Volume 7, Issue 2 (summer 2003)                   2003, 7(2): 103-113 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

H. Ghadiri, M. Majidian. Effect of Different Nitrogen Fertilizer Levels and Moisture Stress During Milky and Dough Stages on Grain Yield, Yield Components and water Use Efficiency of Corn (Zea mays L.). Journal of Crop Production and Processing 2003; 7 (2) :103-113
URL: http://jcpp.iut.ac.ir/article-1-467-en.html
Abstract:   (9588 Views)
In order to investigate the effects of different nitrogen fertilizer levels and water stress during milky and dough stages on grain yield, yield components and water use efficiency of corn hybrid SC 704 (late maturing, non prolific and dent type), a field study was conducted. The factorial design of the study comprised of a randomized complete block with four replications. Four levels of nitrogen fertilizer (0, 92, 184 and 276 kg/ha nitrogen) along with three levels of irrigation (water stress imposed at milky stage, dough stage and a season-long optimum irrigation) were used as treatments. Results showed that water stress during milky and dough stages significantly decreased grain yield and thousand kernel weight. Also, effect of nitrogen fertilizer on grain yield, kernel number per ear, kernel weight per ear and thousand kernel weight was significant. Maximum grain yield was produced with 276 kg/ha nitrogen, although no significant differences were found among 92, 184 and 276 kg/ha nitrogen levels. Regarding water use efficiency during water stress, maximum efficiency was observed at milky stage but, as water stress declined with optimum irrigation, water use efficiency decreased.
Full-Text [PDF 187 kb]   (1415 Downloads)    
Type of Study: Research | Subject: General

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.