دوره 8، شماره 1 - ( بهار 1383 )                   جلد 8 شماره 1 صفحات 25-11 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

S. M. J. Nazemosadat, A. Shirvani. The Application of CCA for the Assessment and Comparison of the Capability of SOI and Nion’s SST for the Prediction of Winter Precipitation over the Caspian Sea Coasts. Journal of Crop Production and Processing 2004; 8 (1) :11-25
URL: http://jcpp.iut.ac.ir/article-1-401-fa.html
سیدمحمدجعفر ناظم السادات ، امین شیروانی . کاربرد CCA به منظور ارزیابی و مقایسه توانایی SOI و SST Nino’s در پیش‌بینی بارش زمستانه سواحل دریای خزر. نشریه تولید و فرآوری محصولات زراعی و باغی. 1383; 8 (1) :11-25

URL: http://jcpp.iut.ac.ir/article-1-401-fa.html


چکیده:   (33424 مشاهده)
در ایران، حدود 75% از تولیدات برنج داخلی در ‌‌‌‌استان‌های‌‌ گیلان و مازندران، که از پر بارش ترین نواحی کشورند، تهیه می‌شود. پیش‌بینی‌های فصلی بارش تأثیر مهمی در تولید محصول و کاهش خطرهای حوادث اقلیمی در این ناحیه ‌‌حاصل‌خیز از کشور دارد. با ‌‌‌به‌کارگیری مدل تحلیل ‌‌‌هم‌بستگی متعارف (Canonical Correlation Analysis, CCA)، امکان پیش بینی بارش زمستانه این استان‌ها براساس وضـعیت پدیده النینیو- نوسـانات جنوبی (ELNino-Southern Oscillation, ENSO ) مورد ارزیابـی قرار گرفت. سری‌های زمانی شاخص ‌‌‌نوسان‌های‌ جنـوبی (Southern Oscillation Index, SOI) و دمای سطح آب در نینوها (Nino's SST) ‌‌‌‌به‌عنوان‌ پیشگو کننده‌ها و بارش در بندر انزلی و نوشهر ‌‌‌‌به‌عنوان‌ پیشگو شونده در نظر گرفته شدند. به‌منظور کاهش تعداد متغیرهای پیشگو کننده اولیه به تعداد معدودی از ‌مؤلفه‌های اصلی از روش توابع متعامد تجربی (Empirical Orthogonal Function,EOF ) اسـتفاده گـردید. از مجـمـوع بیسـت سـری زمانـی پیـش‌گـوکننـده، چـهار‌مـؤلـفه‌ اصلـی(EOF1, EOF2, EOF3, EOF4) از مجموعه داده‌های پیشگو کننده که 92% از کل واریانس این مجموعه داده‌ها را شرح می‌دادند، انتخاب شده و بقیه ‌مؤلفه‌ها ‌‌‌‌به‌عنوان‌ اختلال ( Noise ) در نظر گرفته شدند. بر مبنای EOF های انتخاب شده و سری‌های زمانی بارش، مدل CCA برای پیش بینی بارش زمستانه بندر انزلی و نوشهر ‌‌‌به‌کار برده شد. نتایج نشان داد که پیشگو کننده‌های در نظر گرفته شده در حدود 45% از کل واریانس سری زمانی بارش را شرح می‌دهند. ضرایب ‌‌‌هم‌بستگی بین مقادیر بارش مشاهده و شبیه سازی شده در سطح 5% معنی دار بودند. در 70% از موارد، علائم مقادیر نرمال دیده شده و شبیه‌سازی شده یکسان بودند که توانایی معقول مدل برای پیش‌بینی خشکسالی و ترسالی را نشان می‌دهد. در پیش‌بینی بارش، ‌‌‌نوسان‌های‌ Nino's SST (به‌خصوص (Nino4 حدود 10% موثرتر از SOI تشخیص داده شد.
متن کامل [PDF 284 kb]   (1433 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به Isfahan University of Technology - مجله تولید و فرآوری محصولات زراعی و باغی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق