Strawberry (Fragaria × ananassa Dutch) is a widely grown fruit crop in the world due to its high aroma, taste, and nutritional value. In this study, the effect of foliar application of titanium dioxide nanoparticles on phytochemical modifications of strawberry cv. Sabrina under deficit fertigation conditions was investigated. The interaction effect of titanium dioxide nanoparticles (0, 6 and 12 mg L-1) and deficit fertigation (90, 110 and 130 mL) on some morphological, antioxidant and phytochemical factors of strawberry cv. Sabrina, such as fruit width, length, weight and yield, total phenol and flavonoid content, total antioxidant capacity, antioxidant enzyme activity, acid ascorbic content, total anthocyanin, iron and zinc content were investigated. Results showed that the interaction of titanium dioxide nanoparticles and the amount of nutrient solution on vitamin C content, antioxidant enzymes activity and iron content was significant. The highest fruit width (4.73. cm), fruit length (3.71 cm), fruit fresh weight (52.2 g), fruit yield (527 g) and vitamin C content (51.1 mg 100 mL-1) were observed in the presence of 130 mL of deficient fertigation and 12 mg L-1 titanium dioxide nanoparticles treatments. In contrast, the highest catalase (1.96 u/g FW), guaiacol peroxidase (2.42 u/g FW) and ascorbate peroxidase (2.29 u/g FW fruit) were observed upon exposure to 90 mL of deficient fertigation and 12 mg L-1 titanium dioxide nanoparticles treatments. In conclusion, deficit fertigation conditions along with the use of titanium dioxide nanoparticles improves morphological and phytochemical properties of strawberries