دوره 13، شماره 47 - ( (ب)-بهار 1388 )                   جلد 13 شماره 47 صفحات 543-529 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rabiei B, Rahimi M. Evaluation of Different Grouping Methods of Rapeseed Genotypes Using Fisher’s Linear Discrimination Function Analysis. Journal of Crop Production and Processing 2009; 13 (47) :529-543
URL: http://jcpp.iut.ac.ir/article-1-1074-fa.html
ربیعی بابک، رحیمی مهدی. ارزیابی روش‌های گروه‌بندی ژنوتیپ های کلزا با استفاده از تجزیه تابع تشخیص خطی فیشر. نشریه تولید و فرآوری محصولات زراعی و باغی. 1388; 13 (47) :529-543

URL: http://jcpp.iut.ac.ir/article-1-1074-fa.html


، rabiei@guilan.ac.ir
چکیده:   (10599 مشاهده)
تجزیه تابع تشخیص یکی از روش‌های تجزیه آماری چند متغیره است که از آن می‌توان برای آزمون صحت نتایج حاصل از تجزیه خوشه‌ای استفاده نمود. در این مطالعه، صحت گروه‌بندی روش‌های مختلف تجزیه خوشه‌ای بر پایه روش‌های مختلف استاندارد کردن داده‌ها و معیارهای متفاوت فاصله با تجزیه تابع تشخیص مورد ارزیابی قرار گرفتند. هم‌چنین برای تأیید نتایج از T2 هتلینگ، پلات CCC و تجزیه واریانس چند متغیره استفاده گردید. بدین منظور، 8 ژنوتیپ کلزا در قالب طرح بلوک های کامل تصادفی با سه تکرار در مؤسسه تحقیقات برنج کشور (رشت) در سال 85-1384 کشت شدند و 14 صفت در آنها مورد ارزیابی قرار گرفت. تجزیه واریانس طرح بلوکی اختلاف معنی داری را بین ژنوتیپ ها از نظر کلیه صفات مورد مطالعه نشان داد. مقایسه میانگین بین ژنوتیپ ها نیز نشان داد که ژنوتیپ Hyola401 از نظر عملکرد دانه و بسیاری از صفات بررسی شده برتر از سایر ژنوتیپ ها بود. براورد ضریب تغییرات فنوتیپی و ژنوتیپی نشان داد که اکثر صفات دارای تنوع زیادی در جمعیت می باشند. تجزیه تابع تشخیص نشان داد که معیار فاصله اقلیدسی بهتر از سایر معیارهای فاصله بود و گروه‌بندی مطلوبی بر اساس آن به‌دست آمد. هم‌چنین تمام روش‌های استاندارد کردن داده‌ها گروه‌بندی مشابهی به‌وجود آوردند و بهتر از استاندارد نکردن داده‌ها بودند. بر اساس ارزیابی دندروگرام‌های روش‌های مختلف تجزیه خوشه‌ای مشخص شد که روش‌های متوسط فاصله بین گروه ها (UPGMA)، دورترین همسایه‌ها و حداقل واریانس "وارد" بهتر از سایر روش‌ها بودند و ژنوتیپ ها را در سه گروه دسته بندی کردند. تجزیه تابع تشخیص خطی فیشر نشان داد که روش‌های UPGMA و حداقل واریانس "وارد" با انجام صحت گروه‌بندی در حدود 5/87 درصد، مناسب‌تر از سایر روش‌های تجزیه خوشه ای بودند، با این حال تجزیه تشخیص ژنوتیپ ها را در دو گروه قرار داد. آزمون های T2 هتلینگ، پلات CCC و تجزیه واریانس چند متغیره نیز نتایج حاصل از تجزیه تشخیص را مورد تأیید قرار دادند. به این ترتیب، به‌نظر می رسد که استفاده از معیار فاصله اقلیدسی بر اساس داده‌های استاندارد شده و انجام تجزیه خوشه‌ای با روش‌های حداقل واریانس "وارد" و یا UPGMA گروه بندی بهتری از ژنوتیپ‌ها ارائه دهد، اما توصیه می شود برای تأیید نتایج و تعیین گروه های واقعی از تجزیه تابع تشخیص استفاده گردد.
متن کامل [PDF 1222 kb]   (2124 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Isfahan University of Technology - مجله تولید و فرآوری محصولات زراعی و باغی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق