پژوهشی اثر تنش خشکی بر جمعیت و خسارت مگس گلرنگ

شته گلرنگ (Empoasca decipiens) و زنجیرک (Uroleucon carthami)

(بررسی اثر تنش خشکی بر جمعیت و خسارت مگس گلرنگ)

زمره محیطی و محیط زیست، سال دوازدهم، شماره چهل و نهم (ب) 1387

چکیده

گلرنگ (Acanthiophilus helianthi) گیاه گلرنگ، با داشتن رور خشکی جدی، تغییرات سیستم جهانی می‌باشد. در حال حاضر، این گیاه در شرایط خشکی متوسط مکس گلرنگ (Acathia helianthi) بیشتر در شرایط سیستم جهانی می‌باشد. این گیاه، در شرایط خشکی شدید(130 میلی‌متر تبیخ) از شرایط متوسط(10-13 میلی‌متر تبیخ) بهبود می‌یابد. در شرایط تبیخ شدید، میزان خسارت مگس گلرنگ (Acanthiophilus helianthi) به همراه گیاه، بررسی و نتایج ثبت شده است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است.

واژه‌های کلیدی: گلرنگ، مگس گلرنگ، خشکی، عملکرد

مقدمه

گلرنگ (Carthusian tinctarius L.) یکی از نوشتارهای تاریک در بیماری کسورهای گیاه‌های گیاه‌های بسیاری کشورهای جهان به عنوان یک گیاه سازگار و مقیم، با یک راهکار متنوع کشورهای جهان کشورهای جهان از این جستجو به آموزش و درمورد تغییرات جهانی می‌باشد. در حال حاضر، این گیاه در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است. نتایج نشان داد که در شرایط سیستمی گلرنگ و نیز درصد خسارت گیاه گلرنگ توسط مگس گلرنگ افزایش یافته است.

1. ترکیب استاد و مربی حشره‌شناسی، دانشکده کشاورزی دانشگاه صنعتی اصفهان
2. دانشجوی دکتری اصلاح نبات‌های دانشگاه کشاورزی دانشگاه صنعتی اصفهان
bhatia@cc.iut.ac.ir
کشورهای هندوستان، مکزیک، ایالات متحده، چین و کانادا
تشکل می‌دهند (2). برسی نواحی داده‌اند که موطن اصلی
گلارنگ کشورهای خاورمیانه، به خصوص ایران و ترکیه
می‌باشد (3). بومی‌یوند این گايه و سازگاری آن با شرایط
اقتصادی ایران از جمله امتیازات گیاه گلارنگ در کشور ما می‌باشد.

با این حال برخی مشکلات تولید از جمله حساسیت این گیاه
به برخی بیماری‌ها و آفات از جمله مگس‌های Acanthiphilus helianthis Rossi (Dip.: Tephritidae).

گلارنگ منجر به محدودیت تولید نشده است (4).

گلارنگ یکی از آفات مهم گلارنگ می‌باشد و به گلارنگ دیگر کشت حمله می‌کند و در صورت عدم سپاسیابی به
موقع و مداوم خسارت زیادی به دانه‌های گلارنگ وارد می‌کند.

خسارت وارد به گلارنگ ممکن است به 3 درصد هم برسد.

(5). برخی اعمال رژیمی از جمله آیا ممکن است پوانسون در
جمعیت وجود خسارت وارد مگس گلارنگ ناکار دانسته باشد.

به طوری که وقوع خسارت‌های ممکن است در میزان خسارت
آفات و از جمله مگس گلارنگ تاثیر گذاشته. به عنوان مثال
خشکسالی سال 1370 در فرانسه ناشی از روي تولید
محصول ذرت داشت و باعث کاهش عملکرد آن گردید (12). به
علاء‌خسارت پیش از آفات و بیماری‌های گیاهی از جمله
سایه خوارای ذرت ساقه ذرات ذرات کرم، غسل، پنجه،
سیاهک و سوختگی ذرات نیز افزایش یافته (12). همچنین ظهور
سایه و خسارت دارد در سال 1370 در اینستاد بر اثر د کم‌بازاری ذرات در صورت
خشکسالی سال 1370 در منطقه مربوط به
بررسی اینجا به درک کرک پرو محسوب کلاز نام داد که
با کاهش بارندگی ذرات خسارت آفات مختلف شدت حمله ممکن

(A.
Uroleucon carthami Hille Ris Lambers.
A.
A.
Brevicoryne brassicae L.
کل‌کلمه
Brassicaphila pallidacyclus
vegetables,
Meligethes spp.
وقوع خسارت در این کشور طی ماه جولای (تیرما) امکان
ترمیم خسارت توسط گیاه و موجودات دانه و کاهش عملکرد وجود
خواهد داشت (16). با وجود مطالعات مختلفی که در زمینه تاثیر

756
توجه و بحث
جدول تجزیه و اریافتیه به شمارش آفات نهان دهده اثر معنی دارد تیمار حسکی برعهده شته و مگس گلرنگ و E. decipiens زنجرک رودا آثار تیمار حسکی سیماشی شده و سیماشی نشده در سطوح مختلف نشان دهنده اثر معنی دارد بود. ضمناً E. decipiens و U. carthami همچنین هفته‌های مختلف و اثرات مقابل آن با نشان حسکی و سیماشی اثرات مقابله و معنی دارد بعده شته داشت.

تعادل شته
بر اساس جدول تجزیه و اریافته و ارایانس(جدول1) و معنی دار بودند واریانس مناسب آماری آماری اثر مکانی و اثر مقابل نشان نسج در سیماشی برعهده شته E. decipiens و U. carthami معنی دار بود. همچنین هفته‌های مختلف و اثرات مقابل آن با نشان حسکی و سیماشی اثرات مقابله و معنی دارد بعده شته داشت.

این موضوع مکن است شرایط آب و هوایی و تغییرات محیط رشد و تغذیه به شته باشد.

در شرایط سیماشی نشده بالاترین میانگین تعادل شته در شرایت نشان خسکی (110.16 میلی متر بیشتر از نشان بیشتر) (جدول 1) با نوسانات هفته‌های مختلف مشاهده گردید. در مجموع در هفته‌های شمارش شده (8 هفته) تیمار حسکی و سیماشی میانگین جمعیت شته در مدت نمونه برداری در شرایت سیماشی نشده و در نشان حسکی بودند (130.16 میلی متر بیشتر از نشان بیشتر) مشاهده شد (جدول 1). به نظر می‌رسد تنش انداز

(70 تا 90 میلی متر بیشتر از نشان بیشتر) مناسب‌ترین شرایط برای ایبایری گلرنگ از این نظر باشد. چون منجر به کاهش نسبی در تعداد شته گلرنگ و در نتیجه نشان گردید (10.16 میلی متر) از این جهت استحکام گردد که طبیعی شته گلرنگ را باعث خواهد شد. همچنین ایبایری بیش از حد (10.16 میلی متر بیشتر از نشان بیشتر) می‌تواند افزایش جمعیت شته را به دلیل افزایش رشد روبشی و افزایش جذب آب در نتیجه حسکسال پیش‌تر خشکی را نمی‌تواند.

جمعیت آفات در نتیجه حسکسال یا نشان خشکی را تغییر بروز زن‌های گیاهی و افزایش تراکم تندی و افزایش گیاهان در اثر نشان حسکی می‌داند(13). در این رابطه بررسی‌های مختلف نشان داده‌اند که نشان‌های بالا موجب افزایش جمعیت شته رواه می‌باشد گیاهی. یافته این مطالعه (16) و (37) گزارش کرده که دو نشان‌های جمعیت طبیعی شته حسکسال کندم (Zootoptera graminum Rond.) را تقویت می‌کند. دیگر گزارش‌ها نشان داده که کاهش عملکرد کندم [Diuraphis noxia (Kurdj.)] و افزایش جمعیت شته روی [تراکم شته سبز (16).] همراه است.

بیشتر می‌شور. به عبارت دیگر آلوگی کندم به شته سبز وقی مزرعه در معرض نشان خشکی باشد بیشتر می‌گردد. ویژه خشکسال درکشور چک نیز با افزایش جمعیت شته روی کندم در مزرعه غلات همراه بود (33) در ایالت کارادو آمریکا هم خشکسال سالهای 1995 و 1996 با کاهش عملکرد کندم [Diuraphis noxia (Kurdj.)] و افزایش جمعیت شته روی

همراه است. (15)
جدول 1. جدول تجزیه و بررسی شمارش آفات گارنگ

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>زنگرک</td>
<td>مگس گارنگ</td>
<td>شته</td>
</tr>
<tr>
<td>E. decipiens</td>
<td>A. helianthi</td>
<td>U. carthami</td>
</tr>
<tr>
<td>3/0</td>
<td>0/0/4</td>
<td>2/4</td>
</tr>
<tr>
<td>1/7 **</td>
<td>1/176 **</td>
<td>56/88 **</td>
</tr>
<tr>
<td>3/5 (1)</td>
<td>12/66 (1)</td>
<td>53/66 (1)</td>
</tr>
<tr>
<td>0/0/2</td>
<td>0/0/12</td>
<td>1/06</td>
</tr>
<tr>
<td>5/78 *</td>
<td>0/114 **</td>
<td>285/54 **</td>
</tr>
<tr>
<td>0/15 (5)</td>
<td>11 (1)</td>
<td>146/78 (1)</td>
</tr>
<tr>
<td>0/38</td>
<td>0/32 **</td>
<td>69/7 **</td>
</tr>
<tr>
<td>0/20 (2)</td>
<td>20/65 (2)</td>
<td>0/65 (2)</td>
</tr>
<tr>
<td>0/0/1</td>
<td>0/0/1</td>
<td>1/04</td>
</tr>
<tr>
<td>1/25 **</td>
<td>2/311 **</td>
<td>68/1 **</td>
</tr>
<tr>
<td>0/21 (1)</td>
<td>221 (1)</td>
<td>66/7 (1)</td>
</tr>
<tr>
<td>0/355 **</td>
<td>0/155 **</td>
<td>20/84 **</td>
</tr>
<tr>
<td>0/20 (1)</td>
<td>20/33 (1)</td>
<td>21/33 (1)</td>
</tr>
<tr>
<td>0/25 (2)</td>
<td>1/58 (2)</td>
<td>116/858 (2)</td>
</tr>
<tr>
<td>0/130 (3)</td>
<td>130 (3)</td>
<td>119/6 (3)</td>
</tr>
<tr>
<td>0/20 (4)</td>
<td>131 (4)</td>
<td>19/5 **</td>
</tr>
<tr>
<td>0/10 (1)</td>
<td>0/10 (1)</td>
<td>140</td>
</tr>
<tr>
<td>0/13</td>
<td>0/13</td>
<td>0/577</td>
</tr>
</tbody>
</table>

** و *: به ترتیب معنی‌دار در سطح احتمال 0.01 و 0.05 درصد

 Stunning: هم‌اکنون می‌توانیم در مورد کاهش تعداد سپیار در شرایط ملی مادری نشان دهیم. به طوری که تعداد مگس گارنگ مؤثر زود است به میانگین نشان داده می‌شود.

مگس گارنگ

جدول تجزیه و بررسی(جدول 1) نشان داد که اثر تشن خشکی.
جدول 2. مقایسه میانگین عملکرد گل‌گر و درصد آلوودگی غوزه به مگس گل‌گر در شرایط سبزی‌پذیری و سبزی‌پذیری نشده تنش خشکی مختلف

<table>
<thead>
<tr>
<th>تنش خشکی</th>
<th>درصد آلوودگی غوزه (کیلوجرم در هکتار)</th>
<th>عملکرد دانه</th>
<th>افزایش سطح غوزه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5/93</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4/50</td>
<td>2</td>
<td>10/28</td>
</tr>
<tr>
<td>3</td>
<td>8/60</td>
<td>3</td>
<td>15/54</td>
</tr>
<tr>
<td>5</td>
<td>7/46</td>
<td>4</td>
<td>16/13</td>
</tr>
<tr>
<td>7</td>
<td>0/09</td>
<td>5</td>
<td>16/15</td>
</tr>
</tbody>
</table>

میانگین: 9/51

درصد کاهش عملکرد نسبت به سبزی‌پذیری

<table>
<thead>
<tr>
<th>تنش X</th>
<th>درصد کاهش عملکرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18/24</td>
</tr>
<tr>
<td>2</td>
<td>13/12</td>
</tr>
<tr>
<td>3</td>
<td>15/54</td>
</tr>
<tr>
<td>5</td>
<td>11/25</td>
</tr>
<tr>
<td>7</td>
<td>10/54</td>
</tr>
</tbody>
</table>

میانگین: 10/12

جدول 3. مقایسه میانگین های تعداد شته U. carthami در هر پره در شرایط سبزی‌پذیری و سبزی‌پذیری نشده و تنش‌های مختلف خشکی

<table>
<thead>
<tr>
<th>تنش X</th>
<th>هفته 1</th>
<th>هفته 2</th>
<th>هفته 3</th>
<th>هفته 4</th>
<th>هفته 5</th>
<th>هفته 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

میانگین: 1

1. در هر ستو میانگین های گرفته‌شده در هر فاصله آماری با استفاده از آزمون LSD با دو کلاس A به میانگین
2. در هر گروه در تنش‌های مختلف تنش‌های شته به ترتیب افزایشی پس از 50، 110 و 120 میلی‌متری‌بخار از تنش تبیک کلاس A باید باشد.
جدول ۲ مقایسه میانگین‌های تعداد مگس گلرگ در هر تور در شرایط سیاسی شده و سیاسی نشده در تنها های مختلف خشکی

<table>
<thead>
<tr>
<th>خشکی</th>
<th>سیاسی نشده</th>
<th>سیاسی شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱</td>
<td>۲</td>
</tr>
<tr>
<td>۱</td>
<td>۲</td>
<td>۳</td>
</tr>
<tr>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۳</td>
<td>۴</td>
<td>۵</td>
</tr>
<tr>
<td>۴</td>
<td>۵</td>
<td>۶</td>
</tr>
<tr>
<td>۵</td>
<td>۶</td>
<td>۷</td>
</tr>
<tr>
<td>۶</td>
<td>۷</td>
<td>۸</td>
</tr>
<tr>
<td>۷</td>
<td>۸</td>
<td>۹</td>
</tr>
<tr>
<td>۸</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۹</td>
<td>۱۰</td>
<td>۱۱</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۱</td>
<td>۱۲</td>
</tr>
</tbody>
</table>

می‌گردد. بوش و O. nubilalis تغذیه ساقه خوار ارگینی در هزاران نیز مقاوت سویا به حشرات را تایید می‌کند مناسب نیتروژن، کود و معده‌بندی نمودند. رواج‌های و همکاران(۱۷) نیز ترکیب مناسب یافته و فنر را باعث کاهش جمعیت بیشتر کرد. روی ارقب کارا ذکر کرد این در حالی است که برخی از محققین نشان خشکی که یکی از عوامل حاکم کم مصرف و بر مصرف در گیاهان می‌دانند (۳ و ۷). نتایج این کاهش جذب عناصر کم مصرف و بر مصرف در گیاه تنها با تغذیه که می‌تواند افزایش جمعیت می‌تواند افزایش جمعیت سیاسی نشده نشان دهد افزایش تعداد مگس گلرگ در تریکس شده افزایش بود. به طوری که حداکثر تعداد مگس گلرگ در شرایط نشده افزایش کمی یافت. ۱۰۰ میلی‌متر بیشتر از تنش تغذیه کلاس A می‌باشد.

*1 میزان مانند LSD
*2 تنش های ۰ تا ۵ به ترتیب شامل آیا پس از ۵۰، ۶۰، ۷۰، ۸۰ و ۹۰ میلی‌متر بیشتر از تنش نزدیک کلاس A می‌باشد.

در هر سویون میانگین‌های داده‌ای خر می‌باشد. احتمال آماری می‌باشد. ۱۰۰ میلی‌متر بیشتر از تنش تغذیه گرده (جدول ۲). در تنش شدید ۱۳۰ میلی‌متر جمعیت حتی بیشتر از سطح نشده ۱۱۰ میلی‌متر بود. در مورد بعضی گیاهان دیگر نیز افزایش نش مناسب افزایش جمعیت آفت گرده است مثل لیسب Ostrinia nubilalis (Hubner) است. به مرحله با نظر می‌رسد به یک خرودنی تعداد عناصر غذایی در گیاه عامل افزایش جمعیت مگس گلرگ در شرایط نشده حاکم کیفیت می‌تواند باعث کاهش می‌شود. مقاومت به حشرات را افزایش دهد (۱۸) به طوری که حداکثر کمتر با بیشتر عناصر تحت تنش خشکی می‌تواند مناسب اولیه یا تانویه گیاهی را تغییر داده و باعث ایجاد مخاطرات در مقاومت یا تحمل به خشکی حشرات در گیاه گردید. فلان و همکاران(۲۱) در ارائه که تغذیه مناسب در اثر منجر به کاهش

704
مزهی‌گر (E. decipiens) یک گونه از تیرگ‌های در اغلب سال‌های دنیا یافت می‌شود. این گونه در بسیاری از نواحی به‌مدت طولانی در بوم‌شناسی و در تحقیقات علمی استفاده می‌شود. به‌طوری‌که در بیش از ۱۰۰ میلی‌متر محیط زیست یافت می‌شود.

در صورتی که تیرگ‌های مزه‌گر در بوم‌شناسی و در تحقیقات علمی استفاده می‌شوند، به‌دست‌آمده که این گونه در بسیاری از نواحی به‌مدت طولانی در بوم‌شناسی و در تحقیقات علمی استفاده می‌شود. به‌طوری‌که در بیش از ۱۰۰ میلی‌متر محیط زیست یافت می‌شود.

در صورتی که تیرگ‌های مزه‌گر در بوم‌شناسی و در تحقیقات علمی استفاده می‌شوند، به‌دست‌آمده که این گونه در بسیاری از نواحی به‌مدت طولانی در بوم‌شناسی و در تحقیقات علمی استفاده می‌شود. به‌طوری‌که در بیش از ۱۰۰ میلی‌متر محیط زیست یافت می‌شود.

در صورتی که تیرگ‌های مزه‌گر در بوم‌شناسی و در تحقیقات علمی استفاده می‌شوند، به‌دست‌آمده که این گونه در بسیاری از نواحی به‌مدت طولانی در بوم‌شناسی و در تحقیقات علمی استفاده می‌شود. به‌طوری‌که در بیش از ۱۰۰ میلی‌متر محیط زیست یافت می‌شود.

در صورتی که تیرگ‌های مزه‌گر در بوم‌شناسی و در تحقیقات علمی استفاده می‌شوند، به‌دست‌آمده که این گونه در بسیاری از نواحی به‌مدت طولانی در بوم‌شناسی و در تحقیقات علمی استفاده می‌شود. به‌طوری‌که در بیش از ۱۰۰ میلی‌متر محیط زیست یافت می‌شود.

در صورتی که تیرگ‌های مزه‌گر در بوم‌شناسی و در تحقیقات علمی استفاده می‌شوند، به‌دست‌آمده که این گونه در بسیاری از نواحی به‌مدت طولانی در بوم‌شناسی و در تحقیقات علمی استفاده می‌شود. به‌طوری‌که در بیش از ۱۰۰ میلی‌متر محیط زیست یافت می‌شود.
جدول 5 مقایسه میانگین‌های تعداد زنگرک در سه شده مختلف

<table>
<thead>
<tr>
<th>سپاسی</th>
<th>تنظیم 1</th>
<th>تنظیم 2</th>
<th>تنظیم 3</th>
<th>تنظیم 4</th>
<th>تنظیم 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>متغیر 1</td>
<td>1/18</td>
<td>1/17</td>
<td>1/15</td>
<td>1/14</td>
<td>1/13</td>
</tr>
<tr>
<td>متغیر 2</td>
<td>1/12</td>
<td>1/12</td>
<td>1/11</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>متغیر 3</td>
<td>1/09</td>
<td>1/08</td>
<td>1/07</td>
<td>1/06</td>
<td>1/05</td>
</tr>
<tr>
<td>متغیر 4</td>
<td>1/04</td>
<td>1/03</td>
<td>1/02</td>
<td>1/01</td>
<td>1/00</td>
</tr>
<tr>
<td>متغیر 5</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
<td>1/01</td>
</tr>
</tbody>
</table>

۱. در هر سون میانگین‌های هر دارای امتیاز مشترک اختلاف آماری در سطح ۵ درصد با استفاده از آزمون t-BY یافته شد.

۲. تنظیم ۱ نسبت به تنظیم ۲ در ۱/۴ گرند ۴۰ درصد بود و این مطلوب نشان می‌دهد که با افزایش ۲۰ واحد تنظیم دیگر گرند ۴۰ درصد آزمایش تاخیر تا تعداد ۱۶۰ زنگرک و نتیجه‌گیری باشد.

۳. میانگین در دو تنظیم غلبه غلبه در برای نفوذ لازم می‌باشد.

۴. با توجه به این نتایج سپاسی دهانه‌های گرند به مسک گرند گردید.

۵. هفته‌ای برای کنترل مسک گرند بر خلاف شه گرند کافی نیست. علت این موضوع احتمالاً ممکن بود یک نخ و لازم می‌باشد.
نگاهی از نتایج تشخیص بر جمعیت و خصائص مگس گلَرگن ...
شیب سگاری

برنده‌سازی از معوانی وزارت جهاد کشاورزی به سمت
در اختیار نهاده بوده‌این تحقیق تنشک و قدردانی می‌گردد.

مباحث مورد استفاده

1. جمشیدی مقدم، م. و. س. پورداز. ۱۳۸۵. ارزیابی نشینی یا گل‌رنگ تحت تنش و در تامین شده و موزه‌های ملیه

2. حقی، زاده، پ. ۱۳۷۸. اثر دما و مولت روز بر رشد رویی و زایش گل‌رنگ. توده ملیه کومه. پایان نامه کارشناسی ارشد

3. هزاری م، ح. نی‌بانی، ق. و. محمدی، م. و. کریمی. ۱۳۸۳. اثرات تنش خشکی و مقداری روی و فیمار بر جلدپوش و کل

4. زیبی، ا. ۱۳۸۷. گل‌رنگ: انتشارات دانشگاه علوم کشاورزی و مهندسی گرگان.

5. کارگری، م. ع. و. فرد، ا. و. زیبی، پ. ا. ع. خواه‌امینیات و. ح. باینی. ۱۳۸۳. ارزیابی شاخص‌های تحمل به‌‌نش

6. کریمی، م. ا. ۱۳۸۶. آب و هوا منطقه‌ی مرکزی ایران. انتشارات جهاد دانشگاه صنعتی اصفهان.

7. میرلختی، آ. م. ح. اهتمام و. م. و. سیزیان. ۱۳۸۳. بررسی عوامل نمود بر شرایط عضایی با استفاده از رژیم‌های زراعی

8. ایران ملیه و ملیه کشاورزی و مهندسی چشمه. ۱۳۸۱-۱۳۸۲.

9. میر نظایم ضیا‌پوری. ج. ۱۳۸۲. چرب‌سازی و روش‌های استفاده نماینده.

Science Conference of IFOAM on Global Perspectives on Agroecology and Sustainable Agricultural Systems, Santa Cruz, CA.

