Volume 10, Issue 4 (winter 2007)                   2007, 10(4): 29-43 | Back to browse issues page

XML Persian Abstract Print

Abstract:   (25917 Views)
Increased chemical compounds in soil are the most important results of irrigation with domestic wastewater and treated effluents which contain some nutrients such as phosphorous (P). This process could increase the soil fertility, leading to the decrease of chemical nutrient consumption and consequently the cost of agricultural production. A research project was carried out in Tehran region for two years in order to investigate the capabilities of soil and plant in absorption and storage of wastewater contaminants, namely, phosphorous, and also the transmission of them to drain depth as a result of irrigation practice. To do the research, a series of lysimeters based on a statistical factorial experiment in the form of randomized complete design (3x3x3) were used. Raw and treated domestic wastewater, obtained from Ekbatan Housing Complex, and well water (control) were used to irrigate raw edible vegetables including parsley, carrot and tomato. The results showed that the amount of phosphorous leaching through soil to drain depth was between 0.90% and 3.56%, and between 1.03% and 4.15% of the phosphorous concentration in raw wastewater and treated one entered into the soil, respectively. Also, mass balance analyses showed the average phosphorous reduction ranged from 97.2% to 99.9% of the phosphorous entered with wastewater. During two years of study, the maximum concentration of PO4 measured in drained water was about 0.21 mg/L obtained from lysimeters irrigated with raw wastewater. This was much lower than the permissible PO4 amount for discharging the effluents to the surface water resources (6 mg/L PO4 is permitted by Iranian Environmental Protection Organization).
Full-Text [PDF 358 kb]   (1503 Downloads)    
Type of Study: Research | Subject: General

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.