اثر کاربرد پوترسین بر عمر و فیزیولوژی پس از برداشت میوه‌های توت‌فرنگی، زردآلو، هلو و گیلاس

محمدرضا زکاى خسروشاهی و محمود اثی علیرضا


چکیده
تأثیر گلخانه‌های مختلف پوترسین بر عمل و عمر پس از برداشت میوه‌های توت‌فرنگی، زردآلو، هلو و گیلاس هر یک به صورت جداگانه، در قالب طرح‌های کامل‌تری و در سه نکات مطالعه شد. میوه‌ها در محلول پوترسین به گلخانه‌های 0، 0.5 و 1 میلی‌متر مولار به مدت 5 دقیقه برای توت‌فرنگی و 1، 2 و 5 میلی‌متر مولار به مدت 10 دقیقه برای سایر میوه‌ها و نیز آب مفطر (شاهد) غوطه‌بر شده و سپس به پیچال منقل گردیدند. طول انبارزمان با کاربرد پوترسین به طور معمولی در تمام میوه‌های انبارزای یافته این ماده تولید ایجاد و میزان از دست دادن آب میوه‌ها یا کاهش داد و از ترم شدت بافت آنها تا انبارزایی چلچراغی بهتر. در طول انبارزی، امکان کاهش قابل برآوردن میوه‌های لیترار نشده روند کاهشی و اکسیداسیون PH میوه‌های انبارزایی پیش از انبارزی نشان داد. با استفاده از پوترسین در روند مذکور میوه‌های انبارزایی پس از برداشت شتاب آنها نسبت به شاهد بهبود کامپیر بود. استفاده از پوترسین میوه‌های انبارزایی در گلخانه‌ها کاهش داد.

واژه‌های کلیدی: توت‌فرنگی، زردآلو، هلو، گیلاس، پوترسین، عمر پس از برداشت، ایتان

مقدمه
توت‌فرنگی، زردآلو، هلو و گیلاس از میوه‌های گوشتی و آبدار هستند و به خاطر داخل آب زیاد و سرعت بالای تنفس در دوره پس از برداشت، شدت در معرض فاسد بودن و انبارزمان بسیار کوتاه دارند. کاهش سرتاسر روشی و به تعویق انداختن مرحله پیری در این قبیل میوه‌ها به منظور انبارزی انبارزایی آنها بسیار ضروری به نظر می‌رسد. با به کار بردن مواد مثل پلی‌امین‌ها (Polymamines) که رسیدگان میوه را به نخورنده می‌کند، مواد انبارزایی نیز ویژگی‌های کامیاب میوه‌ها را نا‌حیده بهبود بخشیده (22).

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار علوم بافتی، دانشکده کشاورزی، دانشگاه بูکی سینا، همدان
m.esnaashari@basu.ac.ir : متولی مکاتبات، پست الکترونیکی: *
مواد و روشهای
مویه توت فرنگی (Fragaria ananassa Duch.) رقم سال‌ها از گلخانه‌های تولید، توت فرنگی شهیران هشتگرد و میوه‌های زردآلو (Prunus armeniaca L.) رقم زبان مقداره، همدان (Prunus avium) رقم صورتی همدان از کتاب باشگاه در اطراف همدان نیز به آزمایش استفاده شد."ترای هر چهار کیلوگرم مویه در نظر گرفته شد. تیمارها
شامل غلظت‌های متفاوت یورسیسی (30، 50، 1 و 0.5 میلی
میله مویه‌ها) و آب آبی (شاد) بود. در سه میلی مویه
زبان، آبی تیمار (آب و پوترسین) نیز استفاده شد.
پوترسین در سبدی ضخامتی با کلیه 98 درصد از
تهیه شد. مویه‌ها در مرحله بلع تجاری
(همگامی که از اندازه کامل خود رسیده و آماده عرضه به بازار
فرود بودن) با دست برداشت شده و تهیه می‌گذرد. افزایش تیمار
اتقان بین یافتن مویه در شاخ غیر طبیعی و یک‌اسبی‌های
لیتویی حفظ شده و مویه‌های سالم و با پیوند با انعقاد
کردن. تیماری توت فرنگی از طریق غیر طبیعی نمونه مویه‌ها
به مدت 5 دقیقه برای توت فرنگی و 10 دقیقه برای سه مویه
(قهوه) دو محلولی از نسخه بهره نیز به شدت (ب) آب آبی
(سایت‌های اضافی) صورت گرفت. مویه‌ها پس از انجام تیمار، از
محلول خارج و در سیده ریخته شدند تا آن آب آبی گرفته
شود. پس از 5 دقیقه، مویه‌ها که تقریباً خشک شده بودند، به
ظرف در لیتر مثلث دارند گمایح در به
سیت طراحی مویه به یک‌خال دارای (سایت‌های 5 درجه سایت‌های گرای شده برای
توت فرنگی و 2 درجه برای سه مویه دیگر) نمی‌گردد. هر
می‌شود (8). همچنین می‌بایست که از طریق اتصال به
این تاثیری که پیام‌ها خاصیت ضروری دارد
(4). نش و ضروریت پیام‌ها برای اولین بار در
پروپتیول سالین جدا شده از مویه برای منهای شد.
(6). می‌بایست که این تاثیرات از نظر
بحثان، تغییرات داخلی داده است که پیام‌ها برای
ممانعت از تولید آنزیم‌های ضروری باید است و
فلئویل این شرایط (in vivo) جلوگیری می‌کند (2). از
نام گوشه فرنگی "Liberty" و "Alcobacita" که در
کنار این امورانی آنها به دلیل به تاثیر افتخاب
پیام‌ها بیشتر از سایر ارقام می‌باشد.
پوترسین تولید کننده مویه (15) و (16).
گزارش‌ها حاکی از آن است که پیام‌ها بر
پس از برداشت و کپی‌سازی مویه را از طریق حفظ سفتی، بافت
کاهش تولید انیلین و از دست دادن آب، به آزمایش اندک
تغییرات رنگ، مواد جامد محلول و اسیدیت قابل تبدیل
و تنظیم مویه در برای اسپرمیت و صداقت
مکانیکی بهبود می‌بخشند (24). یکی از آثار مهم تیمار
پیام‌ها بر مویه (3) و مویه آفتابی سفتي بافت
می‌باشد. افزایش سفتی و کاهش نرم شدن بافت در سیبیار
از محتوای مویه از دست برداشت
(24). توت فرنگی (14).
گوشه فرنگی (15). لیم (آ) و (آ) (18) گزارش
شده است.
میزان تأثیر گذاری پیام‌ها بر سفتی مویه بستگی به تعادل
بارهای مناسب آنها دارند. مویه‌های هموار می‌توانند بر
مویه‌ها که محتوی‌های بی‌پایه می‌باشد. در برداشت
بین‌ترین نیز داشته. ظرفیت کابیوپلی‌پیام‌ها به ترتیب زیر
است: پوترسین (اسپرمیدین – سرپین) (26).

هدف از این پژوهش بررسی تأثیر غلظت‌های مختلف
پوترسین بر مویه برای تولید انیلین کاسه، کاهش وزن، غیر
بسیار پس از برداشت و تغییرات کیفی (سفتی) بافت، pH آب مویه، مواد جامد محلول
و اسیدیت قابل تبدیلی (ب) در داده‌گیری مویه مورد آزمایش در خلاء
انبارداری آنها بوده است. برای این منظور از دو مویه فواک‌گرا

220
در میزان میزان (Titratble acidity) میوه‌ها، 10 میلی لیتر آب میوه داخل اولین ریخته شد و 60 میلی لیتر آب قطره‌‌بندی آن‌ها گردید و پس از اضافه کردن بعد قطره‌بندی، با سود 1/10 ترمیم زمان شد.

مقدار اسیدهای قابل تیتراسیون بر حسب درصد اسید اسید آلبی‌گالکسی، میوه (سبد سیتریک) در توت‌فرنگی و اسید مالیک در سه میوه

در توت‌فرنگی و اسید مالیک در سه میوه
شکل 1. تأثیر پوترسین بر تولید اتان توسط میوه‌های مورد آزمایش

میوه‌های مورد آزمایش: سفه‌ای سبز و سفه‌ای سبز میوه‌های کم‌سنجش، منبع مایعی با غلظت‌های تیمار شده پوترسین داشته و پیش‌ترین میزان سفه‌ای سفه‌ای میوه مربوط به بالاترین غلظت پوترسین بود. در نتیجه ترکیب غلظت‌های مختلف پوترسین و تیمار خشک و شاهد از نظر غلظت‌های مختلف پوترسین از این نظر وجود نداشت. حفظ با افزایش سفه‌ای سفه‌ای تحت تأثیر پوترسین در بسیاری از میوه‌های کاسب‌شده است. تناوب یکنواخت بین میوه‌های الهه سفه‌ای سفه‌ای میوه را افزایش داد و رشد کننده را به تأخیر انداخت. همچنین نفوذ دادن پیام‌های به داخل میوه باعث افزایش فوری در میزان بافت و نیز کاهش نرم شدن میوه بود. تولید اتان با سه‌گونه میوه

تأثیر پوترسین بر سفه‌ای سفه‌ای میوه

سفه‌ای سفه‌ای میوه میوه‌های طی از ابتدا کاهش بافت و تیمار پوترسین به صورت معنی‌داری (P < 0.05) باعث حفظ سفه‌ای میوه می‌باشد.

تولید انرژی، سطوح تولید اتان در آنها پایین تر است (3). هم‌چنین در گروه‌های نمایش “Liberty” افزایش پوترسین طی رسیدن میوه، با کاهش تولید اتان و افزایش انرژی میوه همبستگی دارد (16). تیمار برونتز در پی امومه با مانع‌های فعالیت آنزیم-سیبتاز در آوکادو (25 و 26) و اکسیداز در گوهرنگی (9)، پوست‌های رنگارنگ با کاهش داده است. گزارش‌ها حاکی از آن است که پیام‌های با آن بر روی هسته و تولید الکترنيک می‌کنند (1).
تاثیر پوترسین بر سفتی یافته میوه‌های مورد آزمایش

تاثیر پوترسین بر سفتی یافته میوه‌های مورد آزمایش

انتقال به لیبات و پایداری دیواره سلول منجر به فرآیندهای

تمایل به نام انفعالات آنتی‌بیوتیک تجزیه کننده دیواره را از جمله

پکین اتیزاس، پکین اتیزاس و پلی‌گلیکولنات می‌شود و

در نتیجه میوه‌ها در اندازه کاهش می‌یابند (32). بررسی‌های

صورت گرفته روی پلی‌آمین‌ها نشان داده است که مقادیر کلیک

توجهی از این ترکیبات توسط سلول‌ها جذب و به دیواره آنها

متصل می‌شوند (32).

تأثیر پوترسین بر کاهش وزن میوه

استفاده از پوترسین به طور معنی‌داری از کاهش وزن میوه‌های

هلی جلوگیری نمود (5/0±3). شکل 3. در گیلاس تفاوت بین

جلوگیری متفاوت پوترسین از اندازه میزان کاهش وزن فقط در

روش‌های 1 و 15 انبازداری معنی‌دار بود (5/0±3). در زردآلو
شکل ۳. تأثیر پوترسین بر کاهش وزن میوه‌های مورد آزمایش

شکل ۴. تأثیر پوترسین بر pH میوه‌های مورد آزمایش
شکل ۴. تاثیر پوتوسین بر اسیدیتی کال تیراسیون میوه‌های مورد آزمایش

نتایج گیری

تاثیر پوتوسین بر موارد جامد محلول (MSS) در طول مدت ابزاردی. در میوه‌های تازه‌تر (تازه و کلام) کاهش و در میوه‌های فرازگاری (زره‌آل و هلو) افزایش یافته. استفاده از پوتوسین به طور معنی‌داری تغییرات

ارث کاربرد پوتوسین بر عمر و قیمت‌پیش‌گذاری پس از برداشت...
جمله ۶. تأثیر پوترسین بر مواد جامد مخلوط میوه‌های مورد آزمایش

جدول ۱. تأثیر پوترسین بر انبارمانی میوه‌های توت فرنگی، زردآلو، هلو و گیلاس

<table>
<thead>
<tr>
<th>انبارمانی (روز)</th>
<th>نیمئار</th>
<th>توت فرنگی</th>
<th>زردآلو</th>
<th>هلو</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>خشک</td>
<td>۰/۹</td>
<td>۰/۹</td>
<td>۰/۸</td>
</tr>
<tr>
<td></td>
<td>شاهد</td>
<td>۰/۸</td>
<td>۰/۸</td>
<td>۰/۸</td>
</tr>
</tbody>
</table>

پوترسین (میلی‌مولار)

<table>
<thead>
<tr>
<th>نیمئار</th>
<th>هلو</th>
<th>زردآلو</th>
<th>توت فرنگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۹۰۰</td>
<td>۲۰۰۰</td>
<td>۱۹۰۰</td>
<td>۱۹۰۰</td>
</tr>
<tr>
<td>۲۰۰۰</td>
<td>۲۱۰۰</td>
<td>۲۱۰۰</td>
<td>۲۱۰۰</td>
</tr>
<tr>
<td>۲۲۰۰</td>
<td>۲۳۰۰</td>
<td>۲۳۰۰</td>
<td>۲۳۰۰</td>
</tr>
<tr>
<td>۲۴۰۰</td>
<td>۲۵۰۰</td>
<td>۲۵۰۰</td>
<td>۲۵۰۰</td>
</tr>
<tr>
<td>۲۶۰۰</td>
<td>۲۷۰۰</td>
<td>۲۷۰۰</td>
<td>۲۷۰۰</td>
</tr>
<tr>
<td>۲۸۰۰</td>
<td>۲۹۰۰</td>
<td>۲۹۰۰</td>
<td>۲۹۰۰</td>
</tr>
</tbody>
</table>


effects on polyamines, abscisic acid and firmness in Lemons. J. Food Sci. 63(4):611-615.