شیباهت الگوی الکتروفورز پروتئین استرین‌های جداسازی از مركبات استرین‌های هرمزگان و کرمان با استرین‌های بخشی دیگر از گونه‌های Xanthomonas

غلام خداگرمان، و زان سوئینگز

(تاریخ دریافت: ۱۴۸۹/۱۲/۲۴، تاریخ پذیرش: ۱۴۹۰/۳/۲۸)

چکیده

واژه‌های کلیدی: شیباهت باکتریا مركبات، کرمان، هرمزگان

مقدمه

پروتئین‌ها یکی از منابع اطلاعاتی مهم برای تعیین ویژگی‌های شناسایی و رندی‌بردن میکروبات‌های بوده و الکتروفورز پروتئین‌روش حساسی است که معمولاً قادر به تشخیص شیباهت‌ها و تفاوت‌ها در استرین‌های یک گونه، زیر گونه

1. استاد بیماری‌شناسی گیاهی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان
2. استاد باکتری‌شناسی، دانشکده علوم، دانشگاه کرمان، گلیک

Khodakaramian@yahoo.com

*: متولی مکانیک‌ها، پست الکترونیکی
پروتئن متابی بوده و ممکن است نوارهای خاصی به هم متفاوت باشد. بررسی‌های پژوهشگران مختلف نشان داده که هم‌ریا رابطه‌ای بین میزان شیافته‌های الگویی الکتروفورز شده و وجود دارد از جمله DNA:DNA hybridization.

کاتر و همکاران (9) مشاهده کردند که استرین‌های با پیش از DNA:DNA hybridization تحقیقات انجام شده در ایران، استرین‌های بیماری شانک گیری می‌کند که الگویی و کرمان که ابتدا توسعه علربده و حیاتهمانی) گزارش گردید و بعد به وسیله مهندسی زاده

Xanthomonas برای روش‌های مخصوص استخری‌ها این باکتری به کار گرفته نشده است. هر دو تحقیق بررسی هم‌گون و یا ناهم‌گونی استرین‌های باکتری عامل شناسی مربوطات جنوب ایران و تبعیض Xanthomonas میزان شیافته‌ای به استرین‌های گونه‌های Xanthomonas است تا نشان داده شود که بررسی الگویی الکتروفورز پروتئین به تهیه برای تفکیک و شناسایی پاتوویورا و حتی گونه‌های یک جنس کافی نیست و یا از روش‌های دیگرمانند بررسی بیماری‌ای نیز کمک می‌گردد. از نظر شیافته‌های الگویی Xanthomonas، برخی از گونه‌های استرین‌های درون یک گونه به همکاری می‌باشند و لذا مقایسه الگویی پروتئین به تهیه برای شناسایی و تفکیک گونه‌های مختلف یک جنس کافی نیست و قابل اعتماد نیست. بررسی استرین‌های عامل بیماری شانک برای کاربردی مربوطات قابل از نظر ویژگی‌های بیماریدزایی، دامنه میزان الگویی پروتئین و فتوتیپه شیافته‌ها و سیل خداکرمان و همکاران (12) بررسی شده‌اند و در این بررسی با سایر گونه‌های Xanthomonas مقایسه شدند.

مواد و روش‌ها

استرین‌های هندی استفاده در جدول 1 و 2 نشان داده شدند.

الکتروفورز پروتئین‌های سولولو و تجزیه آنها با نرم افزار Gel Compar

Gel Compar

Xanthomonas استرین‌های نماینده گونه‌های مختلف و پنج Xanthomonas

جدول ۱. استرین‌های بررسی شده

شماره استرین	نام استرین‌بایک‌ری	محل جدایی
X. a. pv. citri	LMG - 680, 9654, 9659	نیوزلند
X. a. pv. aurantiifoli	LMG - 9181, 9183	آرژانتین
X. a. pv. citrumelo	LMG - 9163	آمریکا
X. a. pv. citri	R - 4818, 4867, 4869, 4891, 4894, 4904, 4906, 4907, 4917, 4929, 5226, 5235, 5239, 422, 5423, 5424, 5427, 5439, 5440, 5442, 5443, 5422	ایران

جدول ۲. استرین‌های برای شناسایی Xanthomonas axonopodis مقایسه شده با استرین‌های هرمزنگان و کرمان

<table>
<thead>
<tr>
<th>شماره استرین</th>
<th>نام استرین‌بایک‌ری</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMG - 8080</td>
<td>X. a. pv. alfalfae</td>
</tr>
<tr>
<td>LMG - 7383</td>
<td>X. c. pv. armoraciae</td>
</tr>
<tr>
<td>LMG - 8240, 8242</td>
<td>X. c. pv. aracacae</td>
</tr>
<tr>
<td>LMG - 7385, 547</td>
<td>X. c. pv. barbaraerc</td>
</tr>
<tr>
<td>LMG - 568, 575, 947, 8095, 7514</td>
<td>X. c. pv. campestris</td>
</tr>
<tr>
<td>LMG - 8048, 8237</td>
<td>X. cassavae</td>
</tr>
<tr>
<td>LMG - 680, 681, 682, 683, 8650, 8653, 8654, 8657, 9176, 9178, 9652, 9653, 9655, 9656, 9657, 9654, 9659, 9660, 9662, 9663, 9664, 9666, 9667, 9668, 9669, 9670, 9671, 9672</td>
<td>X. a. pv. citri</td>
</tr>
<tr>
<td>LMG - 9182, 9185</td>
<td>X. a. pv. aurantiifoli</td>
</tr>
<tr>
<td>LMG - 9168, 9321</td>
<td>X. a. pv. citrumelo</td>
</tr>
<tr>
<td>LMG - 9045</td>
<td>X. a. pv. chloritae</td>
</tr>
<tr>
<td>LMG - 7479, 8689</td>
<td>X. cucurbitae</td>
</tr>
<tr>
<td>LMG - 695, 8664</td>
<td>X.a. pv. dieffenbachiae</td>
</tr>
<tr>
<td>LMG - 863, 7402</td>
<td>X. c. pv. euphorbias</td>
</tr>
<tr>
<td>LMG - 712, 7488, 8023, 8125, 8128</td>
<td>X. a. pv. glycins</td>
</tr>
<tr>
<td>LMG - 736</td>
<td>X. vasicola. pv. holcicola</td>
</tr>
<tr>
<td>LMG - 760, 763, 764, 7426, 7427, 7428, 7429, 9572, 11169</td>
<td>X.a. pv. malvacearum</td>
</tr>
<tr>
<td>LMG - 766, 769, 771, 777, 779, 780, 784</td>
<td>X. a. pv. manihotis</td>
</tr>
<tr>
<td>LMG - 8673</td>
<td>X. melonis</td>
</tr>
<tr>
<td>LMG - 7312, 7314</td>
<td>X. hortorum. pv. pelargonii</td>
</tr>
<tr>
<td>LMG - 823, 834, 8014</td>
<td>X. a. pv. phaseoloi</td>
</tr>
<tr>
<td>LMG - 849, 8677, 8678</td>
<td>X. a. pv. poinsetticola</td>
</tr>
<tr>
<td>LMG - 851</td>
<td>X. arboricola. pv. pruni</td>
</tr>
<tr>
<td>LMG - 7505, 8010</td>
<td>X. c. pv. raphani</td>
</tr>
<tr>
<td>LMG - 864, 7442, 7444, 8683</td>
<td>X. a. pv. ricini</td>
</tr>
<tr>
<td>LMG - 902</td>
<td>X. a. pv. vascularorum</td>
</tr>
<tr>
<td>LMG - 667, 668, 904, 905, 906, 907, 908, 910, 913, 914, 922, 7514</td>
<td>X. vesicatoria</td>
</tr>
<tr>
<td>LMG - 839, 8138</td>
<td>X. a. pv. vignicola</td>
</tr>
</tbody>
</table>

پاتوبیشن شناسایی استرین‌ها با استرین‌های عامل بیماری‌های شانکر و لکه برگی (استرین‌های ذکر شده جدول ۱) مورد استفاده قرار گرفت (۱ و ۲). با استرین‌های ذکر شده جدول ۱ مورد استفاده قرار گرفت (۱ و ۲).
شیئیان (1 و 2) مطالعات کامل دارد. کمترین میزان شیب‌های X. axonopodis کشت گلوبول 5٪/60٪ شیره مخمر، 3٪ کرمبات کلسیم و 2٪ آگار بود. کشت شمش. تشکیل یافته به‌کار یک تا دو روز در دما 20-25 درجه سانتی‌گراد، استخراج پروتین‌کره‌های کروم‌فوروز زل پلی‌آکلی‌امید، رنگ‌آمیزی، خشکی و اکسنت کربن دی‌اکسید و برداشت شده‌های به دست آمده‌بی‌روش واترین و همکاران (12) انجام شد.

نتیج‌بیان

نتایج مقایسه الکتروفروزن پروتئین‌های محلول سالنی استری‌های مورد بررسی به‌تفکیک در جدول 3 و میانگین‌شیب‌های ترکیب استری‌های به استری‌های سبز آنتی‌گونه‌های Xanthomonas گردید.

نتایج و بحث

نتایج مقایسه الکتروفروزن پروتئین‌های محلول سالنی استری‌های مورد بررسی به‌تفکیک در جدول 3 و میانگین‌شیب‌های ترکیب استری‌های به استری‌های سبز آنتی‌گونه‌های Xanthomonas axonopodis گردید.

همان طوری که در جدول 3 و 4 دیده می‌شود میانگین شیب‌های الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis

شباهت الکتروفروزن پروتئین‌های استری‌های Xanthomonas axonopodis حداکثر از میانگین استری‌های X. axonopodis و X. citri محسوب می‌شوند.
شیاهت گروهی الکتروفورز پروتئین استری‌های

جدول ۳ میزان شیاهت الکتروفورزی پروتئین‌های محلول سلولی استری‌های Xanthomonas axonopodis pv. citri محوری شده از مرکبات استری‌های

<table>
<thead>
<tr>
<th>نام باکتری</th>
<th>نام شیاهت (٪)</th>
<th>میزان باکتری</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri R- 4867</td>
<td>X. a. pv. citri R- 4869</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9 176</td>
<td>100.00</td>
<td>X. a. pv. citri LMG 8657</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9662</td>
<td>90.80</td>
<td>X. a. pv. citri LMG 9663</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 99669</td>
<td>89.00</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 857</td>
<td>87.00</td>
<td>X. a. pv. citri LMG 9672</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 682</td>
<td>87.70</td>
<td>X. a. pv. citri LMG 9653</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 680</td>
<td>86.50</td>
<td>X. a. pv. citri LMG 9659</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 681</td>
<td>86.40</td>
<td>X. a. pv. citri LMG 9666</td>
</tr>
<tr>
<td>X. a. pv. aurantiifolii LMG 9182</td>
<td>86.00</td>
<td>X. a. pv. citri LMG 9657</td>
</tr>
<tr>
<td>X. vesicatoria LMG 907</td>
<td>90.20</td>
<td>X. a. pv. citri LMG 8560</td>
</tr>
<tr>
<td>X. vesicatoria LMG 908</td>
<td>88.00</td>
<td>X. a. pv. citri LMG 9668</td>
</tr>
<tr>
<td>X. vesicatoria LMG 922</td>
<td>86.40</td>
<td>X. a. pv. citri LMG 9652</td>
</tr>
<tr>
<td>X. c euphorbiae LMG 863</td>
<td>87.10</td>
<td>X. a. pv. citri LMG 8654</td>
</tr>
<tr>
<td>X. c arracacae LMG 8242</td>
<td>86.00</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. citri R- 5242</td>
<td>X. c. pv. campestris LMG 568</td>
<td>80.20</td>
</tr>
<tr>
<td>X. c. pv. citri R- 527</td>
<td>X. a. pv. citri R- 5239</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 681</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>86.20</td>
<td>X. a. pv. citri LMG 680</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9671</td>
<td>86.40</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citri R- 5424</td>
<td>X. a. pv. citri R- 4929</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citri LMG 680</td>
<td>86.70</td>
<td>X. a. pv. citri LMG 680</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9178</td>
<td>86.30</td>
<td>X. a. pv. citri LMG 681</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>86.10</td>
<td>X. a. pv. aurantiifolii LMG 9182</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>87.90</td>
<td>X. a. pv. malvacearum LMG 7427</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>87.40</td>
<td>X. a. pv. glycins LMG 7488</td>
</tr>
<tr>
<td>X. a. pv. clitoriae LMG 9045</td>
<td>87.70</td>
<td>X. a. pv. manihotis LMG 766</td>
</tr>
<tr>
<td>X. a. pv. citri R- 5422</td>
<td>X. a. pv. citri R- 4906</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citrumelo LMG 9168</td>
<td>85.00</td>
<td>X. a. pv. citri LMG 9176</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>85.60</td>
<td>X. a. pv. citri LMG 9662</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>85.20</td>
<td>X. a. pv. citri LMG 9669</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 947</td>
<td>85.00</td>
<td>X. a. pv. citri LMG 682</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>85.40</td>
<td>X. vesicatoria LMG 907</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. vesicatoria LMG 922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. a. pv. vasculorum LMG 902</td>
</tr>
<tr>
<td>X. a. pv. citri R-4904</td>
<td>X. a. pv. citri R-5440</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citri R-4904</td>
<td>89.60</td>
<td>X. a. pv. citri LMG 9178</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>87.20</td>
<td>X. a. pv. malvacearum LMG 7427</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>90.70</td>
<td>X. a. pv. malvacearum LMG 7429</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>89.60</td>
<td>X. a. pv. glycins LMG 7488</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 9572</td>
<td>86.70</td>
<td>X. a. pv. glycins LMG 8128</td>
</tr>
<tr>
<td>X. a. pv. glycins LMG 8128</td>
<td>86.30</td>
<td>X. a. pv. manihots LMG 779</td>
</tr>
<tr>
<td>X. c. pv. raphani LMG 8010</td>
<td>88.20</td>
<td>X. c. pv. campestris LMG 569</td>
</tr>
<tr>
<td>X. a. pv. citrumelo LMG 904</td>
<td>87.60</td>
<td>X. a. pv. poinsettica LMG 849</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. aurantifolii LMG 9181</th>
<th>X. a. pv. aurantifolii LMG 9654</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. glycins LMG 712</td>
<td>90.90</td>
</tr>
<tr>
<td>X. a. pv. glycins LMG 8023</td>
<td>87.00</td>
</tr>
<tr>
<td>X. a. pv. phaseoli LMG 834</td>
<td>86.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri R-5421</th>
<th>X. a. pv. citri R-5226</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9178</td>
<td>86.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri R-4917</th>
<th>X. a. pv. citri R-5443</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9176</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri R-4818</th>
<th>X. a. pv. citri R-5659</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9662</td>
<td>90.30</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 682</td>
<td>87.30</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 8657</td>
<td>86.90</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 8650</td>
<td>86.30</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9672</td>
<td>85.80</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9669</td>
<td>85.50</td>
</tr>
<tr>
<td>X. c. pv. ephorbiae LMG 863</td>
<td>89.90</td>
</tr>
<tr>
<td>X. c. pv. ephorbiae LMG 7402</td>
<td>84.90</td>
</tr>
<tr>
<td>X. vesticatoriae LMG 922</td>
<td>88.00</td>
</tr>
<tr>
<td>X. vesticatoriae LMG 907</td>
<td>89.00</td>
</tr>
<tr>
<td>X. vesticatoriae LMG 7514</td>
<td>86.60</td>
</tr>
<tr>
<td>X. vesticatoriae LMG 908</td>
<td>86.50</td>
</tr>
<tr>
<td>X. vesticatoriae LMG 905</td>
<td>85.10</td>
</tr>
<tr>
<td>X. a. pv. glycins LMG 712</td>
<td>87.30</td>
</tr>
<tr>
<td>X. a. pv. glycins LMG 8125</td>
<td>85.40</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>86.90</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 7514</td>
<td>86.60</td>
</tr>
<tr>
<td>X. cassavae LMG 8237</td>
<td>86.80</td>
</tr>
<tr>
<td>X. c. pv. arracaciae LMG 8242</td>
<td>86.70</td>
</tr>
<tr>
<td>X. a. pv. manihots LMG 769</td>
<td>86.20</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>86.10</td>
</tr>
<tr>
<td>X. c. pv. barbareae LMG 547</td>
<td>86.10</td>
</tr>
<tr>
<td>X. a. pv. poinsettica LMG 8677</td>
<td>85.90</td>
</tr>
<tr>
<td>X. cucurbitae LMG 7479</td>
<td>85.50</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae LMG 695</td>
<td>85.10</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 7444</td>
<td>84.90</td>
</tr>
<tr>
<td>X. a. pv. citri R-5235</td>
<td>X. a. pv. aurantifoli LMG 9658</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9176</td>
<td>100.00</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 8657</td>
<td>86.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. dieffenbachiae LMG 8664</th>
<th>X. a. pv. citri R-5426</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. manihotis LMG 777</td>
<td>88.20</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 771</td>
<td>86.40</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 780</td>
<td>86.30</td>
</tr>
<tr>
<td>X. vasicola pv. holcicola LMG 736</td>
<td>88.10</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 7442</td>
<td>87.80</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 864</td>
<td>87.40</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 8683</td>
<td>86.70</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>87.80</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 8005</td>
<td>86.50</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 575</td>
<td>86.50</td>
</tr>
<tr>
<td>X. cucurbitae LMG 8689</td>
<td>87.20</td>
</tr>
<tr>
<td>X. arboricola pv. pruni LMG 851</td>
<td>87.10</td>
</tr>
<tr>
<td>X. c. pv. armoraciae LMG 7383</td>
<td>87.00</td>
</tr>
<tr>
<td>X. c. pv. arracaccae LMG 8240</td>
<td>87.00</td>
</tr>
<tr>
<td>X. hortorum pv. pelargonii LMG 7314</td>
<td>86.50</td>
</tr>
<tr>
<td>X. hortorum pv. pelargonii LMG 7312</td>
<td>86.40</td>
</tr>
<tr>
<td>X. melonis LMG 8673</td>
<td>86.40</td>
</tr>
<tr>
<td>X. c. pv. raphani LMG 7505</td>
<td>86.40</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae LMG 695</td>
<td>87.40</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 11169</td>
<td>87.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri R-4894</th>
<th>X. a. pv. citri R-5423</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9176</td>
<td>87.20</td>
</tr>
<tr>
<td>X. a. pv. aurantifoli LMG 9185</td>
<td>86.70</td>
</tr>
<tr>
<td>X. a. pv. citrumelo LMG 9168</td>
<td>86.60</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>86.50</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 682</td>
<td>86.30</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7428</td>
<td>90.90</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7429</td>
<td>90.00</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 760</td>
<td>88.80</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7426</td>
<td>87.90</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>87.70</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 763</td>
<td>86.90</td>
</tr>
<tr>
<td>X. vescutoria LMG 908</td>
<td>90.10</td>
</tr>
<tr>
<td>X. vescutoria LMG 922</td>
<td>88.60</td>
</tr>
<tr>
<td>X. vescutoria LMG 668</td>
<td>88.30</td>
</tr>
<tr>
<td>X. vescutoria LMG 914</td>
<td>87.40</td>
</tr>
<tr>
<td>X. vescutoria LMG 905</td>
<td>87.30</td>
</tr>
<tr>
<td>X. vescutoria LMG 913</td>
<td>86.70</td>
</tr>
<tr>
<td>X. c. pv. barbarae LMG 547</td>
<td>89.60</td>
</tr>
<tr>
<td>X. a. pv. glycin LMG 712</td>
<td>89.30</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae LMG 695</td>
<td>86.20</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae LMG 695</td>
<td>87.30</td>
</tr>
</tbody>
</table>
جدول 4. میانگین شیب‌های پدیداری پروتئین‌های بررسی شده Xanthomonas axonopodis

<table>
<thead>
<tr>
<th>Xanthomonas spp.</th>
<th>X. a. pv. Citri</th>
<th>X. a. pv. Aurantifolii</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri</td>
<td>88.59 (86)</td>
<td>86.79 (11)</td>
</tr>
<tr>
<td>X. a. pv. glycins</td>
<td>87.19 (8)</td>
<td>88.40 (4)</td>
</tr>
<tr>
<td>X. a. pv. manihotis</td>
<td>86.62 (6)</td>
<td>87.30 (2)</td>
</tr>
<tr>
<td>X. c. pv. campestris</td>
<td>86.07 (11)</td>
<td>86.85 (2)</td>
</tr>
<tr>
<td>X. a. pv. chloriorum</td>
<td>87.03 (3)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. citrusol</td>
<td>87.60 (4)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. aurantifolii</td>
<td>86.53 (3)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. alfalfa</td>
<td>86.20 (2)</td>
<td>--</td>
</tr>
<tr>
<td>X. cucurbitae</td>
<td>87.63 (4)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>--</td>
</tr>
<tr>
<td>X. vasicola. pv. holticola</td>
<td>88.10 (1)</td>
<td>--</td>
</tr>
<tr>
<td>X. melonis</td>
<td>86.40 (1)</td>
<td>--</td>
</tr>
<tr>
<td>X. hortorum. pv. pelargonii</td>
<td>86.45 (2)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. poinsetticola</td>
<td>86.40 (4)</td>
<td>--</td>
</tr>
<tr>
<td>X. arboricola. pv. pruni</td>
<td>87.10 (1)</td>
<td>--</td>
</tr>
<tr>
<td>X. c. pv. raphani</td>
<td>87.30 (2)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. ricini</td>
<td>86.70 (4)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. vasculorum</td>
<td>86.40 (1)</td>
<td>--</td>
</tr>
<tr>
<td>X. a. pv. vignicola</td>
<td>87.05 (4)</td>
<td>--</td>
</tr>
<tr>
<td>X. c. pv. armoraciae</td>
<td>87.00 (1)</td>
<td>--</td>
</tr>
<tr>
<td>X. c. pv. barbareae</td>
<td>87.30 (30)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>87.10 (1)</td>
<td>--</td>
</tr>
</tbody>
</table>

اعداد داخل پرانتز، تعداد پروتئین‌های بررسی شده را نشان می‌دهد.

* = بررسی نشده است.

بروزنده‌های SDS-PAGE نوار‌های را تفکیک نماید. با توجه به نتایج روش نوار‌های پروتئینی عمدتاً بر اساس اندازه تفکیک می‌شوند. البته با نوار‌های نمی‌باشند. در تعبیه عملکرد و ایفای نقش پک پروتئین در
شیوه‌گی الکترفونز پروتئین استر‌های

سلول مادری استاتمان اولیه با تریب فرآیند استردهی آماده‌شده مانند، روش
مناسب است. به ویژه داده‌های جدول 3 به خوبی نشان می‌دهد
که شیوه الکترفونز برخی استر‌های غونه‌های
X. a. pv. X. vesicatoria LMG 9076 و
X. a. pv. glycines LMG 712 malvacearum LMG 764
به استر‌های پاتونوارها X. cucurbitae LMG 7479
عامل بیماری شانکر باکتریای‌های مربوط به
ایران یکسان و با هم یکی از شیوه‌های الکترفونز استر‌های گونه‌های
استر‌های همبندی می‌باشد. این پایه‌ای یک ابزار
به‌واسطه این بررسی را که در مقدمه به آن اشاره شده، را برآورد
نمونه و ضرورت بکارگیری سایر روش‌ها را برای تعیین
استر‌های غونه‌های مختلف و استر‌هایی با استرها به یک گونه
که از یک مقدار مقایسه بین غونه‌های مختلف یک گونه
روح و توسط سایر محلقین هم برای نشان داد
جنبه کاربردی این روش و هم اهمیت و کار
فته‌هاهای آن که به کار
گرفته شده است. از جمله در بررسی 300 استر‌های غونه‌های
جنس X. campestris و 37 پاتونوار از Xanthomonas
والترین و همکاران (13) استفاده 19 دسته از همبندگی قابل
تفکیک بوده. این روش برای تعیین استر‌های مربوط به
همیشه در نمایی نمی‌باشد و برای تفکیک در این سطح
تاکسنومیکی با این روش غونه‌هایی که می‌تواند کمک
شود. نتایج این بررسی گروه‌های شیوه به‌واسطه
استر‌های Xanthomonas axonopodis نشان داده شده است
فته‌هاهای
هرمزگان و کرمان با استر‌های پاتونپ A
بوده و الگوی
بیماری‌زایی آنها را که در بررسی های پیشین تعیین شده بود (1
و 2) تأیید می‌نماید.

شیوه‌گی الکترفونز پروتئین استر‌های

سلول زنده ساختنی و استردهی استردهی آماده
فک
نهش در این مقیاس دارد. این و اینکه در این داده‌های این
بررسی قابل استناد است. اینکه در شیوه پاتونوارها
با استردهی زایی متفاوت، دارای شیوه نسبتاً یکسان

شیوه به یک استر‌های مشخص از پتی پاتونوار مشخص

SDS-PAGE با توجه به میان بردن توانایی باعث

برای X. a. pv. glycines LMG 712 malvacearum LMG 764
عامل بیماری زایی استردهی دارا، از سایر روش‌ها نیز به عنوان
فاکتورهای تکاملی کمک گرفت. عالی رفع دقت و سرعت
پاتونوارها X. a. pv. glycines LMG 712 malvacearum LMG 764
با توجه به نشان داد شدگی عامل گونه‌های کلی در دریافت روش، از
استرها که به ویژه همه‌گانه که رپترهایهای ویژه‌ای که
حروف‌زنی A و بین همه‌گانه شناسایی‌های فیزیولوژیک یا پاتونوار
ارگانیسم مهم هستند. از روش‌های تکاملی کمک گرفته که
توجه به این اصل در بیماری‌شناسی گاهی بسیار مهم است.
میانگین شیوه استردهی

X. a. pv. glycines LMG 712 malvacearum LMG 764
ارگانیسمی است استردهی هرمزگان و کرمان با استردهی های
سرآمیونی Xanthomonas axonopodis با توجه به داده‌های
جدول 4 حداً به 78 تا 87 درصد نوسان دارد. با توجه به
دادرکار نتایج چشم‌گیری از ملاحظه درجه شیوه در
پاتونوارها مختلف و وجود دارد ولی چنانچه به داده‌های
جدول 3 و به ویژه به شیوه باید برخی از استردهی‌ها نتایج
آماده آنها را نتایج قابل توجه استردهی یا از نظر داده شده
نیروی خواهی برده، در حالی که در نگاه کلی و محاسبه میانگین این
شیوه در نتایج چشمگیر برخی از استردهی‌ها روى سایر
استردهی‌ها هم گروه خودی مشخص شده و خود را نشان
نمی‌دهد. روش SDS-PAGE برای دستبندی استردهی‌ها به

متابع مورد استفاده

1. خداکرمانی، غ، رحمیان، و. محمدی وع. علامه. 1378. خصوصیات فتویی، دامنه میزانی و چگونگی پراکنش استردهی‌ها
باکتری کامیون Organisms, Z. سیونگر، س. استوارت، س. وانریز، و. و. رحمیان. 1379. کروپاتونوار استردهی‌ها باکتری دسته‌بندی عامل ایجاد زخم و

271
لکی برگی مربوط به آسیا، آمریکا و استرالیا به اساس بیولوژی پروتئین و سیستم بیولوژی بیماری‌های گیاهی

6 علیزاده، ع و ح. رحمی‌نژاد. ۱۳۵۸. شاکریایی مربوط به آسیا و استرالیا. ج. بیماری‌های گیاهی ۲۴۸: ۱۱۸.

4. مسکوف زاده قلمفر. ۱۳۷۵. بررسی فردی‌های مولکولی شاکریایی مربوط به آسیا و استرالیا. دانشگاه شاکریوزی، دانشگاه تهران.

