Volume 3, Issue 3 (fall 1999)                   1999, 3(3): 13-24 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajabbasi M A, Mirlohi A F, Sadrarhami M. Tillage Effects on Some Physical Properties of Soil and Maize Yield in Lavark Research Farm. Journal of Crop Production and Processing 1999; 3 (3) :13-24
URL: http://jcpp.iut.ac.ir/article-1-1-en.html
Abstract:   (33447 Views)

A two-year study (1996-97) was conducted to verify tillage effects on several soil properties and corn yield. The soil (fine loamy, Thermic, typic Haplargids) was treated by conventional (CT) and no-till (NT) systems. Soil organic matter (OM), mean weight diameter (MWD), penetration resistance (Cl), bulk density (BD), total nitrogen (TN) and aggregate size distribution at depths of 0-20 and 20-40 cm were measured.

No-till system caused the OM to be twice as much as that in the conventional tillage system. Total nitrogen in the NT and at depths of 0-20 and 20-40 cm were higher by 30% and 20%, respectively. No differences obtained in bulk density and penetration resistance, but MWD in the NT was 20% and 10% higher than CT in the 0-20 and 20-40 cm depths, respectively. Mean weight diameter of the aggregates in the CT was smaller than that in NT. Aggregates of less than 0.25 mm at 0-20 cm depths were almost 25% higher in CT compared to NT system. The yield in the NT system was significantly lower than CT. Although reduced cultivation could bring a better soil physical condition, low initial organic matter, weak structure and heavy-textured soil produced unsuitable conditions for the crop roots and, consequently, resulted in low yield. Therefore, no-till system in this region would not be recommended.

Full-Text [PDF 713 kb]   (1797 Downloads)    
Type of Study: Research | Subject: General

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.