Showing 2 results for M. A. Hajabbasi
M. R. Mosaddeghi, A. Hemmat, M. A. Hajabbasi,
Volume 7, Issue 1 (spring 2003)
Abstract
Soil tilth is crucial to seedling emergence, plant growth, and crop yield. Soil tilth of unstable soil is very susceptible to change. Internal forces originating from matric suction can change soil physical properties. A laboratory study was conducted on pots of a surface silty clay loam soil of Khomeinishahr series (fine-loamy, mixed, thermic Typic Haplargids, USDA), located in Research Farm of Isfahan University of Technology. Soil surface subsidence, bulk density, cone index, and tensile strength were measured after first flood irrigation. Results showed that the seedbed (0-20 cm) with a bulk density of 1.2 Mg.m-3 will be changed to a massive soil with high values of bulk density, cone index, and tensile strength after soil wetting. Slaking, slumping and coalescence of the soil caused soil surface to subside about 1.5 cm in 20 cm soil layer. After irrigation, cone index and tensile strength increased abruptly with decreasing of moisture content. It is shown that the dominant source of strength (cone index and tensile strength) gain during drying is the effective stress due to matric suction. In the absence of external loads, physical state (tilth) of the soil returned back to the original state. Therefore, soil slaking and slumping and rearrangement of particles along with the internal forces are the factors leading to soil hardness.
H. Naghavi, M. A. Hajabbasi, M. Afyuni,
Volume 9, Issue 3 (fall 2005)
Abstract
The objective of this study was to evaluate effects of cow manure on soil hydraulic properties and bromide leaching in a sandy loam soil (coarse loamy mixed, Typic Torrifluvents). Manure was applied at 0, 30, and 60 tha-1 at three replications in a completely random design. Three months after manure application potassium bromide (KBr) at rate of 300 Kg ha-1 Br was uniformly applied on the surface. Soil bulk density, porosity, organic matter, and soil moisture at18 levels of matric potentials were determined. Soil samples to the depth of 105 cm at 15-cm increments were collected after 100, 200 and 400 mm of irrigation. Soil bulk density, porosity, organic matter content, and soil moisture at different levels of matric potential increased significantly with manure application. Manure application also significantly affected the hydraulic parameters. Bromide leaching was significantly lower in plots with manure application and the greatest leaching occurred at the zero manure application treatment. The center of mass evaluation indicated a relatively similar result with measured values.