جذب کننده UV فلاوانئیدها و مجموع فلور، باعث افزایش شدت UV در گیاهان قرار شده است (62 و 19 که نتیج پیوسته را مورد نیاز قرار می‌دهد. ترکیبات فوق معمول است برک را به عنان غربال‌های خورشیدی عمل کند و UV را قبل از آنکه به اندازه حساس خود از قبیل کلرولیپاتیدها و دیگر اندازه‌های حساس بسیار بسیار استفاده کند. اما بینظیر نمی‌آید این مواد با عوامل حساسی ناکافی باشند. جذب کننده UV می‌تواند به کاهش محتوای کاروتئن برک نشته است (7). به هر حال، نقش این ترکیبات به طور کامل مشخص نشده و ممکن است شامل یک نقش دفاعی هم‌مانند جاروب کردن رادیکال‌ها باشد. در بسیاری از کارهای گیاهی مشخص شده که سنتز بروز از مشتقات مسیر

برای تعیین غلظت پروتئین به روش برادفورد و با توجه به غلظت نمونه‌های پروتئین شاهد حاصل از آلیمن سرم گازی به‌وسیله دستگاه انستیگنومتر در طول موج 595 نانومتر تعیین شد. در نهایت مقدار پروتئین به‌صورت غلظت بر حسب میکروگرم بر گرم وزن تهیه‌گردید (11). برای نسبت فلاوانئیدها میزان جذب عصاره حاصل از برک کیا را با توجه به نسبت UV-S و UV-A و UV-B، نمونه اکسپرس برک 2100 و 330 نانومتر خوانده و میزان فلاوانئیدها بر اساس جذبی بر میلی گرم وزن تهیه گردید (33). برای انتخاب گیری آنتوسیانین‌های جذبی این ماده در طول موج UV-S و UV-A، نمونه اکسپرس برک 2100 و 330 نانومتر خوانده شد. برای محاسبه غلظت آنتوسیانین‌ها از ضریب خاموشی معادل 33000 cm⁻¹ M⁻¹ استفاده گردیده و غلظت آنتوسیانین‌ها با استفاده از زیر فرمول آماری SAS تجزیه واریانس داده‌ها با استاندارد بردار آماری انجم گرفت (37). مقایسه میانگین داده‌ها نیز با استفاده از آزمون چند دامنه دانکن در سطح 5% صورت گرفت (44).

نتایج و بحث

تجربه واریانس صفات کیفی نشان داد که تشعشع فرابنفش بر میزان آنتوسیانین، فلاوانئید طول موج‌های 230، 270 و 330 نانومتر، کلرولیپاتید و یکنواخت (سانتی متر) نظارت برک کندم اثر معنی‌دار (P≤0/01) دارد (جدول 2). کمترین میزان آنتوسیانین در سطح تشعشع A به میزان 98/6 میلی مول در گرم وزن خشک برک و پیشرفت B به مقدار آنتوسیانین مربوط به اشعه ملایم برک در سطح
جدول 2: تجزیه ورایانس صفات کیفی برگ پرچم گندم دوروم تحت تنش کم آب، ازدحام دی اسید کرین و تشعشع ماورای بنفش

<table>
<thead>
<tr>
<th>درجه</th>
<th>منابع تغییرات</th>
<th>آنوسیانین محلول برگ</th>
<th>کربوهیدرات‌های محلول برگ</th>
<th>فلاورونید</th>
<th>کاروتئین</th>
<th>پروتئین محلول برگ</th>
<th>a+b کاروتئین</th>
<th>a کاروتئین</th>
<th>b کاروتئین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ns</td>
<td>تکرار</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td>2 ns</td>
<td>تکرار</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>تشعشع</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>تشعشع × خشکی</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>تشعشع × دی اسید کرین</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>تشعشع × دی اسید کرین × خشکی</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>خشکی</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>خطای آزمایش</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0043</td>
<td>0.0012</td>
<td>0.0048</td>
<td>0.0012</td>
<td>0.0043</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

*، **: به ترتیب عدم وجود اختلاف معنادار، معنادار در سطح احتمال 5% و 1%
جدول 3. مقایسه میانگین برخی از صفات کیفی یک پرچم گندم دوروی تحت تأثیر تیمارهای کمبود آب، افزایش دی‌اکسید کربن و اشعه ماورای نشین

<table>
<thead>
<tr>
<th>کاروتئنید</th>
<th>کاروتئنید</th>
<th>کاروتئنید</th>
<th>فلورونیزید</th>
</tr>
</thead>
<tbody>
<tr>
<td>پرچم</td>
<td>پرچم</td>
<td>وزنتر برک</td>
<td>پرچم</td>
</tr>
<tr>
<td>أنتوسیانین</td>
<td>جذب در کرم وزن خشک برک</td>
<td>میلی مول در کرم وزنتر برک</td>
<td>میلی مول در کرم وزن خشک برک</td>
</tr>
<tr>
<td>اشعه ماوراء</td>
<td>UV-A</td>
<td>UV-B</td>
<td>UV-C</td>
</tr>
<tr>
<td>پنفشن</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a+b کاروتئنید: 0.23</td>
<td>1/85</td>
<td>0.53</td>
<td>0.29</td>
</tr>
<tr>
<td>a کاروتئنید: 0.39</td>
<td>1/36</td>
<td>0.74</td>
<td>0.49</td>
</tr>
<tr>
<td>a کاروتئنید: 0.33</td>
<td>1/135</td>
<td>0.30</td>
<td>0.85</td>
</tr>
<tr>
<td>a کاروتئنید: 1/69</td>
<td>0/56</td>
<td>0.18</td>
<td>0.34</td>
</tr>
<tr>
<td>a کاروتئنید: 0/44</td>
<td>1/51</td>
<td>0.46</td>
<td>0/211</td>
</tr>
<tr>
<td>a کاروتئنید: 0/32</td>
<td>1/45</td>
<td>0.44</td>
<td>0/427</td>
</tr>
<tr>
<td>a کاروتئنید: 0/25</td>
<td>0/48</td>
<td>0/65</td>
<td>0/231</td>
</tr>
<tr>
<td>a کاروتئنید: 0/15</td>
<td>0/76</td>
<td>0/85</td>
<td>0/55</td>
</tr>
<tr>
<td>a کاروتئنید: 0/10</td>
<td>0/76</td>
<td>0/85</td>
<td>0/55</td>
</tr>
<tr>
<td>a کاروتئنید: 0/05</td>
<td>0/76</td>
<td>0/85</td>
<td>0/55</td>
</tr>
</tbody>
</table>

اعداد با حروف مشابه در هر ستون به اساس آزمون دانکن (P ≤ 0.05) اختلاف معنی داری ندارند.
تأیید نشته کم آبی از اکسید کربن و اشعه ماورای بیش بر صفات کیفی...
این گزارش نظریه‌ای در مورد کارفورفیل و اثر‌های آن بر منشا کاهش می‌باشد. کاهش معنی‌داری در مقدار فاکتورهای طول موج‌های 400 و 330 نانومتر و کارفورفیل اثر مثبتی ندارد. اما افزایش فاکتورهای طول موج‌های 280 و 350 نانومتر و کارفورفیل اثر مثبتی دارد. البته با توجه به نتایج آزمایش‌های قبلی، افزایش فاکتورهای طول موج‌های 280 و 350 نانومتر و کارفورفیل اثر مثبتی دارد. البته با توجه به نتایج آزمایش‌های قبلی، افزایش فاکتورهای طول موج‌های 280 و 350 نانومتر و کارفورفیل اثر مثبتی دارد.
جدول 2. مقایسه میانگین برخی صفات کیفی برگ پرچم گندم دوروم تحت تأثیر مقایسه افزایش در گونه‌های کاروتینید و آنتیسپائیناری

<table>
<thead>
<tr>
<th>عنوان</th>
<th>فلاتونید</th>
<th>آنتیسپائین</th>
<th>(جدب در گرم وزن خشک)</th>
<th>(برگ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش</td>
<td>میلی گرم</td>
<td>میلی گرم</td>
<td>میلی گرم</td>
<td>میلی گرم</td>
</tr>
<tr>
<td>میلی گرم در کرم</td>
<td>وزنتر برگ</td>
<td>وزنتر برگ</td>
<td>وزنتر برگ</td>
<td>وزنتر برگ</td>
</tr>
<tr>
<td>ناونتر</td>
<td>ناونتر</td>
<td>ناونتر</td>
<td>ناونتر</td>
<td>ناونتر</td>
</tr>
<tr>
<td>UV-A</td>
<td>200 (ppm)</td>
<td>900 (ppm)</td>
<td>1000 (ppm)</td>
<td>900 (ppm)</td>
</tr>
<tr>
<td>UV-B</td>
<td>50 (ppm)</td>
<td>200 (ppm)</td>
<td>300 (ppm)</td>
<td>200 (ppm)</td>
</tr>
<tr>
<td>UV-C</td>
<td>100 (ppm)</td>
<td>600 (ppm)</td>
<td>700 (ppm)</td>
<td>600 (ppm)</td>
</tr>
<tr>
<td>UV-D</td>
<td>150 (ppm)</td>
<td>800 (ppm)</td>
<td>900 (ppm)</td>
<td>800 (ppm)</td>
</tr>
</tbody>
</table>

اعتبار با حروف مشابه در هر سون بر اساس آزمون دانکین (P≤0/05) اختلاف معنی‌داری ندارد.
جدول 5 میانگین برخی از صفات کیفی برگ پچم در دوره تأثیر متقابل فیزیولوژی افزایش اشعه مأموری پنجم و کمیته آب

<table>
<thead>
<tr>
<th>کاروتئئن</th>
<th>فلورفیل a+b</th>
<th>میلی کرم در وزن بسته</th>
<th>میلی کرم در وزن بسته</th>
<th>میلی کرم در وزن بسته</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاروتئئن</td>
<td>a+b</td>
<td>غلظت 900 میکرومول بر مول</td>
<td>غلظت 900 میکرومول بر مول</td>
<td>غلظت 900 میکرومول بر مول</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/238 d</td>
<td>1/124</td>
<td>0/146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/239 d</td>
<td>1/125</td>
<td>0/147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/242 b</td>
<td>1/131</td>
<td>0/151</td>
</tr>
</tbody>
</table>

آب مصنوعی و کمیته آب (جدول 6). در این مطالعه هیچ گونه متقابل معنی داری بین دی اسپیدرون و مقدار آب آبیاری بر میزان آنتی‌سیپتیک و کربوهیدرات‌های برگ کندم دور می‌شد (جدول 7). بیشترین میزان کربوهیدرات a+b a و a+b b انتی‌سیپتیک و کاروتئئنها مربوط به غلظت 900 میکرومول بر مول می‌باشد (جدول 8). در کل با افزایش غلظت a+b a و a+b b و مقدار کربوهیدرات‌های برگ کنده شد. این مقاله را از حضور 900 میکرومول بر مول می‌باشد (جدول 9). به غلظت 900 میکرومول بر مول می‌باشد (جدول 10).
جدول 6: مقایسه میانگین صفات کیفی برگ پرچم گندم در روز تأثیر مقاولی تیمارهای افزایش و کمک کردن و کمیاب آب

<table>
<thead>
<tr>
<th>آنزیم</th>
<th>فاکتور</th>
<th>گیاه</th>
<th>کاروتین</th>
<th>a</th>
<th>کاروتین b</th>
<th>میلی کرم در کرم وزن برگ</th>
<th>کاروتین a</th>
<th>میلی کرم در کرم وزن برگ</th>
<th>a</th>
<th>کاروتین b</th>
<th>میلی کرم در کرم وزن برگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری</td>
<td>آبیاری</td>
<td>14</td>
<td>7.6</td>
<td>21</td>
<td>153</td>
<td>0.13</td>
<td>0.11</td>
<td>0.15</td>
<td>0.21</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>کمیاب</td>
<td>کمیاب</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول 7: مقایسه میانگین بخشهای از صفات کیفی برگ پرچم گندم مکارونی تحت تأثیر مقاولی تیمارهای افزایش و کمک کردن

<table>
<thead>
<tr>
<th>عامل</th>
<th>فاکتور</th>
<th>کروپهیدرات</th>
<th>جنس</th>
<th>کاروتین</th>
<th>a</th>
<th>کاروتین b</th>
<th>میلی کرم در کرم وزن برگ</th>
<th>کاروتین a</th>
<th>میلی کرم در کرم وزن برگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری</td>
<td>آبیاری</td>
<td>UV-A</td>
<td>83</td>
<td>58.9</td>
<td>6</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>کمیاب</td>
<td>کمیاب</td>
<td>UV-B</td>
<td>83</td>
<td>58.9</td>
<td>6</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>آبیاری</td>
<td>آبیاری</td>
<td>UV-C</td>
<td>83</td>
<td>58.9</td>
<td>6</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
</tbody>
</table>

درصد متفاوت است و تنش خشکی نیز به یک سطح معیار است که مقدار آنها به ان تفسیر می‌شود. تپه‌های پایین بودن ظرفیت مقصد (دانه) و عدم نیاز دانه به کرپهیدرات‌های محلول با بالا بودن قدرت برگ دارند تولید ان ترکیبات و یا نیاز تجمع کروپهیدرات‌های محلول در برگ در مرحله تنش خشکی

اعداد با حروف مشابه در هر ستون بر اساس آزمون دانکی (p<0.05) اختلاف معناداری ندارند.

اعداد با حروف مشابه در هر ستون بر اساس آزمون دانکی (p<0.05) اختلاف معناداری ندارند.

مراجع

177
به کربوهیدرات‌های محلول در تغییر نسبی و همکاران گاز هیدروکربن که میزان قندی‌های احیا UV-A, B, C کندنه ساقه در تیمارهای ۱۶۵ و ۱۷۵ درصد نسبت به کنترل کاهش نشان می‌دهد. (۴) کاهش میزان قندی‌های احیا کندنه در تیمارهای UV شاهدی است که کاهش فتوسنتز را نشان می‌دهد و این کاهش فتوسنتز به دلایل مختلفی می‌باشد. گزارش‌های شده است که مصرف UV تحت تأثیر رادیکال‌های آزاد اکسیژن ناشی از نشان UV گرفته و اکسیترون و نیتروژن هسته‌گیری غشایی در تیلاکوتیدی محلول شده که فردی تولید انرژی را با UV مشکل یافته و ۱۴۹ میکروول بر مول هوا در میان اکسیدکننده و شرایط به عنوان ۹۷۰ میکروول بر مول هوا در میان اکسیدکننده و شرایط بدون تنش آبی میزان ۲۵٪ میکروول در میان وزن بر گر بود (جدول ۷).

نشش فتوسنتز غلظت بروزتی در کاهش می‌دهد که در شرایط نش با کاهش آنزیم روبیسکو و نقصان فتوسنتز همراه است (۲ و ۱۹). صافی بر حسب تثبیت نیروی انتزاعی جریان‌های بروزتی در میزان ۴۰۰ میکروول بر مول به شکل تنش و قطع غلظت C بروزتی محلول در گرم وزن بر گر بود تنش آبی میزان ۲۵٪ میکروول در گرم وزن بر گر بود (جدول ۵).

آغاز و همکاران گاز هیدروکربن که فیتوسنتز CO۲ محیط کربوهیدرات‌های محلول را ۱۰ درصد، محتوای محیطی ۱۲۰ درصد و محتوای کربوهیدرات‌های غیر محیطی ۸۵ درصد بطور معنی‌داری افزایش داده است (۶).

تاماسو و همکاران گاز هیدروکربن که تنا یافته غلظت یافته UV محیط کربوهیدرات‌های کلی آب و CO۲ محیطی محیط کربوهیدرات‌های UV و با فتوسنتز (۲۵ درصد), (۲۷ در مجموع). UV بیشتر از CO۲ می‌باشد.

ارتفاعات فتوسنتز (۲۷) نانومتر) بیشتر تحت تأثیر اشعه اولورای کم‌پوش بود، به‌طوری که بیشترین مقدار فلاتیون‌های در سطح تنش تغییر بروزتی شده می‌گردید و بین غلظت‌های مختلف کربنات کربن و مقدار مختلف آب آبیاری در این سطح از تغییر اختلاف معنی‌داری مشاهده نشد (جدول ۷).

فلاتیون‌های در سطح جذب ۲۰۰ نانومتر) بیشتر تحت تأثیر اشعه UV-B نسبت به باندهای غیر UV-B در محیط افزایش یافت. UV-B باندهای ویتامین‌های UV-A و B در سطح تغییر بروزتی مشاهده می‌گردید و بین غلظت‌های مختلف کربنات کربن و مقدار مختلف آب آبیاری در این سطح از تغییر اختلاف معنی‌داری مشاهده نشد (جدول ۷).

بیشترین میزان کربوهیدرات A و B در سطح تغییر بروزتی A و غلظت ۴۰۰ میکروول بر مول هوا در میان اکسیدکننده و شرایط بدون تنش آبی به ترتیب ۱/۴۲ و ۱/۴ میلی‌گرم در کرم.
تأثیر نش کم آبی، افزایش UV-B کربن و اشعل مواری نبش بر صفات کیفی...

می‌شود (۲۳). رنگ‌های فتوسنتزی موجود در این بافت‌ها به دلیل وجود رادیکال‌های آزاد اکسیژن فتواسیم شده و محبوس آنها کاهش می‌یابد (۲۴). آنزیم کلیدی رایپسکو نیز به UV جزو آنزیم‌های کلیدی در خرچنگ کلسترول است به اشتعل UV بسیار حساس بوده و تحت تأثیر آن تخریب می‌شود.

همچنین ترکیب حاصل از گزارش کردنان می‌گوید نیتریوزن در گیاهان سرد، بانفته و CO2، مصرفی توسط دانه و دانه غلات بومی به دانه کننده که از محیط محدود محلول غلات جهان می‌باشد کاهش بی‌پاسخ خواهد کرد. این عامل با گسترش جهان هم در کشورهای صنعتی و در حال توزع باعث به خطر اندازه امتیت غذایی بشر در آینده‌های نزدیک خواهد شد.

منابع مورد استفاده

۱. امام، ی. ۱۳۸۲. رعایت غلات. اثبات‌های دانشگاه شیراز.
۲. سی و سه، مره، ع. احمدی، ک. پوستینی، و. ج. ابراهیم زاده. ۱۳۸۳. عوامل روزنهای و غیر روزنهای کننده فتواسیم و ارتباط آن با مقاومت به خشکی در ارقام کننده. مجله علوم کشاورزی ایران (۱۳۳۴) ۱۰۴-۱۰۶.
۳. صفاپی، م. و. ح. غدیری. ۱۳۸۲. اثرات نش رطوبتی خاک روی پاتری از صفات مورفولوژیکی و فیزیولوژیکی نش رطوبتی در گیاهان. مجله علوم کشاورزی ۳۴: ۱۷-۱۹.
۴. نصیری، ف. خ. کلاتهی، م. و. ح. روزنهای کننده. ۱۳۸۲. بررسی تغییرات فیزیولوژیک و مورفولوژیکی ایجاد شده در بخشی از اشعل مواری نبش در اثر نش بافته (UV(A,B,C). اشعل مواری نبش در گیاهی کلارا. مجله پتولوژی و ژنتیک در رعایت و باغبانی. ۱۰۴-۱۰۷.
39. Sicher, R. C. and J. A. Bunce. 1997. Relationship of photosynthetic acclimation to changes of Robisco activity in...