بررسی عملکرد هیدرولیکی آب‌یاری جویچه‌ای در روش‌های مختلف

مدیریت دبی جریان

به‌پروز مصطلح‌های زاده و مسعود فرزان‌نیا

چکیده
در این تحقیق عملکرد هیدرولیکی آب‌یاری جویچه‌ای با سه روش مدیریت دبی جریان شامل روش‌های اعمال شده توسط زارع (ستی)، واکر و استک‌گیر، و کاهش دی‌ی از درجه مزرعه آزمایش‌لی مورد بررسی و دانش‌گاه صنعتی اصفهان، برای سه مرحله آب‌یاری مورد مقایسه قرار گرفت. در هر یک از مراحل آزمایش، با در نظر گرفتن حداکثر سطح کنترل برای هر مرحله آب‌یاری، اطلاعاتی از برای هر یک از روش‌های فوق شناخته شد. شامل شکل هندسی، طول و شیب جریان، فاصله و خاک، پیشرفت سطح آب، دی، بارودی و دی کاملاً چوبی جریان جمع آوری گردید. پارامترهای معادله نفوذ کوستاکف–لوپیسی، با استفاده از روش بی‌لر اکت ناحیه تحمیل شد. سپس نسبت نفوذ عمک، نسبت پایاپ و بازده کاربرد آب محاسبه گردید.

نتایج نشان داد که همواره نسبت نفوذ عمک در روش کاهش دی‌ی بیشتر از روش واکر و استک‌گیر بود.

واژه‌های کلیدی: آب‌یاری سطحی، هیدرولیک جریان، بازده

مقدمه
آب‌یاری تحت فشار، نظری آب‌یاری بارانی و قطره‌ای، متوان پایین بودن هزینه سرمایه‌گذاری اولیه، پایین بودن هزینه تأمین انرژی و استفاده از سیستم‌های سهولت عملیاتی، تعمیر و نگهداری، و همچنین نیاز کمتر به آب‌یاری متخصص راننام بوده‌گرچه در

1. دانشیار آب‌یاری، دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. کارشناس ارشد آب‌یاری، مرکز تحقیقات کشاورزی کرمان
سیستم‌های آپایری تحت فشار بازده آپاییر ممکن است بالا باشد ولی افزایش سیستم‌های اتیزی سبب گردیده که سیستم‌های پژوهشگران (5) و (12) مطالعات قابل توجهی در زمینه افزایش بازده آپاییر سطحی انجام دهند. این روش را به عنوان چاگر گنجین مانندی برای روش‌های آپاییری تحت فشار پیشنهاد نمایند.

نتایج در سیستم‌های کنارآور و همکارانت (13) در سال 1991 بازده کادرب آب در یک مونیفیکاتور در آمریکا را که به طریق جویی به آپاییر می‌گردد برای حالت آپاییری به صورت یپسونستی، آپاییری به روش کاهش دیب و آپاییری به روش سطحی انتخاب نمودند و شهرت گرفته که در روش‌های کاهش دیب و منابع صرفاً جویی در آب مصرفی، در مقایسه با روش سنتی آپاییری چهارراهی حدود پنج تا هفت درصد بهتر است. مطالعات گزارش (11) نشان داده که در روش کاهش دیب و صرفاً جویی در آب انتقال یافته به چهارراهیها می‌توان تعداد بیشتری از آنها را به چهارراهی نمود. باقی‌مانده و نیز (4) اظهار می‌دارند که در این سیستم آپاییری چهارراهی اثر مغناطیس و همچنین پیشنهاد با استفاده از جیران ورد به این همکاران پس از رسیدن آب به یک کاهش داده شود. ساکس و هارت (15) اظهار می‌دارند که در این سیستم چهارراهی توسعه آب در مزرعه به علت ناامنی بودن زمان تعبیه آب افزایش یافته که این کاهش به دیب این قابلیت را تا حدی بطرف می‌سازد. بررسی (5) نشان می‌دهد که در این سیستم، به دیب خروک‌های طراحی نموده و در بیشتر مزرعه به یک سیستم کور می‌گردد. بازده کادرب آب را (8) درصد و بایته توسعه آب را (7) درصد به دست آورده.

آزیا و فاگنسره (5) تأثیر هیدرولوژی جریان ورد را بر بازده کادرب آب در مزرعه آپاییر نوایی، برای مقایسه مختلف

1. Cut-back
2. Surge
بررسی عملکرد هیپرولوگی آیپی سوپر در روش‌های مختلف مدیریت دی جریان

نحوه، شبیب، ضرب زیبی، طول قانون و حجم آب کاربردی

مطالعه نمونه‌دار. نتایج آن‌ها نشان داد که زمان آبگیری در حالت

هیدرولوگی ثابت 86 درصد کاهش دید 77 درصد، کاهش 59 درصد، کاهش در مدل و کاربرد اصلاح شده

78 درصد می‌باشد. هیدرولوگی ثابت نشان می‌دهد که جریان

ورودی آب در مدل مصداق آسیابی نبود. هیدرولوگی

کاهش دی داشته‌ایست که جریان ورودی آب در

شروع آسیابی ثابت بود و پس از مدتی کاهش بی‌پدید می‌کند.

هیدرولوگی کلیه بین‌حال که جریان ورودی آب اولین لحظه آسیابی شروع به کم شدن نموده، بالاخره در پایان آسیابی

به صورت می‌رسد. هیدرولوگی کاهش دی اصلاح شده که از آن

است که جریان ورودی آب از همان ابتدا آسیابی شروع به کم

شدن نموده، یا به نتیجه‌ی آسیابی نبود. هیدرولوگی کلیه

است که جریان ورودی آب از ابتدا شروع به کم شدن که دیده می‌کنیم تا

به تصفیه حداکثر شدت جریان رسید

با توجه به محدودیتی بودن متابع آب در کشور و بالا بودن

هزینه سیستم‌های آسیابی تحت فشار، و با توجه به اینکه اکثر

زمان‌های تحت آسیابی در ایران به روی سطحی آسیابی

می‌گردد، ضرورت دارد که روش‌های مختلف آسیابی جریان

به منظور کاهش اتصال و تیغه‌ای افزایش بذارم آسیابی مورد

مطالعه‌گردد.

هدف از مطالعه حاضر مقایسه روش‌های مختلف آسیابی

جویچه‌ای اساس شده توسط زار علامه و روش‌ها و اکسپورت و کاشش دی از نظر عملکرد هیپرولوگی در سه

مزرعه مختلف آسیابی جویچه‌ای است.

مواد و روش‌ها

سه مزرعه آزمایشی که از نظر بافت خاک، شیب جویچه و ساب

شیب هیدرولوگی جویچه‌ای حاصل سطح‌ها شده و گردنده، که مشخصات آنها در جدول 1 آمده است. مزرعه

آزمایشی عبارت بودند از مزرعه لرک، مزرعه شهرودان و مزرعه

مکانیک سطح جویچه تغییر گردید (14).
به صورت زیر

\[T_{c} = T_{ad} + T_{req} - \Delta T_{t} \]

که در آن:

\[\Delta T_{t} = \frac{a + t(1-a) + \frac{1}{(1+a)(1+r)}}{1} \]

\[a \] نرخ افزایش تحریم است

\[f = \frac{Q_{in} - Q_{out}}{L} \]

که در آن:

\[Q_{in} = Q_{in} \] دی‌بی‌جی‌تری و رودی (متر مکعب در دقیقه)

\[Q_{out} = Q_{out} \] دی‌بی‌جی‌تری خروجی (متر مکعب در دقیقه)

\[L = L \] طول جریان (متر)

\[f = f \] لومیس استفاده گردید.

\[Z = Kt_{a} + f \] که در آن:

\[Z = Z \] نفوذ تجمیعی در پایان فرضیات نفوذ 1 (متر مکعب بر متر)

\[f = f \] سرعت نفوذ 1 (متر مکعب در دقیقه بر متر)

\[K = K \] ضریب معادله (متر مکعب بر متر بر دقیقه به طواف)

\[a \] تغییرات معادله (بسته به)

\[L \] این جریان به یک سرعت پذیرفته ویران می‌شود.
پرستی عملکرد هیدرولیکی ایبری جویچهای در روش‌های مختلف مدیریت دی چریان

به دست آمده در روش‌های واکر و اسکوگرویو و کاهش (Vdp) آبی‌آبی‌های اساس تأمین کمک به رطوبت خاک در انتهای جویچه، بررسی یافته‌ای کامل جویچه‌انگر گرفته. از یافته‌های تحقیق حاصله با استفاده از معادلات 1 تا 11 انجام شد و بازه کاربرد آنها با استفاده از معادله 10 محاسبه شد. در روش سنتی، آبی‌آبی‌های جویچه‌ها توسط زارع و به طریق متناوب انجام (به صورت تجربی و بدون هیچ گونه استفاده از اصول طراحی علمی) و سپس با استفاده از اطلاعات جمع‌آوری شده، بازده کاربرد با استفاده از معادله 10 تعیین گردید. برای توضیح بیشتر راجع به روش‌ها و اطلاعات مورد استفاده در این تحقیق به منابع علمی مورد استفاده (2 و 4) رجوع شود.

[Tاریخ و بحث]

برای ارزیابی سه روش واکر و اسکوگرویو، کاهش دی و ستی، در هر یک از مراحلی معمولی نسبت نفوذ عمیق، نسبت پایین و بازده کاربرد محاسبه گردید. تا این امکانات مراحل آبی‌آبی در حداکثر 2تا 4ارتباطی است. ترکیب این 2تا 4 بین شناخت این است که نسبت نفوذ عمیق در روش کاهش دی و پیشتر از روش واکر و اسکوگرویو می‌باشد. در روش کاهش دی و نسبت به روش واکر و اسکوگرویو آب کمتری به جویچه وارد می‌شود. این در حالی است که از معادله 10 محاسبه گردیده، برای هر دو روش پیکر است. بنابراین، با توجه به حجم کمتر آب آبی‌آبی در روش کاهش دی و نسبت نفوذ عمیق در این روش، در مقایسه با روش واکر و اسکوگرویو پیشتر می‌باشد. همچنین، نسبت پایین در روش واکر و اسکوگرویو پیشتر از روش کاهش دی و نسبت زمان آب‌آبی‌های جویچه‌های در این دو روی برای بود ولی دیب وودی و با حجم‌های تفاوت داشت. در روش کاهش دی و هنگامی که آب به انتهای جویچه می‌رسید دیب جویچه‌ها کم می‌شد. در حالت که در روی واکر و اسکوگرویو، در تمام مدت آب‌آبی‌های دیب ثابت می‌ماند، در نتیجه آب پیشتری به صورت روان‌بند هدر (Ea)

\[E_a = \frac{V_{in} - V_{out} - V_{dp}}{V_{in}} \times 100 \]

که:

- \(V_{in} \) = حجم آب جریان ورودی (متر مکعب در دقیقه)
- \(V_{out} \) = حجم آب آب‌آبی‌های جویچه‌انگر (متر مکعب)
- \(V_{dp} \) = حجم آب نفوذ کرده به خاک دور از دسترس گیاه (متر مکعب)

\[V_{out} = V_{in} - V_{dp} \]

به علت فاصله جریان از جویچه (متر مکعب)

\[Q_{ch} = \frac{1}{2} f_L \]

که:

- \(Q_{ch} \) = دیب کاهش یافته (متر مکعب در دقیقه)
- \(f_L \) = ضریب 1/2 در معادله 11 یک ضریب تجربی است که بیشترین از یک در نظر گرفته شده، برای این است که با کاهش از زیرگردن (به عنوان هاله آبی‌آبی) تا زیرگردن (به عنوان خاک سطحی) در هر هر سه مراحل آبی‌آبی در حداکثر 4 تا 2ارتباطی است. ترکیب این 4تا 2 بین شناخت این است که نسبت نفوذ عمیق در روی کاهش دی و پیشتر از روش واکر و اسکوگرویو می‌باشد. در روش کاهش دی و نسبت به روی واکر و اسکوگرویو آب کمتری به جویچه وارد می‌شود. این در حالی است که از معادله 10 محاسبه گردیده، برای هر دو روش پیکر است. بنابراین، با توجه به حجم کمتر آب آبی‌آبی در روش کاهش دی و نسبت نفوذ عمیق در این روش، در مقایسه با روی واکر و اسکوگرویو پیشتر می‌باشد. همچنین، نسبت پایین در روش واکر و اسکوگرویو پیشتر از روش کاهش دی و نسبت زمان آب‌آبی‌های جویچه‌های در این دو روی برای بود ولی دیب وودی و با حجم‌های تفاوت داشت. در روش کاهش دی و هنگامی که آب به انتهای جویچه می‌رسید دیب جویچه‌ها کم می‌شد. در حالت که در روی واکر و اسکوگرویو، در تمام مدت آب‌آبی‌های دیب ثابت می‌ماند، در نتیجه آب پیشتری به صورت روان‌بند هدر (Ea)
جدول 1. معیارهای مربوط به خاک و جوییچه در مزار زراعی آزمایشی

<table>
<thead>
<tr>
<th>پسر</th>
<th>طول</th>
<th>عرض</th>
<th>شیب</th>
<th>طول</th>
<th>شبیه</th>
<th>مزرعه</th>
<th>درصد</th>
<th>درصد</th>
<th>درصد (درصد وزنی)</th>
<th>(g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نورک</td>
<td>0/7</td>
<td>0/7</td>
<td>0/5</td>
<td>0/3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/8/5</td>
<td>28/5</td>
<td>28/5</td>
<td>28/5</td>
</tr>
<tr>
<td>شرودان</td>
<td>0/7</td>
<td>0/7</td>
<td>0/5</td>
<td>0/3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/8/5</td>
<td>28/5</td>
<td>28/5</td>
<td>28/5</td>
</tr>
<tr>
<td>دانشگاه</td>
<td>0/7</td>
<td>0/7</td>
<td>0/5</td>
<td>0/3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/8/5</td>
<td>28/5</td>
<td>28/5</td>
<td>28/5</td>
</tr>
</tbody>
</table>

جدول 2. پژوهش آیماری اول در مزار زراعی آزمایشی لورک

<table>
<thead>
<tr>
<th>بازده کاربرد (درصد)</th>
<th>(Ea)</th>
<th>TWR</th>
<th>DPR</th>
<th>Vdp</th>
<th>Vout</th>
<th>Vin</th>
<th>روش</th>
<th>واکر و اسکوگریو</th>
<th>کاهش دیکی</th>
<th>سنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>16</td>
<td>12/7</td>
<td>292</td>
<td>421</td>
<td>1123</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>16/4</td>
<td>18/6</td>
<td>292</td>
<td>194</td>
<td>1566</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
<tr>
<td>44/7</td>
<td>20/6</td>
<td>36/6</td>
<td>1216</td>
<td>687</td>
<td>3232</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. پژوهش آیماری دوم در مزار زراعی آزمایشی لورک

<table>
<thead>
<tr>
<th>بازده کاربرد (درصد)</th>
<th>(Ea)</th>
<th>TWR</th>
<th>DPR</th>
<th>Vdp</th>
<th>Vout</th>
<th>Vin</th>
<th>روش</th>
<th>واکر و اسکوگریو</th>
<th>کاهش دیکی</th>
<th>سنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>62/9</td>
<td>33</td>
<td>32</td>
<td>144</td>
<td>1136</td>
<td>3156</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
<tr>
<td>63/9</td>
<td>16/4</td>
<td>18/6</td>
<td>144</td>
<td>302</td>
<td>1708</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
<tr>
<td>64/9</td>
<td>63/1</td>
<td>0</td>
<td>1988</td>
<td>3167</td>
<td></td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. پژوهش آیماری سوم در مزار زراعی آزمایشی لورک

<table>
<thead>
<tr>
<th>بازده کاربرد (درصد)</th>
<th>(Ea)</th>
<th>TWR</th>
<th>DPR</th>
<th>Vdp</th>
<th>Vout</th>
<th>Vin</th>
<th>روش</th>
<th>واکر و اسکوگریو</th>
<th>کاهش دیکی</th>
<th>سنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>58/4</td>
<td>39/7</td>
<td>0/8</td>
<td>675</td>
<td>1407</td>
<td>3156</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
<tr>
<td>61/5</td>
<td>20/9</td>
<td>0/4</td>
<td>675</td>
<td>305</td>
<td>1440</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>24/7</td>
<td>0/2</td>
<td>100</td>
<td>1972</td>
<td>2508</td>
<td></td>
<td>واکر و اسکوگریو</td>
<td>کاهش دیکی</td>
<td>سنی</td>
<td></td>
</tr>
</tbody>
</table>
پرسی عملکرد هیدرولیکی آب‌یابی جویچه‌ای در روش‌های مختلف مدیریت دی جریان

وش: چکاوک ۲ تا ۴ هم چنین نشان می‌دهند که تلفیق این دو می‌تواند به بیش از حدی بهبودی در روش‌های مدیریت دی جریان‌های آبیاری و بهبودی در عملکرد آب‌یابی صرفه‌جویی در طول جریان‌های آبیاری باشد.

شکل ۱. تغییر عمق آب‌یابی در طول جریان‌های آبیاری روش‌مست (در)

شکل ۲. هیدرودینامیک جریان ورودی - خروجی جویچه برای آب‌یابی سوم در مزرعه آزمایشی لورک (روش مست)

روش دیگر است که به مطالعات ابتدایی و همگام ۱۶ مطالب کلی دارد. با در نظر گرفتن خصوصیات مربوط به خاک و جریان‌های زراعت آزمایشی، با توجه به نتایج حاضر برای

هر یک از آنها، می‌توان تنبه نیروی کلی زیر را ارائه نمود:

۱. در مزرعه با بافت خاک سنتی و با نفوذپذیری کم که دارای پتانسیل روتناب زیاد می‌باشد، به طور کلی روشن کاهش دی‌پس از سرسردن آب به انگهی جریان، دی‌پس ورودی به جریان کم می‌گردد و در نتیجه مقدار تلفات از طریق روتناب کاهش می‌یابد.

مقایسه سه روش در مزرعه آزمایشی لورک (جدول ۲): به‌ینگا گان آن است که به طور کلی در روش مست برآورد کمتر و نسبت پایین بهتر است. هم‌چنین، نسبت نفوذ عمیق در آب‌یابی اول در روش مست بهتر است و در روش دیگر است. همچنین، نسبت نفوذ عمیق در آب‌یابی اول در روش مست بهتر است و در روش دیگر است.

در آب‌یابی مست، زراعت جریان‌های راه با دیبپای آب‌یابی کرد. با توجه به تکراری و فردی که فروشنده در جریان‌های را پیدا کنند، از جریان به دست روان خارجی‌نگی شده است. این مسئله از

شکل ۲ نیز قابل استنباط است.

ارقام حاصل از مزرعه آزمایشی شرودان با بانک خاک

سنگین، و مزرعه آزمایشی دانشگاه صنعتی اصفهان با بانف که سیستم نیز برای هر سه مرحله آب‌یابی مورد تجربه و

تحلیل قرار گرفت، که نتایج حاصله به ترتیب در جدول ۵ تا ۷.و جدول ۸ تا ۱۰ ارائه شده است. مقایسه نتایج جدول مذکور با

نتایج حاصل از مزرعه لورک نشان می‌دهد که نتایج هر سه مزرعه آزمایشی تقریباً یکسان است. به طور کلی می‌توان گفت

که در روش کاهش دی‌پس در ابزار اول به آب‌یابی‌های

بدید، به دلیل تعبیه جریان و کاهش نفوذپذیری آن، انرژی می‌باید. به این امر برتری روشن کاهش دی‌پس را نسبت به دو روش

دیگر در آب‌یابی های بعدی نشان می‌دهد.

نتایج تقریباً مشابه هر سه مزرعه آزمایشی نشان دهنده این است که به طور کلی روشن کاهش دی‌پس نسبت به روشن و آب‌یابی پسرتی دارد. نشانه‌های آب‌یابی در روش مست کمتراند و

می‌یابد.
جدول ۵. پاژده آبی‌ای‌دوار در مزرعه آزمایشی شرودان

<table>
<thead>
<tr>
<th>شماره (درصد)</th>
<th>پاژده کاربرد</th>
<th>نسبت پایایی</th>
<th>حجم نفوذ عمیق</th>
<th>حجم خروجی</th>
<th>روشن (لیتر)</th>
<th>حجم ورودی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۵/۲</td>
<td>۹/۸</td>
<td>۳۵</td>
<td>۷۹۳/۶</td>
<td>۴۴۴/۵</td>
<td>۳۲۱۸۸۸۸۸</td>
<td>۴۴۴/۵</td>
</tr>
<tr>
<td>۵۳</td>
<td>۸/۷</td>
<td>۳۸/۲</td>
<td>۷۴۳/۶</td>
<td>۱۸۰</td>
<td>۲۰۷۸۶</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>۴۸/۲</td>
<td>۱۲</td>
<td>۳۹/۷</td>
<td>۷۷۴/۷</td>
<td>۴۴۵</td>
<td>۳۵۶۴۵/۵</td>
<td>۴۴۵</td>
</tr>
</tbody>
</table>

جدول ۶. پاژده آبی‌ای‌دوار در مزرعه آزمایشی شرودان

<table>
<thead>
<tr>
<th>شماره (درصد)</th>
<th>پاژده کاربرد</th>
<th>نسبت پایایی</th>
<th>حجم نفوذ عمیق</th>
<th>حجم خروجی</th>
<th>روشن (لیتر)</th>
<th>حجم ورودی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۵/۳</td>
<td>۱۸/۷</td>
<td>۲۱</td>
<td>۷۷۴</td>
<td>۴۵۰</td>
<td>۲۴۰۰۸۶</td>
<td>۲۴۰۰۸۶</td>
</tr>
<tr>
<td>۵۴/۸</td>
<td>۹</td>
<td>۳۶/۲</td>
<td>۷۴۷</td>
<td>۱۸۷</td>
<td>۲۰۴۵۵</td>
<td>۲۰۴۵۵</td>
</tr>
<tr>
<td>۵۲/۱</td>
<td>۲۷/۹</td>
<td>۱۹/۹</td>
<td>۷۰۰</td>
<td>۷۰۰</td>
<td>۲۵۴۷۰۶</td>
<td>۲۵۴۷۰۶</td>
</tr>
</tbody>
</table>

جدول ۷. پاژده آبی‌ای‌سوم در مزرعه آزمایشی شرودان

<table>
<thead>
<tr>
<th>شماره (درصد)</th>
<th>پاژده کاربرد</th>
<th>نسبت پایایی</th>
<th>حجم نفوذ عمیق</th>
<th>حجم خروجی</th>
<th>روشن (لیتر)</th>
<th>حجم ورودی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۵/۶</td>
<td>۱۵/۷</td>
<td>۲۵/۷</td>
<td>۶۴۲</td>
<td>۲۰۳</td>
<td>۲۵۴۷۲</td>
<td>۲۵۴۷۲</td>
</tr>
<tr>
<td>۵۴/۵</td>
<td>۹/۱</td>
<td>۲۸/۳</td>
<td>۶۲۲</td>
<td>۲۴۴</td>
<td>۲۳۴۰۶</td>
<td>۲۳۴۰۶</td>
</tr>
<tr>
<td>۵۲/۲</td>
<td>۱۸/۸</td>
<td>۴۰۰</td>
<td>۴۳۰</td>
<td>۴۳۰</td>
<td>۲۴۸۲۸۶</td>
<td>۲۴۸۲۸۶</td>
</tr>
</tbody>
</table>

جدول ۸. پاژده آبی‌ای‌دوار در مزرعه آزمایشی دانشگاه صنعتی اصفهان

<table>
<thead>
<tr>
<th>شماره (درصد)</th>
<th>پاژده کاربرد</th>
<th>نسبت پایایی</th>
<th>حجم نفوذ عمیق</th>
<th>حجم خروجی</th>
<th>روشن (لیتر)</th>
<th>حجم ورودی (لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۵</td>
<td>۱۴۵/۶</td>
<td>۳۵/۸</td>
<td>۱۳۵۰</td>
<td>۵۵</td>
<td>۲۳۵۶۶۱</td>
<td>۲۳۵۶۶۱</td>
</tr>
<tr>
<td>۵۴/۱</td>
<td>۶۲/۷</td>
<td>۱۵۰</td>
<td>۲۷</td>
<td>۵۰</td>
<td>۲۳۱۲۵۶</td>
<td>۲۳۱۲۵۶</td>
</tr>
<tr>
<td>۴۹</td>
<td>۹/۵</td>
<td>۳۱۲۱</td>
<td>۴۸۳</td>
<td>۵۰۵۵</td>
<td>۵۰۵۵</td>
<td>۵۰۵۵</td>
</tr>
</tbody>
</table>
پیشتر است مشهودتر می‌باشد.

7. با سیکتر شدن پایتخت خاک و در تغییر افزایش نفوذپذیری خاک، اختلاف بزرگی است که روش‌های واکر و اسکوگری و کاهش دیبی کمتر می‌شود (جدول 8 و 9). زیرا مقاوم ویژه‌ای در خاک‌های سیکتر کمتر از خاک‌های سنگین تر نست. این موضوع به خصوص در آب‌دارهای اول که قابلیت نفوذ خاک ممکن است استفاده

 tabla 7.

1. از بررسی‌های اخیر، آبیاری کلاسیک آبی برخی از چشمه‌های جهان. ماهت آب، خاک، ماسین #: 10-14.
2. فرازی، م. 1376. مقایسه عملکرد هیدرولوگی آبیاری شریک تحت روش‌های کات بک، واکر و اسکوگری و سنتی. پایان نامه کارشناسی ارشد. دانشگاه خواجه نصیرالدین توسی اصفهان.
3. نیرویی، س. س، ت. مهاباد، م. ماهی، و ن. حیدری، 1376. آشنایی با آبیاری کابلی. کمیته ملی آبیاری و زهکشی ایران، وزارت نیرو، صفحات 101-150.