In order to study the effects of nanoparticles and biofertilizers on chlorophyll fluorescence indices and some physiological traits of triticale (Triticosecale Wittmack) under salinity stress, a factorial experiment was conducted based on a randomized complete block design with three replications in the research greenhouse of Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardebili in 2021. Experimental factors included salinity (non-saline control, 35, and 70 mM NaCl), application of biofertilizers (PGPR) (biofertilizers-free control, application of Azospirilum, Pseudomonas, combined application Azospirilum and Pseudomonas) and nanoparticles foliar application (foliar application with water as control, nano iron oxide foliar application, nano silicon, combined foliar application of nano iron-silicon oxide). The results showed that both application of PGPR and foliar application of nanoparticles under non-saline condition increased quantum yield (64%), maximum fluorescence (69%), variable fluorescence (175%), chlorophyll index (48.1%), leaf nitrogen content (35.3%), leaf relative water content (49.7%) and stomatal conductance (81.4%) and grain yield per plant (44.5%) in comparison with biofertilizers-free and nanoparticles foliar application under 70 mM salt condition. Maximum of minimum fluorescence (178) and electrical conductivity (126) were obtained at the highest salinity level, i.e. 70 mM NaCl. Based on the results of this study, it seems that application of bio fertilizers and nanoparticles foliar application may improve the grain yield of triticale under salinity stress.