Volume 11, Issue 41 (fall 2007)                   2007, 11(41): 345-356 | Back to browse issues page

XML Persian Abstract Print

Abstract:   (15795 Views)
Plant pathogenic microorganisms produce a variety of enzymes capable of degrading different polysaccharides of the plant cell walls. Pathogens use these enzymes to penetrate and colonize host cells. Polygalacturonases are thought to be the first cell wall-degrading enzymes secreted by pathogens when they grow on plant cell walls. Oligogalacturonic acids with the polymerization degrees of 10 to 13 are intermediate products of pectin degradation by the action of polygalacturonases and are known to activate plant defense responses. PG- inhibiting proteins (PGIPs) present in the cell wall of many plants increase the stability of oligogalacturonic acids in the tissues by modulating fungal PG activities. These glycoproteins of the plant cell extracellular matrix retard the advancement of fungal hyphae, reduce tissue maceration, and prevent colonization of pathogen. In this study, Phaseolus vulgaris PGIPs were extracted from hypocotyle of Derakhshan and Naz bean cultivars. PvPGIPs were purified by afinity chromatography and analyzed by SDS-PAGE. Three major bands in the range of 47-55 kDa were detected. Average yield of The affinity-purified PGIPs was 1.68 mg per 100 gram of fresh bean hypocotyle. The inhibitory effect of PGIP was assayed on the PG activities of highly virulent isolates of Fusarium oxysporum (F15) and Ascochyta rabiei (IK04). The inhibitory activity of crude PGIP from Naz and Derakhshan cultivars on polygalacturonase activity of F. oxysporum was 18 and 28 units, respectively. These inhibitory activities increased to 40 units after purification. The inhibitory effect of crude PGIPs from both these two cultivars on PG activity of A. rabiei was 9 units, while purified PGIPs inhibited this PG activity to 18 and 29 units, respectively.
Full-Text [PDF 338 kb]   (1616 Downloads)    
Type of Study: Research | Subject: General

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.